

InterNational Committee for Information Technology Standards (INCITS)
Secretariat: Information Technology Industry Council (ITI)

1101 K Street NW, Suite 610, Washington, DC 20005
www.INCITS.org

eb-2017-00576

Document Date: 11/15/2017

To: INCITS Members

Reply To: Rachel Porter

Subject: Public Review and Comments Register for the Approval of:

INCITS 525: Information technology - Next Generation Access Control - Implementation
Requirements, Protocols and API Definitions (NGAC-IRPADS)

Due Date:

The public review is from December 1, 2017 to January 30, 2018

Action: The InterNational Committee for Information Technology Standards (INCITS) announces that the
subject-referenced document(s) is being circulated for a 60-day public review and comment
period. Comments received during this period will be considered and answered. Commenters
who have objections/suggestions to this document should so indicate and include their reasons.

All comments should be forwarded not later than the date noted above to the following address:

INCITS Secretariat/ITI
1101 K Street NW - Suite 610
Washington DC 20005-3922
Email: comments@standards.incits.org (preferred)

This public review also serves as a call for patents and any other pertinent issues (copyrights,
trademarks). Correspondence regarding intellectual property rights may be emailed to the INCITS
Secretariat at patents@itic.org.

http://www.incits.org/
https://www.facebook.com/pages/InterNational-Committee-for-Information-Technology-Standards-INCITS/179060988835152
http://twitter.com/INCITS
https://www.linkedin.com/company/international-committee-for-information-technology-standards?trk=nav_account_sub_nav_company_admin
mailto:rporter@itic.org
http://www.incits.org/
mailto:comments@standards.incits.org
mailto:patents@itic.org

Working Draft DPANS
Standard INCITS 525

Revision 0.75

26 October 2017

Information technology -
Next Generation Access Control -
Implementation Requirements,
Protocols and API Definitions (NGAC-IRPAD)

This is an internal working document of CS1, a Technical Committee of Accredited Standards Committee
INCITS (InterNational Committee for Information Technology Standards). As such this is not a completed
standard and has not been approved. The contents may be modified by the CS1 Technical Committee.
The contents are actively being modified by CS1. This document is made available for review and
comment only.

Permission is granted to members of INCITS, its technical committees, and their associated task groups to
reproduce this document for the purposes of INCITS standardization activities without further permission,
provided this notice is included. All other rights are reserved. Any duplication of this document for
commercial or for-profit use is strictly prohibited.

CS1 Technical Editor: Wayne Jansen
Bayview Behavioral Consulting
1574 Gulf Rd., #237
Point Roberts, WA 98281
USA
Telephone: (360) 306-5263
Email: jansen@computer.org

Reference number
INCITS 525:201x

26 October 2017 INCITS 525 Revision 0.75

dpANS Next Generation Access Control – IRPAD ii

Points of Contact

InterNational Committee for Information Technology Standards (INCITS) CS1 Technical Committee

CS1 Chair CS1 Vice-Chair
Eric Hibbard Sal Francomacaro
 NIST
 Stop 8930
 Gaithersburg, MD 20899-8930
 USA

Telephone: Telephone: (301) 975-6414
Email: Eric.Hibbard@hitachivantara.com Email: salvatore.francomacaro@nist.gov

CS1 Web Site: http://www.incits.org/committees/cs1

INCITS Secretariat
c/o Information Technology Industry Council
1101 K Street NW
Suite 610
Washington, DC 20005
USA

Telephone: (202) 737-8888
Web site: http://www.incits.org
Email: incits@itic.org

http://www.incits.org/
mailto:incits@itic.org

INCITS 525 Revision 0.75 26 October 2017

iii dpANS Next Generation Access Control – IRPAD

Revision Information

Version 0.70 (20 September 2017)

Revised draft of standard.
Version 0.75 (26 October 2017)

Revised draft addressing comments from INCITS management review of version 0.70

26 October 2017 INCITS 525 Revision 0.75

dpANS Next Generation Access Control – IRPAD iv

Draft

American National Standards
for Information Systems

Next Generation Access Control - Implementation
Requirements, Protocols and API Definitions
(NGAC-IRPAD)

Secretariat

InterNational Committee for Information Technology Standards

Approved mm.dd.yy

American National Standards Institute, Inc.

Abstract

Next Generation Access Control (NGAC) is a fundamental reworking of traditional access control to meet
the needs of the modern, distributed, interconnected enterprise. NGAC is based on a flexible
infrastructure that can provide access control services for a number of different types of resources,
accessed by a number of different types of applications and users. The design is scalable, capable of
supporting different types of policies simultaneously, and manageable in the face of changing technology,
organizational restructuring, and increasing data volumes. This standard specifies key implementation
aspects of the NGAC framework that allow functional entities within the architecture to operate in a
correct, effective, and accordant manner.

Draft

dpANS Next Generation Access Control - IRPAD v

American
National
Standard

Approval of an American National Standard requires verification by ANSI that the
requirements for due process, consensus, and other criteria for approval have been
met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review,
substantial agreement has been reached by directly and materially affected interests.
Substantial agreement means much more than a simple majority, but not necessarily
unanimity. Consensus requires that all views and objections be considered, and that
effort be made towards their resolution.

The use of American National Standards is completely voluntary; their existence does not
in any respect preclude anyone, whether he has approved the standards or not, from
manufacturing, marketing, purchasing, or using products, processes, or procedures not
conforming to the standards.

The American National Standards Institute does not develop standards and will in no
circumstances give interpretation on any American National Standard. Moreover, no
person shall have the right or authority to issue an interpretation of an American National
Standard in the name of the American National Standards Institute. Requests for
interpretations should be addressed to the secretariat or sponsor whose name appears
on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any
time. The procedures of the American National Standards Institute require that action be
taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American
National Standards may receive current information on all standards by calling or writing
the American National Standards Institute.

Caution: The developers of this standard have requested that holders of patents that may be required for the
implementation of the standard disclose such patents to the publisher. However, neither the developers nor the
publisher have undertaken a patent search in order to identify which, if any, patents may apply to this standard. As of the
date of publication of this standard and following calls for the identification of patents that may be required for the
implementation of the standard,
No further patent search is conducted by the developer or publisher in respect to any standard it processes. No
representation is made or implied that licenses are not required to avoid infringement in the use of this standard.

Published by
American National Standards Institute
11 W. 42nd Street, New York, New York 10036

Copyright © 2017 by Information Technology Industry Council (ITI).
All rights reserved.

No part of this publication may be reproduced in any
form, in an electronic retrieval system or otherwise,
without prior written permission of ITI, 1101 K Street NW, Suite 610,
Washington, DC 20005.

Printed in the United States of America

26 October 2017 INCITS 525 Revision 0.75

dpANS Next Generation Access Control – IRPAD vi

Table of Contents

Topic Page

Introduction ... xii
1 Scope ... 1
2 Normative References ... 2
3 Definitions, Symbols, Abbreviations, and Conventions .. 3

3.1 Definitions ... 3
3.2 Symbols and acronyms .. 3
3.3 Keywords .. 3
3.4 Conventions ... 4

4 Interface Specifications ... 5

4.1 Background .. 5
4.2 Interface descriptions ... 6
4.3 PDP interfaces ... 6
4.4 EPP interface ... 8
4.5 PAP interfaces .. 9

5 Functional Entity Requirements ... 14

5.1 Background .. 14
5.2 Common requirements ... 14
5.3 PEP requirements .. 16
5.4 PDP requirements .. 16
5.5 EPP requirements .. 17
5.6 PAP requirements .. 17
5.7 PIP requirements .. 18
5.8 RAP requirements .. 18

6 Other Considerations ... 19

6.1 Interoperation of functional entities .. 19
6.2 Policy .. 19
6.3 Race conditions .. 20
6.4 Collocated functional entities ... 21
6.5 Domain definition and management .. 22

Annex A (Informative) Policy Computations .. 23

A.1 Introduction ... 23
A.2 Background .. 23
A.3 Algorithm details ... 24
A.4 Algorithm variants ... 31

INCITS 525 Revision 0.75 26 October 2017

vii dpANS Next Generation Access Control – IRPAD

List of Figures

Figure Page

Figure 1: Interfaces Between Functional Entities ... 5
Figure A.1: Simple Bank Policy Representation 24
Figure A.2: Source Association Nodes .. 25
Figure A.3: Destination Association Nodes ... 26
Figure A.4: Objects of Interest .. 27
Figure A.5: Depth First Search from Object l11 to Policy Classes ... 28
Figure A.6: Depth First Search from Object a11 to Polciy Classes .. 28

26 October 2017 INCITS 525 Revision 0.75

dpANS Next Generation Access Control – IRPAD viii

Foreword
(This foreword is not part of American National Standard INCITS.***:201x.)

Technical Committee CS1 of Accredited Standards Committee INCITS developed this standard during
2011-201x. The standards approval process started in 201x.

Next Generation Access Control (NGAC) is a fundamental reworking of traditional access control into a
form suited to the needs of the modern, distributed, interconnected enterprise. NGAC is based on a
flexible infrastructure that can provide access control services for a number of different types of
resources, accessed by a number of different types of applications and users. The NGAC infrastructure
design is scalable, supports policies of different types simultaneously, and remains tractable in the face
of changing technology, organizational restructuring, and increasing data volumes. Functional
components of the reference architecture can be supported by products from different manufacturers.

NGAC diverges from traditional approaches to access control in that it defines a generic architecture
that is separate from any particular policy or type of policy. NGAC is not an extension or adaption of any
existing access control model, but rather a redefinition of access control in terms of a fundamental and
reusable set of data abstractions and functions. NGAC provides a unifying framework capable of
supporting current access control approaches as well as novel types of policy that have been conceived
yet never implemented due to the lack of a suitable means of expression and enforcement.

NGAC follows an attribute-based construction in which characteristics or properties are used to control
access to resources and to describe and manage policy. NGAC accommodates combinations of
different policies and can support several types of policies concurrently in a manner that is both
deterministic and manageable. NGAC is also suitable for applications in which some information is
stored locally and some is stored in a grid or cloud, since different policies can be asserted in each
context. Even more generally, NGAC supports situations in which policy determined by a central
organization is able to operate concurrently with a local, specific, and more ad hoc policy.

Through its support of access control policies, NGAC is also able to protect data services, such as e-
mail, workflow, and records management. Support for data services is effected through the use of
NGAC access control information to mediate data service operations.

The family of NGAC standards specifies the architecture, functions, operations, and interfaces at a level
of detail necessary to ensure their realization in different types of implementation environments at a
range of scalability levels. This standard specifies, in detail, key interfaces of the reference architecture
and provides guidance and recommendations regarding aspects of implementation.

This standard contains the following items:

a) detailed specifications of the interfaces between key entities of the NGAC functional architecture;

b) implementation considerations and requirements for the functional entities of the architecture;
and

c) operational and security considerations and requirements for the interfaces between key
functional entities.

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome.
They should be sent to the INCITS Secretariat, InterNational Committee for Information Technology
Standards, Information Technology Institute, 1101 K Street NW, Suite 610, Washington, DC 20005.

Users of this standard are encouraged to determine if there are standards in development or new versions
of this standard that may extend or clarify technical information contained herein.

INCITS 525 Revision 0.75 26 October 2017

ix dpANS Next Generation Access Control – IRPAD

This standard was processed and approved for submittal to ANSI by the InterNational Committee for
Information Technology Standards (INCITS). Committee approval of the standard does not necessarily
imply that all committee members voted for approval. At the time it approved this standard, INCITS had
the following members:

Organization Represented Name of Representative

Editor’s Note 1: <<Insert INCITS member list>>

26 October 2017 INCITS 525 Revision 0.75

dpANS Next Generation Access Control – IRPAD x

Technical Committee CS1 on Cyber Security, which reviewed this standard, had the following members:

Dan Benigni, Chair
Sal Francomacaro, Vice-Chair
Eric Hibbard, International Representative

Organization Represented Name of Representative

INCITS 525 Revision 0.75 26 October 2017

xi dpANS Next Generation Access Control – IRPAD

CS1 Ad Hoc on Next Generation Access Control, which developed and reviewed this standard, had the
following members:

Sal Francomacaro, Chair
Wayne Jansen, Editor

Organization Represented Name of Representative

Hitachi Data Systems. .. Eric Hibbard
NIST ... David Ferraiolo
 Sal Francomacaro
 Serban Gavrila
 Wayne Jansen
VHA CIO... Mike Davis
 Richard Grow

26 October 2017 INCITS 525 Revision 0.75

dpANS Next Generation Access Control – IRPAD xii

Introduction

Next Generation Access Control (NGAC) is a fundamental reworking of traditional access controls to meet
the needs of the modern, distributed, and interconnected enterprise. NGAC provides a unifying framework
capable of supporting both current and novel types of access control policies simultaneously. NGAC
defines access control in terms of a fundamental and reusable set of data abstractions and functions,
following an attribute-based access control model in which authorization are defined in terms of attributes.
Security-relevant properties of users, processes and objects (e.g., role, sensitivity, affiliation and class) can
be expressed as attributes.

The family of NGAC standards specifies the architecture, functions, operations, and interfaces necessary
to enable conforming implementations to interact in an effective manner. This standard, NGAC-IRPAD,
explicates features that are required of the NGAC framework and its functional entities as well as
implementation considerations that may accompany them.

NGAC-IRPAD is divided into the following clauses and annexes:

Clause 1 defines the scope of this standard.

Clause 2 enumerates the normative references that apply to this standard.

Clause 3 defines the definitions, symbols, abbreviations, and notation used in this standard.

Clause 4 identifies the critical interfaces between key entities of the functional architecture, and
specifies them in detail.

Clause 5 defines the implementation requirements for the functional entities that comprise the
architecture and also for the interfaces between key functional entities.

Clause 6 discusses other aspects of the implementation and use of the NGAC framework.

Annex A describes algorithms related to various computations involving the policy.

INCITS 525 Revision 0.75 26 October 2017

1 dpANS Next Generation Access Control – IRPAD

AMERICAN NATIONAL STANDARD BSR INCITS.***:201x

American National Standard
for Information Technology -

Next Generation Access Control - Implementation
Requirements, Protocols and API Definitions (NGAC-IRPAD)

1 Scope

NGAC follows an attribute-based construction in which characteristics or properties are used to describe
and manage policy and to control access to resources. The family of NGAC standards specifies the
architecture, functions, operations, and interfaces necessary to ensure their realization in different types
of implementation environments at a range of scalability levels. This standard contains the information
needed to realize the NGAC Functional Architecture and obtain the requisite level of cohesion and
functionality to operate correctly and effectively at the system level.

26 October 2017 INCITS 525 Revision 0.75

dpANS Next Generation Access Control – IRPAD 2

2 Normative References

The following ANSI and ISO standards contain provisions that, by reference in the text, constitute
provisions of this standard. At the time of publication, the editions listed were valid. All standards are
subject to revision, and parties to agreements based on this standard are encouraged to investigate the
possibility of applying the most recent editions of the standards listed below.

Copies of the documents may be obtained from ANSI, an ISO member organization:

Approved ANSI standards;
approved international and regional standards (ISO and IEC); and
approved foreign standards (including JIS and DIN).

For further information, contact the ANSI Customer Service Department:

Phone: +1 212-642-4900
Fax: +1 212-302-1286
Web: http://www.ansi.org
E-mail: ansionline@ansi.org

or the InterNational Committee for Information Technology Standards (INCITS):

Phone 202-737-8888
Web: http://www.incits.org
E-mail: incits@itic.org

The following are approved references that pertain to this standard:

ACF: ISO/IEC 10181-3:1996, Open Systems Interconnection – Security frameworks for open systems:
Access control framework

FAM: ISO/IEC 29146:2016, Information technology – Security techniques – A framework for access
management

NGAC-FA: INCITS 499-2017, Information technology – Next Generation Access Control – Functional
Architecture (NGAC-FA)

NGAC-GOADS: INCITS 526-2016, Information technology – Next Generation Access Control – Generic
Operations And Data Structures (NGAC-GOADS)

ZNOT: ISO/IEC 13568:2002, Information technology – Z formal specification notation – Syntax, type
system and semantics

Note that the status of the referenced American National Standards and ISO standards may have
changed since the time of publication. For information about the current status of a document, or
regarding availability, contact the relevant standards body.

http://www.ansi.org/
mailto:ansionline@ansi.org
http://www.incits.org/
mailto:incits@itic.org

INCITS 525 Revision 0.75 26 October 2017

3 dpANS Next Generation Access Control – IRPAD

3 Definitions, Symbols, Abbreviations, and Conventions

3.1 Definitions

For the purposes of this document, the terms and definitions in NGAC-FA and NGAC-GOADS apply, as
do the following terms and definitions.

Client Application: A program that accesses protected resources or manipulates policy on behalf of a
user. A process is a running instance of a client application.

3.2 Symbols and acronyms

Symbol /
Acronym Meaning
ACID Atomicity, Consistency, Isolation, Durability
API Application Programming Interface
CA Client Application
DAG Directed Acyclic Graph
EPP Event Processing Point
NGAC Next Generation Access Control
PAP Policy Administration Point
PDP Policy Decision Point
PEP Policy Enforcement Point
PIP Policy Information Point
RAP Resource Access Point

3.3 Keywords

Invalid: A keyword used to describe an illegal or unsupported bit, byte, word, field or code value. Receipt
of an invalid bit, byte, word, field or code value shall be reported as an error.

Mandatory: A keyword indicating an item that is required to be implemented as defined in this standard
to claim compliance with this standard.

May: A keyword that indicates flexibility of choice with no implied preference.

Optional: A keyword that describes features that are not required to be implemented by this standard.
However, if any optional feature defined by this standard is implemented, it shall be implemented as
defined in this standard.

Reserved: A keyword referring to bits, bytes, words, fields and code values that are set aside for future
standardization. Their use and interpretation may be specified by future extensions to this or other
standards. A reserved bit, byte, word or field shall be set to zero, or in accordance with a future extension
to this standard. Recipients are not required to check reserved bits, bytes, words or fields for zero values.
Receipt of reserved code values in defined fields shall be reported as an error.

Shall: A keyword indicating a mandatory requirement. Designers are required to implement all such
requirements to ensure conformance with this standard.

Should: A keyword indicating flexibility of choice with a preferred alternative; equivalent to the phrase “it
is recommended”.

26 October 2017 INCITS 525 Revision 0.75

dpANS Next Generation Access Control – IRPAD 4

3.4 Conventions

Certain words and terms used in this American National Standard have a specific meaning beyond the
common English meaning. These words and terms are defined either in clause 3 or in the text where they
first appear.

Numbers that are not immediately followed by lower-case b or h are decimal values.

Numbers immediately followed by lower-case b (xxb) are binary values.

Numbers immediately followed by lower-case h (xxh) are hexadecimal values.

Hexadecimal digits that are alphabetic characters are upper case (i.e., ABCDEF, not abcdef).

Hexadecimal numbers may be separated into groups of four digits by spaces. If the number is not a
multiple of four digits, the first group may have fewer than four digits (e.g., AB CDEF 1234 5678h)

An alphabetic list (e.g., a, b, c or A, B, C) of items indicate the items in the list are unordered.

A numeric list (e.g., 1, 2, 3) of items indicate the items in the list are ordered (i.e., item 1 shall occur or
complete before item 2).

In the event of conflicting information the precedence for requirements defined in this standard is

1) text,
2) tables, then
3) figures.

INCITS 525 Revision 0.75 26 October 2017

5 dpANS Next Generation Access Control – IRPAD

4 Interface Specifications

4.1 Background

The implementation requirements in this standard are intended to support the exchange of access control
data between entities of the functional architecture. Each functional entity of the NGAC framework
exposes a set of Application Programming Interfaces (APIs), which are identified and summarized in
NGAC-FA. Those interfaces are illustrated in Figure 1. A black line depicts an interface supported by a
functional entity. An arrow through an interface depicts the direction of invocation of the exposed interface
with the interface provider at the arrow head and the interface consumer at the tail. The NGAC framework
does not specify how functional entities should be grouped or packaged together in an implementation.

Figure 1: Interfaces Between Functional Entities

The following interfaces are depicted:

a) A Policy Enforcement Point (PEP) exposes a set of interfaces for use by a Client Application (CA)
to access resources and policy information;

b) A Policy Decision Point (PDP) exposes a standard set of interfaces for use by a PEP to obtain a
decision regarding an access, and by the Event Processing Point (EPP) to obtain a decision
regarding the response of a matched obligation and have it carried out if deemed valid;

c) The EPP exposes a standard set of interfaces for use by a PEP or a PDP to indicate the
occurrence of an event and to communicate its context;

d) The Policy Access Point (PAP) exposes a standard set of interfaces for use by the EPP to match
an event context with defined obligations and to resolve the event response of a defined obligation,
and by a PDP to request information on which to base access decisions and to manage the
contents of the Policy Information Point (PIP);

e) The PIP exposes a set of interfaces for use by the PAP to search and manipulate the basic
elements, containers and relations that are persisted by the PIP; and

f) A Resource Access Point (RAP) exposes a set of interfaces for use by a PEP to access protected
resources and transfer data as necessary to and from those resources.

The interfaces between key functional entities, namely those enumerated in items (b), (c) and (d) above,
are specified in greater detail in NGAC-IRPAD. The remaining interfaces are not elaborated further within
the NGAC family of standards due to variability in the type of resources protected by the policy, the

26 October 2017 INCITS 525 Revision 0.75

dpANS Next Generation Access Control – IRPAD 6

translation of abstract operations performed on objects to concrete operations on the resources they
represent, and the potential for diversity in the data model and services offered by various types of data
stores.

An interface is a boundary across which two entities meet or communicate with each other. Documenting
an interface consists of identifying it, assigning a name and specifying its syntactic and semantic
information. The syntactic information consists of the signature of the methods that constitute the
interface. The signature specifies the name of the method and its parameters. Parameters are defined by
stating their order and type. The semantic information is in the form of a description of the behavior of
each method. Because an entity may both consume and produce information through an interface it
provides, the order and type of the values returned by each method of the interface are also specified.

4.2 Interface descriptions

Interfaces are described at an abstract level that specifies the information conveyed via the interface and
indicates the behavior the functional entity carries out when the interface is invoked. The mathematical
notation used to describe an interface corresponds to the subset of the Z formal specification notation
used in NGAC-GOADS. This approach allows conformant functional entities to be developed free from
constraints on the implementation environment of an entity such as the programming language or
operating system features. In addition, the specifications of basic elements, containers, relations and
other entities formally defined in NGAC-GOADS also apply to this standard.

Besides the interfaces specified in this standard, an implementation may support additional interfaces for
functional entities to provide supplemental services. An implementation may also build upon a defined
interface, extending and adjusting it to meet the design of the implementation and the practicalities of the
computational environment.

The interface specifications defined herein apply only to exposed interfaces. Implementations in which
two or more functional entities have been amalgamated and are treated as a unit may use appropriate
internal interfaces that are not exposed and differ from the interface specifications in IRPAD. However, it
is recommended that the IRPAD interface specifications be followed to the greatest extent possible in
such instances.

4.3 PDP interfaces

4.3.1 Overview

Two distinct interfaces are supported by a PDP:

a) The adjudication of access requests received from a PEP; and
b) The evaluation and processing of event responses received from the EPP.

The Resource and Administrative Access Information Flows in NGAC-FA describe the behavior of a PDP
for the former, and the Event Context Information Flow therein describes a PDP’s behavior for the latter.

4.3.2 Access request adjudication

The access request adjudication interface is for the sole use of PEPs. Two similar but distinct types of
PEP-issued access requests are adjudicated by a PDP through this interface:

a) resource access; and
b) administration access.

INCITS 525 Revision 0.75 26 October 2017

7 dpANS Next Generation Access Control – IRPAD

Although the behavior of a PDP in each case is different, the access request construct, AREQ, is the
same for both types of access (see NGAC-GOADS). The methods that constitute the access request
adjudication interface are specified in Table 1.

Table 1: Access Request Adjudication Interface

Method Description

AdjudicateResAccess (request:
AREQ): RES_RESP

Check the authorization of the user/process to perform a resource
access and return the access decision in the response. If the
decision is to grant access to an object, return the locator for the
associated resource along with the decision in the response.

AdjudicateAdmAccess (request:
AREQ): ADM_RESP

Check the authorization of the user/process to perform an
administration access and return the access decision. If the
decision is to grant access, perform the access and return the
access decision and the result of administrative access in the
response.

Access requests should be well formed with valid identifiers for the referenced policy entities. An
adjudication response to a resource access contains the decision rendered by the PDP and the locator
for the resource denoted by the object in the access request. The decision may be positive, negative, or
otherwise indicate an error condition. The contents and semantics of the locator can differ depending on
the computational environment of the implementation are not defined in further detail in this standard.

RES_RESP ⊆ DECISION × LOC

DECISION = {Yes, No, Error}

LOC = seq1 {00000000b, …, 11111111b}

An adjudication response to an administrative access conveys the decision rendered by the PDP. If a
positive decision was rendered, the result of the administrative action taken and the identifier of a basic
element, container, relation or other policy entity created by the administrative action are also conveyed.
An administrative action is not attempted if there is insufficient authorization, and could fail when
attempted due to a processing error. Otherwise, the action is reported as successful. The PDP should
raise a system alert for any critical, actionable problems encountered that could affect the integrity and
coherence of the policy. The details of any problems encountered should be entered into the audit log.

ADM_RESP ⊆ DECISION × RESULT × ID

RESULT = {Success, Failure}

4.3.3 Event response evaluation

For each obligation that matches an event context, the EPP communicates with a PDP to evaluate
whether the authorization held by the obligation’s creator for the actions of the event response is
adequate and process the event response accordingly. The PDP utilizes the interface afforded by the
PAP to carry out the event response.

The method defining this interface is specified in Table 2.

26 October 2017 INCITS 525 Revision 0.75

dpANS Next Generation Access Control – IRPAD 8

Table 2: Event Response Evaluation Interface

Method Description

EvaluateResponse (evresp:
EVNT_RESP): seq1
ADM_RESP

Check the authorization of the user that defined the obligation and
its event response. If the authorization is sufficient, carry out the
administrative actions of the response and return the results.

The event response, EVNT_RESP, conveys the identifier of the user responsible for defining the event
response and the actions to be taken. The actions are represented as a non-empty sequence of paired
administrative operations and conformant operands.

EVNT_RESP ⊆ U × seq1 (AOP × seq1 Arg), where Arg = { x | x ∈ PE ⋁ x ∈ 2PE ⋁ x ∈ 21

AR}

4.4 EPP interface

4.4.1 Overview

The EPP interface accepts and processes event contexts that are issued from both PEPs and PDPs,
which pertain to successfully completed accesses to protected resources or to policy information
persisted at the PIP, respectively.

The Event Context Information Flow in NGAC-FA describes the behavior of the EPP, which is the same
regardless of the source of issue. The single interface supports both types of functional entities.

4.4.2 Event context processing

The EPP uses the information from an event context to process obligations. It matches the event context
with the event pattern of each obligation persisted in the PIP, and carries out the event response of each
matched obligation as a single atomic action. Table 3 specifies the method that defines this interface.

Table 3: Event Context Processing Interface

Method Description

ProcessEventContext (context:
EC): EC_RESP

If the event context is not well formed, return a negative response.
Otherwise, match the event context against the event pattern of
each defined obligation. For each matched pattern, process the
corresponding event response using the PDP interface defined for
this purpose. If the event responses of all matched obligation
patterns are processed without complications, return a positive
result; otherwise, return a negative result.

The event context, EC, includes identifier for the user of the process, the process, and the access
operation and operands, which describe the associated event. Other additional information employed in
the EPP’s matching process, such as the containers of a policy element targeted by the access (e.g., the
object attributes of an object that was deleted), are also conveyed via the event context. The additional
information conveyed is dependent upon the type of event that occurred and may be attuned to the
language grammar and semantics for an obligation’s event pattern and response.

INCITS 525 Revision 0.75 26 October 2017

9 dpANS Next Generation Access Control – IRPAD

EC ⊆ U × P × OP × seq1 ID × seq ID

For each event context it receives, the EPP returns a response, EC_RESP, to the functional entity that
initiated the request. If the event context is malformed or irregular such that it precludes the resolution of
event patterns necessary for matching, no processing occurs and the result is reported as a failure. When
processing of all matched obligations has completed, if no problems were encountered, the result is
reported as a success. If any problems were encountered, the result is reported as a failure. The EPP
should raise a system alert for any critical, actionable problems encountered, such as resolution errors,
insufficient authorization, response incongruity or service errors, which could affect the integrity and
coherence of the policy. The details of any problems encountered should be entered into the audit log.

EC_RESP ⊆ U × P × RESULT

The EPP may be assigned a PDP for its exclusive use in processing the event responses of matched
obligations to avoid contention with PEPs performing access request adjudication with the same PDP as
the EPP.

4.5 PAP interfaces

4.5.1 Overview

The following two distinct interfaces are supported by the PAP:

a) The processing of inquiries concerning the defined policy, which are needed by a PDP to form an
access decision, and by the EPP to act upon an event context with regard to any relevant defined
obligation; and

b) The processing of directives affecting the defined policy, which are needed by a PDP to carry out
successfully adjudicated administrative access requests and the event responses of matched
obligations.

The PAP interfaces are designed to preserve the properties of the policy model. Policy inquiries shall not
affect any policy entity, and policy modifications shall not have any side effect on the policy persisted in
the PIP, other than the outcome defined for the interface. The naming conventions used for PAP
interfaces prepends each method with a prefix, a letter followed by a dash, to indicate the type of task
performed by the method. The prefixes used are as follows: C - create, D - delete, G - get and Q -
question.

4.5.2 Policy inquiry

The PAP interface for PDP and EPP inquiries is defined to meet the distinct needs of each functional
entity. In the case of the PDP, the focus of inquiries is on the privileges and restrictions that pertain to a
process and the user of the process. For the EPP, the focus is on obligations and aspects of event
patterns and event responses related to the details of an event context and the defined policy.

The methods defining this interface are listed in Table 4 below. Not all of the methods may be needed in
an implementation, and some may be combined to define more complex methods. Where possible, table
entries whose methods serve a related purpose are grouped together, demarcated from others by a
double horizontal bar.

26 October 2017 INCITS 525 Revision 0.75

dpANS Next Generation Access Control – IRPAD 10

Table 4: Policy Inquiry Interface

Method Description

G-AccessibleObjects(user: U):
2PE

Return the set of policy elements that user U has access to, and the
access rights U has on each. Used to review the capabilities of a
user.

G-UsersWithAccess(element:
PE): 2U

Return the set of users that have access to element PE, and the
access rights each user has on PE. Used to review the access
control entries of an object.

 G-PermittedARs (process: P,
element: PE): 2AR

Return the set of access rights a process holds for the given policy
element for all policy classes that contain the policy element. Used to

 G-DeniedARs (process: P,
element: PE): 2AR

Return the set of access rights a process is restricted from exercising
for the given policy element. Used to compute an access decision.

G-BaseATs (user: U): 2AT

Return the set of nethermost attributes for the user (i.e., attributes to
which the user holds an association through a containing user
attribute, which are not contained by any other attribute to which the
user has an association).

G-AdjacentAscendants
(element: PE): 2PE

Return the set of policy elements that have an assignment emanating
to the given policy element. Used to navigate policy element
assignments.

G-AdjacentDescendants
(element: PE): 2PE

Return the set of policy elements that have an assignment emanating
from the given policy element. Used to navigate policy element
assignments.

 G-PermittedARs (u: U,
element: PE): 2AR

Return the set of access rights a user holds for the given policy
element. Used to compute an event response evaluation.

G-DeniedARs (u: U, element:
PE): 2AR

Return the set of access rights a user is restricted from exercising for
the given policy element. Used to compute an event response
evaluation.

G-OBLIGs (): 2OBLIG Return the set of all defined obligations. Used to retrieve the OBLIG

relation for further processing.
G-EventResponses (context:
EC): seq1 EVNT_RESP

Return the set of all resolved event responses for which the given
event context matched the respective event pattern. Used to process
an event context against the defined obligations.

 G-ATContainers (element:
PE): 2PE Return the set of attributes that contain the given policy element.

G-PCContainers (element:
PE): 2PC Return the set of policy classes that contain the given policy element.

G-ASSOCs (user: U): 2ASSOC Return the set of associations whose first term pertains to the given
user (i.e., contains the user).

G-ASSOCs (user: UA): 2ASSOC Return the set of associations whose first term pertains to the given
user attribute (i.e., is or contains the user attribute).

G-ASSOCs (at: AT): 2ASSOC Return the set of associations whose third term pertains to the given
attribute (i.e., is or contains the attribute).

G-ConjPDENYs (process: P):
2P_DENY_CONJ

Return the set of conjunctive prohibitions that reference the given
process.

G-DisjPDENYs (process: P):
2P_DENY_DISJ

Return the set of disjunctive prohibitions that reference the given
process.

G-ConjUDENYs (user: U):
2U_DENY_CONJ

Return the set of conjunctive prohibitions that reference the given
user.

INCITS 525 Revision 0.75 26 October 2017

11 dpANS Next Generation Access Control – IRPAD

Method Description
G-DisjUDENYs (user: U):
2U_DENY_DISJ

Return the set of disjunctive prohibitions that reference the given
user.

G-ConjUADENYs (ua: UA):
2UA_DENY_CONJ

Return the set of conjunctive prohibitions that reference the given
user attribute.

G-DisjUADENYs (ua: UA):
2UA_DENY_DISJ

Return the set of disjunctive prohibitions that reference the given user
attribute.

G-OBLIG (user: U): 2OBLIG Return the set of obligations defined by the given user.

G-OBLIG (ua: UA): 2OBLIG Return the set of obligations whose pattern references the given user
attribute.

G-OBLIG (op: OP): 2OBLIG Return the set of obligations whose pattern references the given
operation.

G-OBLIG (ua: UA): 2OBLIG Return the set of obligations whose response references the given
user attribute.

 Q-Contains (e1: PE, e2: PE):
Boolean

Return a logical value (i.e., TRUE or FALSE) indicating whether the
first policy element contains a second policy element.

Q-UserHasAttribute (u: U, ua:
UA): Boolean

Return a logical value indicating whether the given user is contained
by the user attribute.

Q-UserHasPC(u: U, pc: PC):
Boolean

Return a logical value indicating whether the given user is contained
by the policy class.

Q-ObjectHasAttribute (o: O,
oa: OA): Boolean

Return a logical value indicating whether the given object is
contained by the object attribute.

Q-ObjectHasPC(o: O, pc:
PC): Boolean

Return a logical value indicating whether the given object is
contained by the policy class.

4.5.3 Policy adjustment

The policy adjustment interface accepts and processes directives that are issued exclusively from PDPs
and involve administration of the policy information maintained at the PIP. The authorization of the user
and the process in question shall be verified as sufficient by a PDP prior to the invocation of any policy
adjustment interface method.

The methods defining this interface are listed in Table 5 below. Where possible, table entries whose
methods serve a related purpose are grouped together, demarcated from others by a double horizontal
bar.

Table 5: Policy Adjustment Interface

Method Description

C-Session (user: U): RESULT
Signal the start of a session for the user. Used to assemble any
intermediate policy representations for the user, which may be
needed by the implementation.

D-Session (user: U): RESULT Signal the end of a session for the user. Used to dissolve any
intermediate policy representations assembled for the user.

C-PC (): PC Create a policy class and return its identifier. A null value for the

identifier indicates that the action failed.

26 October 2017 INCITS 525 Revision 0.75

dpANS Next Generation Access Control – IRPAD 12

Method Description

C-UAinPC (pc: PC): UA Create a user attribute and assign it to the given policy class. Return
the identifier of the user attribute or if the action fails, a null value.

C-UAinUA (ua: UA): UA
Create a user attribute and assign it to the given user attribute.
Return the identifier of the user attribute or if the action fails, a null
value.

C-UinUA (ua: UA): U Create a user, assign it to the given user attribute, and return the
identifier of the user or if the action fails, a null value.

C-OAinPC (pc: PC): OA
Create an object attribute and assign it to the given policy class.
Return the identifier of the object attribute or if the action fails, a null
value.

C-OAinOA (oa: OA): OA
Create an object attribute and assign it to the given object attribute.
Return the identifier of the object attribute or if the action fails, a null
value.

C-OinOA (oa: OA): O Create an object and assign it to the given object attribute. Return the
identifier of the object attribute or if the action fails, a null value.

D-PC (pc: PC): RESULT Delete the given policy class. Return a result indicating whether the

action succeeded.
D-UAinPC (ua: UA, pc: PC):
RESULT

Delete the given user attribute and its assignment to the policy class.
Return a result indicating whether the action succeeded.

D-UAinUA (ua1: UA, ua2:
UA): RESULT

Delete the given user attribute and its assignment to the user
attribute. Return a result indicating whether the action succeeded.

D-UinUA (u,: U, ua: UA):
RESULT

Delete the given user and its assignment to the user attribute.
Return a result indicating whether the action succeeded.

D-OAinPC (oa: OA, pc: PC):
RESULT

Delete the given object attribute and its assignment to the policy
class. Return a result indicating whether the action succeeded.

D-OAinOA (oa1: OA, oa2:
OA): RESULT

Delete the given object attribute and its assignment to the object
attribute. Return a result indicating whether the action succeeded.

D-OinOA (o: O, oa: OA):
RESULT

Delete the given object and its assignment to the object attribute.
Return a result indicating whether the action succeeded.

 C-UtoUA (u: U, ua: UA):
RESULT

Create an assignment from the given user to the user attribute.
Return a result indicating whether the action succeeded.

C-UAtoUA (ua1: UA, ua2:
UA): RESULT

Create an assignment from the first user attribute given to the second
user attribute. Return a result indicating whether the action
succeeded.

C-UAtoPC (ua: UA, pc: PC):
RESULT

Create an assignment from the given user attribute to the policy
class. Return a result indicating whether the action succeeded.

C-OAtoOA (oa1: OA, oa2:
OA): RESULT

Create an assignment from the first object attribute given to the
second object attribute. Return a result indicating whether the action
succeeded.

C-OAtoPC (oa: OA, pc: PC):
RESULT

Create an assignment from the given object attribute to the policy
class. Return a result indicating whether the action succeeded.

C-Assign (e1: PE, e2: PE):
RESULT

Create an assignment from the first policy element given to the
second one. Return a result indicating whether the action succeeded.
A possible alternative for all of the above assignment methods.

C-Assoc (ua: UA, ars: 21
AR, at:

AT): RESULT

Create an association from the given user attribute specified to the
other attribute given. Return a result indicating whether the action
succeeded.

INCITS 525 Revision 0.75 26 October 2017

13 dpANS Next Generation Access Control – IRPAD

Method Description

C-ConjUProhib (u: U, ars: 21
AR,

atis: 2AT, ates: 2AT): RESULT

Create a conjunctive prohibition on the given user for the inclusive
and exclusive policy elements denoted by the respective attribute
sets. Return a result indicating whether the action succeeded.

C-ConjPProhib (p: P, ars: 21
AR,

atis: 2AT, ates: 2AT): RESULT

Create a conjunctive prohibition on the given process for the inclusive
and exclusive policy elements denoted by the respective attribute
sets. Return a result indicating whether the action succeeded.

C-ConjUAProhib (ua: UA, ars:
21

AR, atis: 2AT, ates: 2AT):
RESULT

Create a conjunctive prohibition on the given user attribute for the
inclusive and exclusive policy elements denoted by the respective
attribute sets. Return a result indicating whether the action
succeeded.

C-DisjUProhib (u: U, ars: 21
AR,

atis: 2AT, ates: 2AT): RESULT

Create a disjunctive prohibition on the given user for the inclusive
and exclusive policy elements denoted by the respective attribute
sets. Return a result indicating whether the action succeeded.

C-DisjPProhib (p: P, ars: 21
AR,

atis: 2AT, ates: 2AT): RESULT

Create a disjunctive prohibition on the given process for the inclusive
and exclusive policy elements denoted by the respective attribute
sets. Return a result indicating whether the action succeeded.

C-DisjUAProhib (ua: UA, ars:
21

AR, atis: 2AT, ates: 2AT):
RESULT

Create a disjunctive prohibition on the given user attribute for the
inclusive and exclusive policy elements denoted by the respective
attribute sets. Return a result indicating whether the action
succeeded.

C-Oblig (u: U, pattern: seq1
ΣP, response: seq1 ΣR):
RESULT

Create an obligation for the given user with the given event pattern
and event response sentences. Return a result indicating whether the
action succeeded.

 D-Assign (e1: PE, e2: PE):
RESULT

Delete an assignment between the first policy element given to the
second one. Return a result indicating whether the action succeeded.

D-Assoc (ua: UA, ars: 21
AR, at:

AT): RESULT
Delete an association from the given user attribute to the other
attribute. Return a result indicating whether the action succeeded.

D-ConjUProhib (u: U, ars: 21
AR,

atis: 2AT, ates: 2AT): RESULT

Delete a conjunctive prohibition on the given user for the access right
set and inclusive and exclusive attribute sets. Return a result
indicating whether the action succeeded.

D-ConjPProhib (p: P, ars: 21
AR,

atis: 2AT, ates: 2AT): RESULT

Delete a conjunctive prohibition on the given process for the access
right set and inclusive and exclusive attribute sets. Return a result
indicating whether the action succeeded.

D-ConjUAProhib (ua: UA ars:
21

AR, atis: 2AT, ates: 2AT):
RESULT

Delete a conjunctive prohibition on the given user attribute for the
access right set and inclusive and exclusive attribute sets. Return a
result indicating whether the action succeeded.

D-DisjUProhib (u: U, ars: 21
AR,

atis: 2AT, ates: 2AT): RESULT

Delete a disjunctive prohibition on the given user for the access right
set and inclusive and exclusive attribute sets. Return a result
indicating whether the action succeeded.

D-DisjPProhib (p: P, ars: 21
AR,

atis: 2AT, ates: 2AT): RESULT

Delete a disjunctive prohibition on the given process for the access
right set and inclusive and exclusive attribute sets. Return a result
indicating whether the action succeeded.

D-DisjUAProhib (ua: UA, ars:
21

AR, atis: 2AT, ates: 2AT):
RESULT

Delete a disjunctive prohibition on the given user attribute for the
access right set and inclusive and exclusive attribute sets. Return a
result indicating whether the action succeeded.

D-Oblig (p: P, pattern:
PATTERNid, response:
RESPONSEid): RESULT

Delete the obligation for the given user with the given event pattern
and response. Return a result indicating whether the action
succeeded.

26 October 2017 INCITS 525 Revision 0.75

dpANS Next Generation Access Control – IRPAD 14

5 Functional Entity Requirements

5.1 Background

Requests from a user’s process to access a resource or policy entity are processed by the PEP under an
established session. A user may not have more than one session active at any time.

At the session start, the NGAC framework may assemble information to facilitate processing access
attempts initiated for the user by one of its processes. For example, the framework may determine
intermediate information, such as the object containers and objects that are accessible to the user,
derived from the policy definition and the authorizations held by the user at that moment. If the policy
configuration is updated, the intermediate information held could be affected, necessitating its
recomputation. Intermediate representations may be maintained in a virtual or actual form at either the
PAP or the PIP.

The NGAC functional entities operate mainly in a stateless fashion. The policy persisted at the PIP is the
only state information that needs to be maintained by an implementation. Derived relations and other
intermediate information computed from the policy may be cached in other components of an NGAC-
compliant implementation, but caching is done mainly for data reuse and performance reasons, not to
maintain the authorization state of the system. A stateless approach lends itself to better scalability and
availability for an implementation.

Requirements for NGAC functional entities are defined in NGAC-FA. Clause 5 discusses additional
factors regarding the NGAC framework, which also have a bearing on the implementation of the
functional entities, and specifies additional requirements.

5.2 Common requirements

5.2.1 Overview

The functional entities of the NGAC framework need to work closely together to govern access for a
computational environment. It should be no surprise that to do so securely and effectively, the entities
have many characteristics in common. These characteristics are summarized as follows:

a) exclusivity;
b) discoverability;
c) trustability;
d) secure interactivity;
e) auditability;
f) resiliency; and
g) extensibility.

5.2.2 Exclusivity

The interfaces illustrated previously in Figure 1 are restricted and intended for the exclusive use of the
cooperating NGAC functional entities depicted. An NGAC functional entity shall not interact with other
NGAC functional entities than those depicted in the figure.

An NGAC functional entity may use the interfaces of non-NGAC entities to accomplish its tasks, provided
that a trust relationship is established between them. Entities may include system-level entities that
provide essential services within the computational environment, such as location services, audit logging
services, and authentication services.

INCITS 525 Revision 0.75 26 October 2017

15 dpANS Next Generation Access Control – IRPAD

5.2.3 Discoverability

A functional entity shall be able to determine the points of access to a cooperating functional entity on
whose interfaces it relies. The means of determining a cooperating entity’s points of access are not
prescribed by NGAC.

Various means of locating a cooperating functional entity may be suitable depending on the
computational environment and design decisions for the implementation. For instance, a functional entity
may obtain the network address of a cooperating entity via a discovery service to gain access to the
interfaces the cooperating functional entity supports. A discovery service, if used in an NGAC
implementation, should be realized as an independent functional entity that is distinct from NGAC
functional entities and meets the criteria necessary to be treated as a trustworthy entity.

5.2.4 Trustability

A functional entity shall not use the interfaces of a cooperating functional entity without first having
established a trust relationship with it. NGAC does not prescribe the means of establishing a trust
relationship.

Different ways to establish trust between functional entities may exist for the computational environment
of the implementation, some being better suited than others. Examples of trust relationships range from
cooperating entities operating in the same supervisory mode within an operating system kernel, to the
interaction between two cooperating entities across a public network using a mutual authentication and
cryptographically protected connection protocol. All NGAC functional entities should meet a minimum set
of requirements that are stipulated for the computational environment for the establishment of trust
relationships.

5.2.5 Secure interactivity

A functional entity shall interact securely with a cooperating functional entity on whose interfaces it relies.
If the functional entities are situated in different computational environments (e.g., not collocated within a
single device or on the same private, secured network), communications between them should be
secured. At a minimum, authentication, integrity and non-repudiation security services should apply to
communications between the entities.

5.2.6 Auditability

The behavior of an NGAC functional entity’s activities that pertain directly to reaching and enforcing
access control decisions should be auditable. Audit information provides a valuable means for detecting
and investigating violations of security. An implementation should be able to capture audit information for
all security-relevant events in a well-defined format and timely manner, as individually selectable items for
the purposes of regulatory compliance, liability mitigation and investigation. All audit information collected
should be resistant to tampering such that unauthorized access is readily detected. The manner in which
audit monitoring, collection and reporting is accomplished is not specified by this standard.

5.2.7 Resiliency

Where possible, functional entities should return to a secure mode of operation when faced with the
occurrence of an unexpected event or other unexpected circumstances. Such situations may result in a
disruption of service that affects the availability of the NGAC framework implementation in lieu of allowing
the access control policy to be violated.

26 October 2017 INCITS 525 Revision 0.75

dpANS Next Generation Access Control – IRPAD 16

5.2.8 Extensibility

An implementation of a functional entity may incorporate features and behavior beyond those specified in
the NGAC family of standards in order to extend its capabilities, provided that all mandatory features and
behaviors are met by the implementation. Any additional features and behaviors shall not interfere with
those mandated by the NGAC family of standards. If an NGAC functional entity does not support the
extensions provided by the interface of a cooperating NGAC functional entity or vice versa, the interaction
shall default to the NGAC mandated features and behavior.

5.3 PEP requirements

A PEP governs access attempts by utilizing a PDP as described in NGAC-FA. Access attempts may take
the form of the process invoking the API of the PEP or the PEP intercepting and interpreting the process’s
invocations of other interfaces within the computational environment. Neither the API supported by a PEP
nor the methods of intercepting invocations of other interfaces are prescribed by NGAC.

Each process has a unique identity, is associated with a unique user, and operates within a unique
session. A PEP needs to be able to determine the identity of the process attempting access as well as
the identity of the process’s user. A PEP should not be aware of the details of the policy it enforces.

Policy needs to be enforced ubiquitously and continuously. A PEP should not be able to be bypassed
within its scope of operation by processes running on behalf of a user. Information accessed by a user
via a PEP also needs to be isolated from other users within a computational environment. The method to
ensure that this property is attained is dependent upon the computational environment of the
implementation and is not prescribed by NGAC.

Each PEP shall ask exactly one PDP for a decision on an access request. If for some reason that PDP
fails to service the request, the PEP may ask another PDP to adjudicate the access request. Only one
access request is allowed per authorization adjudication by a PDP. If multiple accesses are needed to
perform a complex function, they cannot be adjudicated together as a group, and instead will require
several independent access requests to be issued consecutively for adjudication.

A PEP interacts with the computational environment of a RAP (e.g., a filesystem, server, management
information base or other service) to access a protected resource and carry out an action. In addition to
the minimum security services mentioned in the previous clause, confidentiality services should apply to
communications between these entities.

5.4 PDP requirements

PDPs are at the core of the NGAC framework, using the prevailing policy to reach decisions about access
requests and event responses. As described in NGAC-FA, a PDP is utilized either by a PEP or by the
EPP, respectively, for access requests and event responses. The services provided through the PDP
interfaces are highly critical security services and all interactions with a PDP need to be secured
accordingly.

To suit the needs of an implementation, the interfaces of a PDP may be enabled or disabled through
configuration settings. That is, a PDP may be configured to interact with only certain PEPs, with only the
EPP, with all PEPs and not the EPP, or with other such settings.

For a resource access that is granted, a PDP needs to obtain and return to the PEP the locator for the
resource referenced by the object identifier conveyed in the access request. The details of the locator and
the way in which a locator is obtained and used is not prescribed by NGAC and may be accomplished in

INCITS 525 Revision 0.75 26 October 2017

17 dpANS Next Generation Access Control – IRPAD

various ways. For example, a mapping of object identifiers to resource locators might be maintained at
the PIP and retrieved via the PAP, or maintained by and retrieved from some other trusted entity.

For an administrative access that is granted, whether due to an access request or an event response,
locators are not an issue since the identifiers given as operands for the administrative operation are
sufficient for a PDP to carry out the access and adjust the policy via the PAP. Before granting access that
involves the creation of an association, the PDP shall ensure that the user for whom the association is
being created is in possession of the access rights over the policy elements in question. Otherwise, the
access shall be denied. The determination of whether such delegation should be permitted is an
additional check beyond that performed by the access decision function.

5.5 EPP requirements

The EPP is an optional functional entity that processes event contexts generated by a PEP or a PDP
using the facilities of a PDP and the PAP as described in NGAC-FA. The EPP shall process event
contexts in the order of receipt.

The EPP uses information conveyed in the event context to match the event context to the event pattern
of each defined obligation. The obligation relation has unique characteristics that distinguishes it from
other relations. Its main constituents, the event pattern and response, are not identifiers of defined policy
entities, but instead identify strings of characters that need to be well formed grammatically for
tokenization and semantic transformation during the event context information flow.

The event pattern defines conditions that trigger the execution of the event response when met. The
event pattern is a logical expression that conforms to its grammar. To determine whether a triggering
condition exists (i.e., the expression evaluates to TRUE), the terms of the expression are recognized and
resolved with the information conveyed via the event context as well as with details from the prevailing
policy configuration. The event context is used in a similar way to process terms in the event response.
The event response describes one or more administrative actions that are to be taken on behalf of the
obligation’s defining user. The event response needs to be conformant with its grammar, fully resolved
and transformed into administrative actions in order to be carried out.

Obligations are essentially policy-modifying programs that are triggered by a successful access that
meets specified conditions. Therefore, their use involves various types of risk, such as specification errors
in an event pattern or response, the unexpected triggering of a response by an unforeseen event, and
conflicts with administration access requests being performed concurrently.

5.6 PAP requirements

The PAP acts as a managed access point through which the policy information persisted at the PIP is
accessed. Operational routines to access data representations of the prevailing policy are typically
implemented at the PAP. The main objective of the PAP is to allow PDPs and the EPP access to policy
information, while preserving the integrity of the authorization state of the policy and preventing them from
interfering with each other’s activities. That is, the PAP controls and coordinates the processing of
concurrent directives to access the policy representation.

The PAP may cache policy information persisted at the PIP for various reasons. For example, when the
PAP is initiated, it may load policy information from the PIP into its memory in a form conducive to
improved performance. As adjustments are made to policy during operation of the NGAC framework, both
the PAP-resident policy information and the PIP-persisted policy need to be kept in synch.

A derived relation is one example of policy information that could be maintained at the PAP. Derived
relations are the result of evaluating a logical expression over one or more base relations. A derived

26 October 2017 INCITS 525 Revision 0.75

dpANS Next Generation Access Control – IRPAD 18

relation may be virtual and computed as needed or maintained continuously in memory for access. The
former approach requires continual reevaluation of the relation, which can affect performance negatively.
However, to keep both representations of policy in synch, the latter may need to entirely reevaluate a
derived relation on occasion due to alternations of policy. The implementation strategy and efficiency
tradeoffs for key NGAC derived relations, namely privileges and restrictions, can have a significant effect
on the performance of the PAP and the access decision function.

Another example of policy information that the PAP could maintain is the set of obligations whose terms
have been preprocessed and partially resolved. Recall that the main constituents of an obligation (viz.,
the event pattern and response) reference character strings or sentences that should be well formed
grammatically. Grammar recognition can occur at the time an obligation is defined to verify that the syntax
of a sentence supplied as an event pattern or an event response is well formed. The event pattern and
response cannot be fully evaluated at the time of definition, however, since some terms used in a
sentence may refer to items returned in the event context, which are not available until the time
obligations are matched and processed. Therefore, the resolution of undefined terms cannot take place
until then. Nevertheless, the event pattern and response, as sentences in a language, can be parsed and
converted into an intermediate representation at the time of definition, and maintained at the PAP for later
interpretation and final resolution. The benefit is that the bulk of the resolution work can occur at definition
time, reducing the effort needed during obligation matching and response processing.

5.7 PIP requirements

The PIP acts as the gateway for the PAP to the NGAC policy. The behavior of the PIP with respect to
changes to the authorization state of the policy is formally specified in NGAC-GOADS. Commands issued
by the PAP to access the basic elements, containers, and relations that represent policy are actualized at
the PIP.

5.8 RAP requirements

A RAP acts as the gateway for PEPs to one or more protected resources under its control. Commands
issued by PEPs to access protected resources (e.g., read and write) are actualized at a RAP. A RAP may
be used to monitor the status of resources as well as affect them.

INCITS 525 Revision 0.75 26 October 2017

19 dpANS Next Generation Access Control – IRPAD

6 Other Considerations

6.1 Interoperation of functional entities

The NGAC family of standards provides the architectural, functional and interface definitions
necessary to create a full-featured access control system. It is important to note that aspects of the
specifications were intentionally left open to allow an implementation to be tailored to the control
objectives of the system and the computational environment involved. The NGAC specifications allow
functional entities to be implemented independently and function in a consistent manner when
deployed together, but only if the details of those open areas are in agreement.

The areas in which agreement needs to be reached include the following technical details:

a) the syntax and semantics for GUIDs;
b) the naming conventions for policy elements;
c) the resource and administrative operations and access rights used to govern accesses;
d) the alphabet and grammar for the language(s) used to express event patterns and responses

in obligations;
e) the procedures for authenticating the identity of a user and for establishing trust relationships

between functional entities;
f) the particulars of the interfaces used between functional entities, including the concrete

encoding of parameters and the options and extensions supported; and
g) the syntax and semantics of resource locators.

6.2 Policy

6.2.1 Representation

NGAC policy is defined in terms of abstractions on the resources and authorizations of a
computational environment and the behavior of conceptual functional entities. While certain
abstractions are specified for the purposes of standardization, they need to be reified by actual
processing entities or settings within the computational environment of an implementation. The
adaptation of the abstractions of the security model to the constituents of the implementation
environment requires taking into consideration information about the environment when deciding how
the abstractions are to be actualized.

6.2.2 Updates

The NGAC security model is specified utilizing a single data store in which the policy is maintained.
When the policy is modified, the modifications take immediate effect. While the model captures the
required behavior of applied policy updates, it does not address the more general issue of ensuring
that the updates are of high caliber. Because updates have a direct impact on the results of the
access decision function, it would be useful to provide one or more means to vet intended updates
before they are applied to the active policy.

A policy management application can be an important tool in understanding policy abstractions and
the impact that policy settings have on controlling behavior. A policy management tool should be able
to screen proposed changes before they are applied to verify that they are well formed and do not
produce inconstancies in the policy. Graphical renditions are an effective aid in comprehending and
administering policy for which the NGAC is well suited.

26 October 2017 INCITS 525 Revision 0.75

dpANS Next Generation Access Control – IRPAD 20

Establishing separate, distinct spaces for creating and testing policy revisions before they are
activated can also prove useful in practice. For example, two policy stores could be maintained: one
for the test policy and one other for the active policy. The active policy store contains the policy used
to compute runtime access decisions, while the test policy store is used to apply revisions to a copy of
the active policy for vetting. Once vetting of a test policy is complete, it can replace the active policy.
Some means would also need to be established to transition the test policy to the active policy in a
synchronized fashion that avoids disrupting operations.

6.2.3 Performance

The operation of the NGAC relies squarely on the defined policy. Policy information is continually
retrieved and updated by functional entities during runtime, making the velocity of those transactions
a critical factor in the overall performance of an implementation. A practical method for improving
response is to create a high-speed memory cache of all or parts of the prevailing policy persisted at
the PIP and use that representation for access decisions and policy analytics. Caching can be done in
various ways. For example, changes to policy could be immediately reflected on the intermediate
representation of the policy elements and relations in memory and applied to the PIP-persisted policy
in a synchronous fashion to maintain consistency. Any updates made directly to the PIP-persisted
policy would also need to be applied automatically to the cached, intermediate representation of
policy. The intermediate representation could also be serialized at shut down to enable its quick
restoration upon start up.

The data structures used to represent cached policy and the algorithms employed to search that
intermediate representation have a direct impact on how quickly policy inquiries can be processed.
The determination of efficient policy representations and algorithms for enabling rapid evaluation is an
area for study. Annex A provides an example of an algorithm and data structure designed to perform
policy analysis efficiently, which can be adapted for various purposes.

6.3 Race conditions

The purpose of the event context information flow is to modify aspects of policy based on the
occurrence of events and the set of defined obligations in effect when they occur. The modifications
may affect access to the resource or policy information referenced by the access request that
triggered the event context information flow, as well as to other resources or policy information that
are related to the access. Therefore, the potential for race conditions exists in the architecture
between administrative and resource access requests and policy changes spawned from an event
context information flow, and also among policy changes from concurrent event context information
flows. Unexpected and unwanted changes to policy due to concurrent access by multiple functional
entities need to be avoided, and the following objectives attained:

a) An event context flow should not affect the processing of the access request that triggered it;
b) An event context flow should be able to affect, where appropriate, subsequent access requests

from the process or user referenced in the event context; and
c) An event context flow should be able to affect, where appropriate, access requests from other

processes that are adjudicated after the access request of the event context flow.

Race conditions should be addressed in a manner suited to the computational environment of an
implementation of the NGAC framework. The manner in which race conditions are addressed is not
prescribed by NGAC. Possible methods to mitigate their impact include the following:

a) Using the locking features of the PIP data store to prevent access to specific policy information
structures being affected by an event context information flow, until the flow completes;

b) Delaying the return of the results from a successful resource or administration access to the CA
until the event context information flow for the access completes; and

INCITS 525 Revision 0.75 26 October 2017

21 dpANS Next Generation Access Control – IRPAD

c) Enforcing a queue structure within a PEP for delaying access attempts initiated within a
session by a CA until the previous access completes.

6.4 Collocated functional entities

The NGAC framework can be adapted to a range of computational environments, from a single, self-
contained computer system, to a group of individual network-interconnected systems. An
implementation is not required to follow a completely centralized or completely distributed approach.
Many types of hybrid configurations are also possible where some of the functional entities within the
functional architecture reside together within a single system while the remaining functional entities
are located in other systems.

Collocating functional entities can beneficial in certain computational environments. The benefits can
include simplified identification and authentication of collocated functional entities and their services,
avoidance of network latency between functional entities, and reuse of programmed functionality.

6.4.1 PEP collocation

A PEP may be collocated in various ways. For example, a PEP could be collocated with the
application, protected within the kernel space or a trusted layer of the operating environment, to
screen access attempts to protected resources via a PDP. Alternatively, a PEP could be collocated
with a specific RAP to screen access attempts to protected resources associated with the RAP. The
latter is appropriate only if the access attempts of each user pertain solely to the resources of a
specific RAP (e.g., only a single RAP exists).

To retrofit existing, non-compliant applications requires a collocated PEP to intercept native access
attempts, translate them for compatibility with the NGAC framework and request adjudication from a
PDP. The PEP would need to employ the specifications for native access requests to convert them to
and from NGAC-conformant requests and responses.

6.4.2 PDP collocation

To reduce the overhead between PEP and PDP interactions, it is possible to closely couple them
together (e.g., as an integrated PEP/PDP functional entity). While a PDP may be collocated and
closely integrated with a PEP, there are advantages to decoupling one from the other. One benefit of
decoupling is that, if needed, the possibility exists to replace the PDP implementation being used with
another standard conformant PDP implementation. Simplified maintenance of the PDP
implementation is another benefit of decoupling, since a PDP that is independent of the logic and
programming of a PEP is neither affected by PEP dependencies (e.g., third-party program libraries)
nor by PEP maintenance (e.g., specification changes, patches, and new code deployments).

A PDP operates in a stateless fashion, which makes it suited to have several instances operating
concurrently. PDP instances may run on separate threads (e.g., to leverage the availability of multi-
core architectures) and on separate hosts (e.g., to increase the capacity of the framework). As with
any concurrent operations, care needs to be taken to ensure that interference is minimized and race
conditions are avoided.

It may be useful in some situations to establish a central PDP hub by collocating several PDPs
together. The PDP hub would behave more like a relay than a PDP. When a request is received by
the hub, the details of the request would be used to route the request to a relevant PDP for
adjudication. Alternatively, a PDP discovery service could be used to facilitate locating an available
PDP to adjudicate access requests.

26 October 2017 INCITS 525 Revision 0.75

dpANS Next Generation Access Control – IRPAD 22

6.4.3 EPP collocation

The EPP uses the PAP to resolve and match obligations. It also relies entirely on the functionality of
the PDP to carry out the processing of responses of matched obligations. Since the functional
architecture allows for multiple PDPs, an obvious approach to avoid contention for a PDP is to
collocate and tightly couple the EPP with a PDP, designating the PDP for its exclusive use.

6.4.4 PAP collocation

The functional architecture allows only a single PAP and a single PIP to exist within the framework.
The services offered by the PAP are at the same conceptual level as other NGAC service interfaces,
while that of the PIP are at a more elemental, constituent level relied on by the PAP. These facts
compel the collocation of the two functional entities.

6.5 Domain definition and management

NGAC relies on the existence of a principle administrator to establish the initial policy for the
framework and manage it. A policy domain is an abstraction of the general configuration and
characteristics of the resources within the domain boundaries and the security rules that govern
access to these resources. The principle administrator can allocate its responsibilities by defining one
or more administrative subdomains and designating administrators for them. The subdomain
boundaries may be defined in the context of administrative, business, geographical, and political
constraints.

Decentralizing administrative responsibilities through subdomain allocations allows for the
coexistence of multiple administrators with measured control over distinct portions of policy, such that
an interrelated and consistent policy can be defined and managed in a coordinated manner. The
portion of policy allocated to a subdomain may be administered by multiple authorities, but carried out
in a coordinated fashion.

INCITS 525 Revision 0.75 26 October 2017

23 dpANS Next Generation Access Control – IRPAD

Annex A
(Informative)

Policy Computations

A.1 Introduction

It should be of no surprise that the choice of algorithms used to perform various policy computations
required of an implementation can greatly affect performance. The computations at the center of the
NGAC framework are the determination of the access rights a user has to objects, the adjudication of an
access request from a user, and the display of relevant objects for reviews by a user. Fortunately,
efficient algorithms exist to perform key NGAC policy computations. This annex describes in detail an
efficient algorithm to calculate the access rights a user has to objects representing protected resources.
The algorithm can also be easily adapted to make various other key policy determinations.1

A.2 Background

A simple example policy is used to illustrate the steps of the basic algorithm. In this example, a savings
and loan bank comprised of several branches has the following policy:

a) Tellers can read and write accounts only for the branches to which they are assigned; and
b) Loan officers can read and write loans only for the branches to which they are assigned.

A representation of the policy, populated with several users (viz., u1, u2 and u3) and objects (viz., l11,
l12, a11 and a21), is shown in Figure A.1. Assignments are depicted as blue or green arrowed lines
emanating from an attribute, user or object to another policy element. Associations are depicted as red
dashed lines that span two attributes and are labeled with access rights. Two policy classes are in effect:
the branch-constraints policy class containing attributes, users and objects linked via blue assignments,
and the position-constraints policy class containing attributes, users and objects linked via green
assignments.

Associations between policy elements of the branch-constraints policy class allow employees assigned to
one or more branches to access only the products that pertain to those branches (i.e., their respective
accounts and loans). Associations between policy elements of the position-constraints policy class allow
employees assigned to a position to access only the types of assets that pertain to their position.

The algorithm utilizes the Directed Acyclic Graph (DAG) of the assignment relation, illustrated in Figure
A.1, as the basis for processing. Each policy element (i.e., a user, object, attribute, and policy class) is a
node of the DAG and each assignment is a directed edge between two nodes. The association relation is
also depicted in Figure A.1 by the red dashed lines between nodes.

1 The algorithm in this annex is based on that described in the following journal article: Peter Mell, James Shook,
Richard Harang and Serban Gavrila, Linear Time Algorithms to Restrict Insider Access using Multi-Policy Access
Control Systems, Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, vol. 8,
num. 1, March 2017, pp. 4-25, URL: http://isyou.info/jowua/papers/jowua-v8n1-1.pdf.

http://isyou.info/jowua/papers/jowua-v8n1-1.pdf

26 October 2017 INCITS 525 Revision 0.75

dpANS Next Generation Access Control – IRPAD 24

Figure A.1: Simple Bank Policy Representation

The algorithm’s computations entail traversing the assignment relation DAG in various directions. The
data structures chosen to represent the graph should be well suited for this purpose. The algorithm, for
instance, uses an adjacency list representation for the immediate successors of a node, implemented as
a dictionary that maps a key (i.e., a node) to a value (i.e., a list of immediate successors) via a hash,
which allows quick traversal of directed paths emanating from a node. A second dictionary representing
the immediate predecessors of a node is also used to allow quick traversal of directed paths leading to a
node.

A.3 Algorithm details

To compute the access rights a user holds over objects, the algorithm traverses the policy graph
vertically, in both downward and upward directions. A downward direction in the DAG refers to processing
from the tail of a node toward defined policy classes, and an upward direction refers to processing from
the head of a node toward defined users or objects. The objective in this example is to determine the set
of objects accessible to user u1 and the set of access rights authorized for each of them.

A.3.1 Find the source association nodes

The algorithm begins with the user in question, traversing downward via a breadth first search to identify
all reachable user attribute nodes that are source nodes of an association (i.e., the first term of one or
more defined associations) along with the set of associations concerned. From this point on, only the
source association nodes and their corresponding associations require further consideration.

Figure A.2 illustrates the source association nodes identified in this example for user u1: teller and
branch1. Each source node involves a single read-write association to a destination node.

INCITS 525 Revision 0.75 26 October 2017

25 dpANS Next Generation Access Control – IRPAD

Figure A.2: Source Association Nodes

A.3.2 Find the destination association nodes

For each association from an identified source association node, the respective destination node of the
association (i.e., the third term of the association) is then identified. Each identified destination node (viz.,
an object attribute) is labeled with the set of access rights of the association.2 The algorithm labels a
destination node using a node attribute (i.e., a dictionary with the node as a key), which can be assigned
and return various data structures, such as a set, list or dictionary, based on the key provided. In this
case a set of access rights is assigned. Since a destination node may be involved in multiple
associations, labeling requires forming the union of the set of access rights of each association that
references the destination node.

Figure A.3 illustrates the destination association nodes identified in this example, which would be labeled
as follows: products1 – {r, w} and accounts – {r, w}.

2 While all the destination nodes in this example are object attributes, in general, this may not always be the case.
Policies can be constructed using associations that involve user attribute destination nodes, which are ignored in this
computation since the purpose is to identify accessible objects representing resources. However, this algorithm can
be easily altered to address user attributes and users, if their accessibility is of interest.

26 October 2017 INCITS 525 Revision 0.75

dpANS Next Generation Access Control – IRPAD 26

Figure A.3: Destination Association Nodes

A.3.3 Find the objects of interest

The set of objects of interest for the user can now be identified by performing a reverse-edge, breadth
first search upward from the set of destination association nodes identified, treating the destination nodes
as the first iteration of the search. Any object attribute node that is not on a reverse path from a
destination node to an object node can be ignored.

Figure A.4 illustrates the objects of interest identified in this example, which are as follows: l11, l12 (via
products1 and loans1), a11 (via products1 and accounts1 and also accounts and accounts1), a21 (via
accounts and accounts2).

INCITS 525 Revision 0.75 26 October 2017

27 dpANS Next Generation Access Control – IRPAD

Figure A.4: Objects of Interest

A.3.4 Determine the policy classes that contain an identified object

The computation of a privilege requires knowledge of the policy classes that contain an object of interest.
To make this determination, the algorithm performs a topological ordering of the nodes containing each
object of interest using a recursive, depth first search. When a policy class node is visited, the algorithm
retains the policy class identifier and uses it to cumulatively label each of its ancestor nodes as they are
subsequently processed such that each node, including the object of interest, eventually records the set
of policy class nodes that contain it. The policy class information recorded at an object attribute node is
reused when processing the remaining objects of interest, in lieu of reprocessing and relabeling the node,
which is a critical aspect of the algorithm’s performance.

Figures A.5 and A.6, illustrate the traversal of the DAG for two of the four objects of interest in this
example: l11 and a11. Note that in the traversal for a11, the processing of certain nodes is skipped, which
is indicated by dashed arrows.

26 October 2017 INCITS 525 Revision 0.75

dpANS Next Generation Access Control – IRPAD 28

Figure A.5: Depth First Search from Object l11 to Policy Classes

Figure A.6: Depth First Search from Object a11 to Polciy Classes

The results from this stage of processing indicate that all four objects of interest, l11, a11, l12 and a21,
are contained by both the branch-constraints (bc) and product-constraints (pc) policy classes. The policy
class labeling assignments to nodes of the DAG are summarized below for l11 and a11 as well as l12 and
a21. Each node is prefixed with a pair of integers that indicate respectively the step at which processing
began and ended for the node. For the second, third and fourth objects of interest on which the depth first

INCITS 525 Revision 0.75 26 October 2017

29 dpANS Next Generation Access Control – IRPAD

search occurs, some of the nodes encountered are already labeled, allowing the algorithm to avoid
reprocessing them.

Steps: Node – Policy Class Access Rights

01/16: l11 – {bc, pc};
02/15: loans1 – {bc, pc}
03/08: products1 – {bc} {r, w}
04/07: products – {bc}
05/06: bc
09/14: loans – {pc}
10/13: assets – {pc}
11/12: pc

01/10: a11 – {bc, pc};
02/09: accounts1 – {bc, pc}
03/04: products1 – {bc} {r, w}
skip/-: products – {bc}
skip/-: bc
05/08: accounts – {pc} {r, w}
06/07: assets – {pc}
skip/-: pc

01/04: l12 – {bc, pc};
02/03: loans1 – {bc, pc}
skip/-: products1 – {bc} {r, w}
…

01/10: a21 – {pc, bc};
02/09: accounts2 – {pc, bc}
03/08: accounts – {pc} {r, w}
skip/-: assets – {pc}
…
04/07: products2 – {bc}
05/06: products – {bc}
skip/-: bc

A.3.5 Determine the access rights that pertain to a containing policy class

When performing the depth first search described above, additional details about processed nodes can
be propagated upward to the object of interest. The algorithm takes advantage of this opportunity to label
nodes with additional information concerning access rights.

During the depth first search, at the time the identifier of a policy class node is used to label its ancestor
nodes, the ancestor node can instead be labeled with a mapping from the policy class identifier to the set
of prevailing access rights for the ancestor node, which may be the empty set. The prevailing access
rights of a node are null, unless a reachable destination node has been processed and labeled with a
mapping from the policy class node to the access right label previously assigned to the destination node.

The algorithm uses a dictionary for the policy class-to-access rights mapping in which the key is a policy
class node and the value is a set of access rights. The behavior of the depth first search allows the policy
class dictionaries to be propagated upward to the object of interest. When processing a node in which two
or more successor nodes are labelled with policy class dictionaries, the node is labelled with the union of
those dictionaries, whose keys are the union of the keys from each successor dictionary, and whose
values are the union of the values for each identical key from each successor dictionary. The

26 October 2017 INCITS 525 Revision 0.75

dpANS Next Generation Access Control – IRPAD 30

determination of policy class-to-access rights mapping for each object of interest in this example is
summarized below.

Steps: Node – Policy Class Access Rights Policy Class to Access Rights Mapping

01/16: l11 – {bc, pc}; bc → {r, w}, pc → {}
02/15: loans1 – {bc, pc} bc → {r, w}, pc → {}
03/08: products1 – {bc} {r, w} bc → {r, w}
04/07: products – {bc} bc → {}
05/06: bc
09/14: loans – {pc} pc → {}
10/13: assets – {pc} pc → {}
11/12: pc

01/10: a11 – {bc, pc}; bc → {r, w}, pc → {r, w}
02/09: accounts1 – {bc, pc} bc → {r, w}, pc →{r, w}
03/04: products1 – {bc} {r, w} bc → {r, w}
skip/-: products – {bc} bc → {}
skip/-: bc
05/08: accounts – {pc} {r, w} pc → {r, w}
06/07: assets – {pc} pc → {}
skip/-: pc

01/04: l12 – {bc, pc}; bc → {r, w}, pc → {}
02/03: loans1 – {bc, pc} bc → {r, w}, pc → {}
skip/-: products1 – {bc} {r, w} bc → {r, w}
…

01/10: a21 – {pc, bc}; pc → {r, w}, bc → {}
02/09: accounts2 – { pc, bc} pc → {r, w}, bc → {}
03/08: accounts – {pc} {r, w} pc → {r, w}
skip/-: assets – {pc} pc → {}
…
04/07: products2 – {bc} bc → {}
05/06: products – {bc} bc → {}
skip/-: bc

A.3.6 Determine the user’s access rights for each object of interest

The final step of the algorithm is to determine the access rights authorized for the user using an object’s
dictionary of policy class to access rights mappings. For each object of interest, compute the intersection
of the associated set of access rights of each policy class in its dictionary. The resulting set contains the
user’s access rights for the object. If no access rights remain, the object cannot be accessed.

The computation for user u1 in the example policy results in r, w access rights for object a11, as
illustrated below.

 Object of Interest Policy Class to Access Rights Mapping Authorized Access Rights

 l11 bc → {r, w}, pc → {} none
 a11 bc → {r, w}, pc → {r, w} {r, w}
 l12 bc → {r, w}, pc → {} none
 a21 pc → {r, w}, bc → {} none

INCITS 525 Revision 0.75 26 October 2017

31 dpANS Next Generation Access Control – IRPAD

A.4 Algorithm variants

The basic algorithm described above and its search mechanisms can be adjusted to efficiently perform
other policy computations. For example, a few simple changes are all that is needed to determine
whether a user holds sufficient privileges to perform an operation on an object. First, as soon as the
objects of interest are identified, intersect the object in question with the set of objects of interest to form a
new set. An empty intersection equates to a deny decision (i.e., no access allowed) and termination of the
algorithm. A singleton requires continuation of the algorithm, but only with the one object of interest.
Second, at the end of the algorithm, when the user’s authorized access rights are computed for the single
object of interest, determine whether the access rights are sufficient to perform the operation.

In this example policy, for instance, assume the following access request needs to be adjudicated: user:
u1, op: read, object: a11. Intersecting a11 with the four objects of interest computed earlier returns the
singleton, {a11}. The adjusted algorithm continues with the recursive, depth first search, topological sort
as described earlier, but only for the one object of interest, a11. In this case, the algorithm does not skip
certain nodes as described previously, since no other objects of interest that would record information for
reuse in the a11 depth first search are being processed. Nevertheless, the algorithm determines the
policy class to access rights mapping for object a11, as before, namely bc → {r, w}, pc → {r, w}. Since
read and write resource operations map on a one-to-one basis to r and w access rights, the user’s read
access request can be granted.

	INCITS-525-draft.pdf
	Introduction
	1 Scope
	2 Normative References
	3 Definitions, Symbols, Abbreviations, and Conventions
	3.1 Definitions
	3.2 Symbols and acronyms
	3.3 Keywords
	3.4 Conventions

	4 Interface Specifications
	4.1 Background
	4.2 Interface descriptions
	4.3 PDP interfaces
	4.3.1 Overview
	4.3.2 Access request adjudication
	4.3.3 Event response evaluation

	4.4 EPP interface
	4.4.1 Overview
	4.4.2 Event context processing

	4.5 PAP interfaces
	4.5.1 Overview
	4.5.2 Policy inquiry
	4.5.3 Policy adjustment

	5 Functional Entity Requirements
	5.1 Background
	5.2 Common requirements
	5.2.1 Overview
	5.2.2 Exclusivity
	5.2.3 Discoverability
	5.2.4 Trustability
	5.2.5 Secure interactivity
	5.2.6 Auditability
	5.2.7 Resiliency
	5.2.8 Extensibility

	5.3 PEP requirements
	5.4 PDP requirements
	5.5 EPP requirements
	5.6 PAP requirements
	5.7 PIP requirements
	5.8 RAP requirements

	6 Other Considerations
	6.1 Interoperation of functional entities
	6.2 Policy
	6.2.1 Representation
	6.2.2 Updates
	6.2.3 Performance

	6.3 Race conditions
	6.4 Collocated functional entities
	6.4.1 PEP collocation
	6.4.2 PDP collocation
	6.4.3 EPP collocation
	6.4.4 PAP collocation

	6.5 Domain definition and management
	Annex A (Informative) Policy Computations

	A.1 Introduction
	A.2 Background
	A.3 Algorithm details
	A.3.1 Find the source association nodes
	A.3.2 Find the destination association nodes
	A.3.3 Find the objects of interest
	A.3.4 Determine the policy classes that contain an identified object
	A.3.5 Determine the access rights that pertain to a containing policy class
	A.3.6 Determine the user’s access rights for each object of interest

	A.4 Algorithm variants

