

64GFC PCS/FEC Architecture Proposal for FC-FS-5

T11-2016-314v7

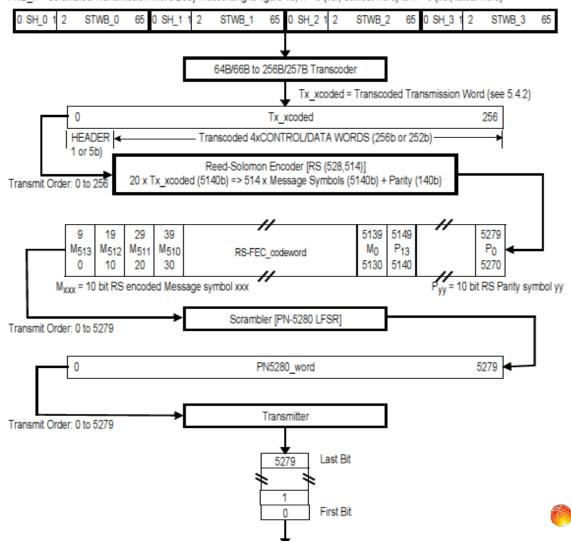
Adrian Butter

Supporters

- Scott Kipp (Brocade)
- Anil Mehta (Brocade)
- Jeff Slavick (Broadcom Ltd)
- Raul Oteyza (Cavium, Inc)
- Dean Wallace (Cavium, Inc)

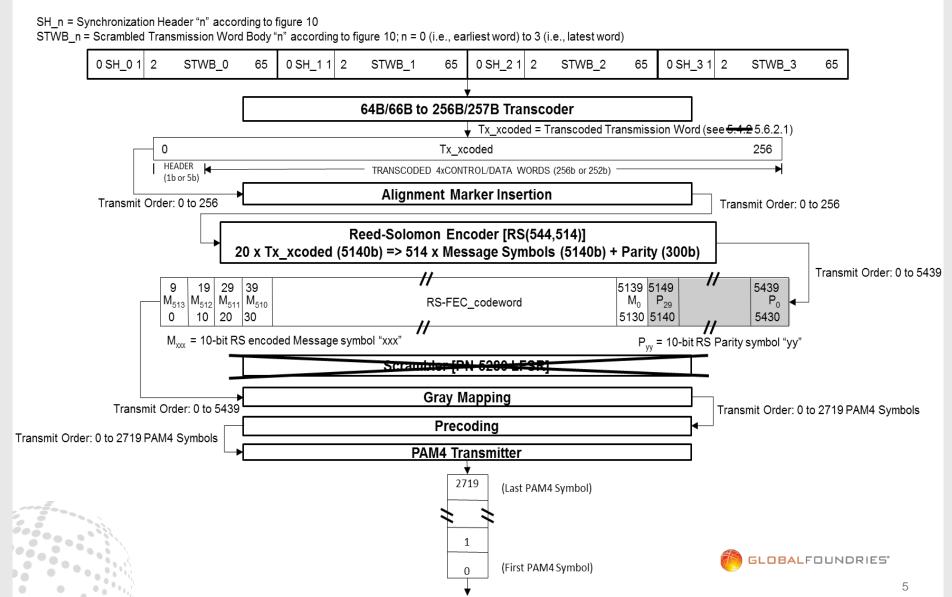
Introduction

- Over the last year, IEEE has taken steps towards 50G single-lane, 100G dual-lane and 200G quad-lane standardization
 - First "Flash mob" in May 2015
 - CFI in Nov 2015
 - First Study Group meeting in Jan 2016
 - First Task Force (P802.3cd) meeting in May 2016
- P802.3cd is currently establishing technical baselines for a 50/100/200G standard
 - Complete set of technical baselines scheduled to be available in Sept 2016
- P802.3cd Task Force approved PCS/FEC technical baseline at July 2016 meeting
- The intent of this presentation is two-fold:
 - Propose an architecture for 64GFC based on the existing 32GFC and 128GFC standards, with updates reflecting the PCS/FEC technical baseline adopted by P802.3cd
 - Highlight the differences between the 64GFC PCS/FEC and 32GFC PCS/FEC as documented in FC-FS-4
- Updated slides from 16-314v6 denoted by

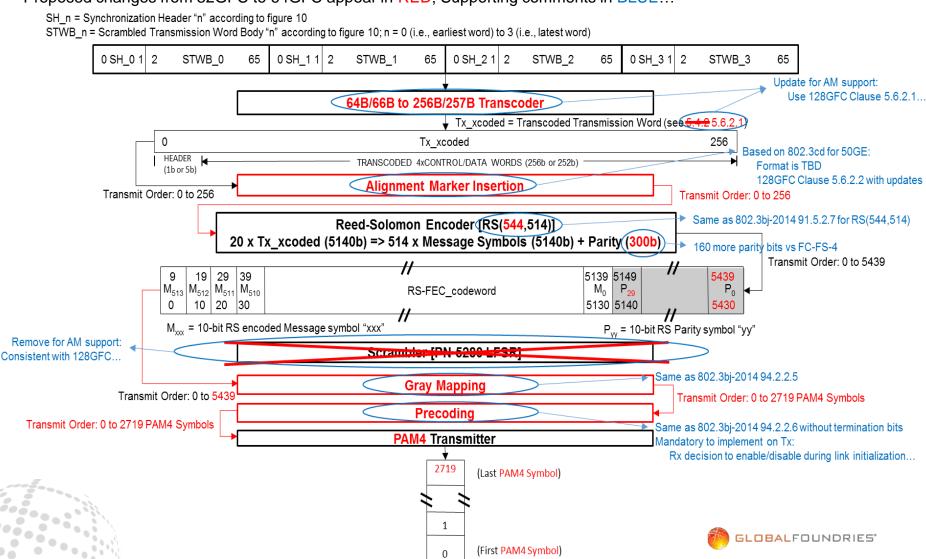

- Remove 10-Bit Symbol Distribution & Bit Multiplexing operations:
 - Ethernet use case (50GAUI-2 / LAUI-2 extension interface) not applicable to Fibre Channel
 - Removal does not negatively effect clock content or baseline wander (see T11-2017-00094-v1)
 - Buys back about 0.5 dB margin...

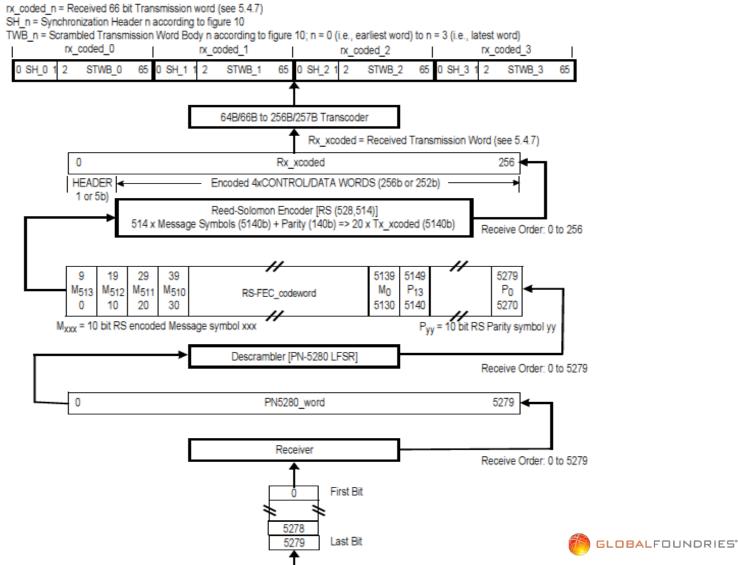
32GFC Architecture – Tx Processing

FC-FS-4 Figure 28:


SH_n = Synchronization Header n according to figure 10 TWB_n = Scrambled Transmission Word Body n according to figure 10; n = 0 (i.e., earliest word) to n = 3 (i.e., latest word)

GLOBALFOUNDRIES°


Proposed 64GFC Architecture – Tx Processing


Proposed 64GFC Architecture – Tx Processing

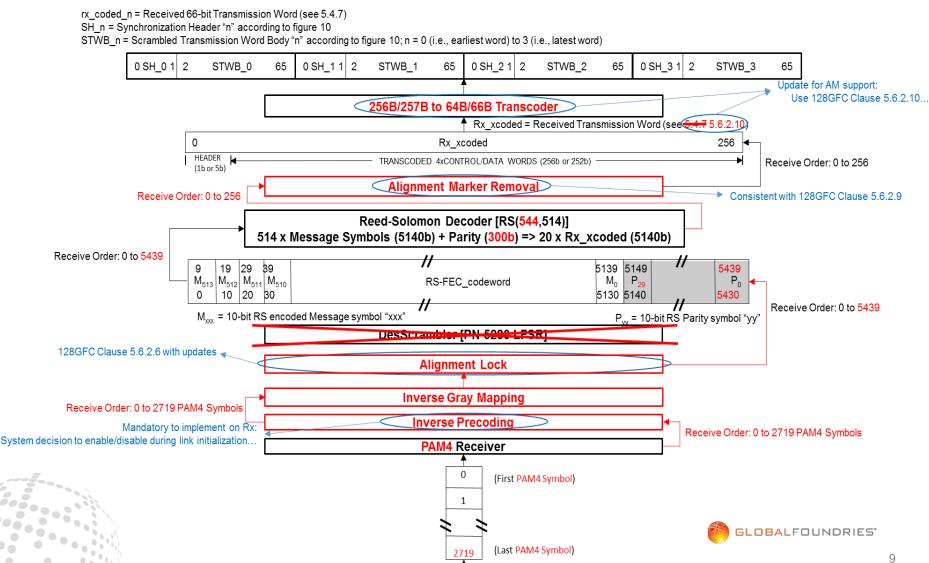
Proposed changes from 32GFC to 64GFC appear in RED; Supporting comments in BLUE...

32GFC Architecture – Rx Processing

FC-FS-4 Figure 29:

Proposed 64GFC Architecture – Rx Processing

rx coded n = Received 66-bit Transmission Word (see 5.4.7) SH n = Synchronization Header "n" according to figure 10 STWB_n = Scrambled Transmission Word Body "n" according to figure 10; n = 0 (i.e., earliest word) to 3 (i.e., latest word) 0 SH 0 1 2 0 SH 11 STWB 0 65 STWB 1 0 SH 21 2 STWB 2 65 0 SH 3 1 2 STWB 3 65 256B/257B to 64B/66B Transcoder Rx xcoded = Received Transmission Word (see 5.4.7 5.6.2.10) Rx xcoded 256 HEADER TRANSCODED 4xCONTROL/DATA WORDS (256b or 252b) Receive Order: 0 to 256 (1b or 5b) **Alignment Marker Removal** Receive Order: 0 to 256 Reed-Solomon Decoder [RS(544,514)] 514 x Message Symbols (5140b) + Parity (300b) => 20 x Rx_xcoded (5140b) Receive Order: 0 to 5439 29 39 5139 5149 19 5439 $M_{512} M_{511} M_{510}$ P₂₉ RS-FEC codeword 20 5130 5140 5430 Receive Order: 0 to 5439 P_{yy} = 10-bit RS Parity symbol "yy" M_{xxx} = 10-bit RS encoded Message symbol "xxx" **Alignment Lock Inverse Gray Mapping** Receive Order: 0 to 2719 PAM4 Symbols Inverse Precoding Receive Order: 0 to 2719 PAM4 Symbols PAM4 Receiver (First PAM4 Symbol) **GLOBALFOUNDRIES**°

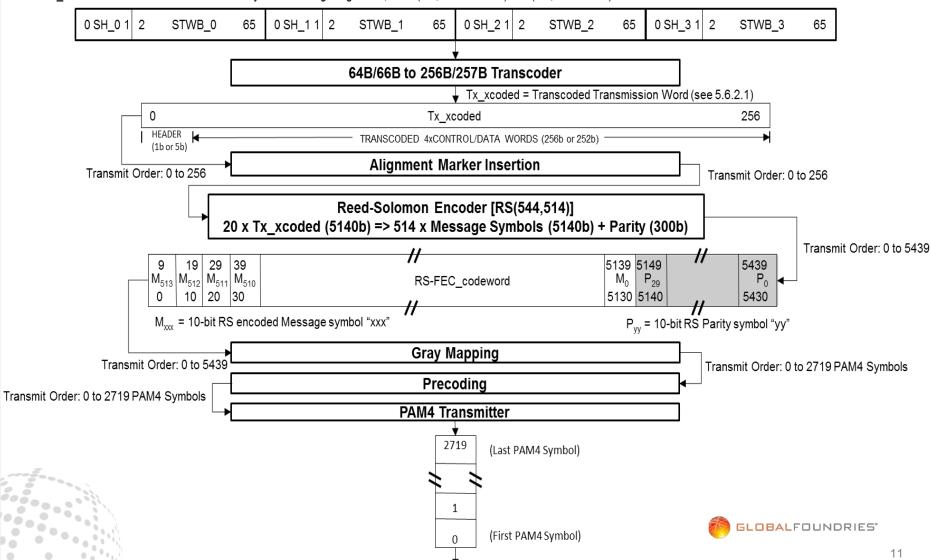

2719

(Last PAM4 Symbol)

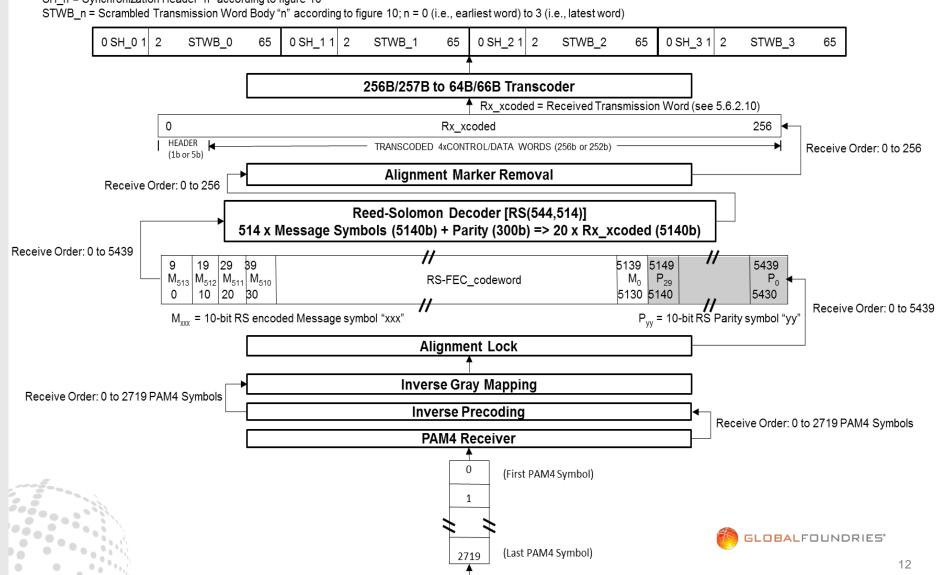
Proposed 64GFC Architecture – Rx Processing

Proposed changes from 32GFC to 64GFC appear in RED; Supporting comments in BLUE...

32GFC to 64GFC Update Summary


64GFC Update	Rationale Changes from 32GFC	
0401 C Opdate	Nationale	Changes Hom 3201 C
Include Alignment Marker	1) Improves Rx lock time: For 25GE, 300 usec vs 500 usec => 1.7x reduction 2) Commonality with 50GE (P802.3cd) 3) Supports reuse of 802.3 work	 Add Tx AM Insertion Add Rx Alignment Lock Add Rx AM Removal Remove Tx Scrambler & Rx Descrambler Update Tx & Rx 64B/66B to 256B/257B Transcoder
Include Stronger FEC	Current 32GFC RS(528,514) FEC is insufficient to meet the FC-PI-7 BER objective	1) Replace RS(528,514) coder with RS(544,514) coder
Include Bit Multiplexing of 10-Bit Symbols	Aligns with 50GE (P802.3cd) Supports reuse of P802.3cd baseline wander & clock content analyses	 Add Tx 10-bit Symbol Distribution & Rx 10-bit Symbol Multiplexing Add Tx Bit Multiplexing & Rx Bit Distribution
Include PAM-4 Signaling	Aligns with 400GE (P802.3bs) & adopted as the technical baseline for 50GE (P802.3cd)	 Add Tx Gray Mapping Add Rx Inverse Gray Mapping
Include Precoding	 Improves performance of links susceptible to burst errors caused by large DFE tap weights Low complexity to implement: Estimated at <500 logic gates Adopted as an implementation requirement for 50GE (P802.3cd) 	Add Tx Precoding Add Rx Inverse Precoding

64GFC Transmit Bit Ordering Diagram


SH_n = Synchronization Header "n" according to figure 10
STWB_n = Scrambled Transmission Word Body "n" according to figure 10; n = 0 (i.e., earliest word) to 3 (i.e., latest word)

64GFC Receive Bit Ordering Diagram

rx_coded_n = Received 66-bit Transmission Word (see 5.4.7)
SH n = Synchronization Header "n" according to figure 10

Thank you!

