To: T11

From: Dal Allan

Date: 2-9-98

Subject: FC-AL Loop Initialization

An email | received from Barry Reinhold this morning contains information of value to us in the FC-AL-2
review which is on our current agenda. | have extracted the relevant material below, which consists of:

some recommendations relative to the FC-AL-2 draft specifications
a proposed starting point for a state diagram addressing loop initialization and recovery
a set of comments on rev 5.8 (December 24, 1997) of the FC-AL-2 draft standard.

Inclusions from Barry’s email:
| (Barry Reinhold) would like to propose that the FC-AL-2 standards body address the following issues:

1. Document the proper external behavior of a L_Port during the loop initialization and recovery
process using a hormative state diagram with labeled transitions and a table of notes attached which
references the transitions. The state diagram should be the highest level of priority in terms of
conflict resolution with the transition notes being second and lose text the lowest priority. Examples
of this nature are common and can be found in IEEE 1394 documentation, almost all IEEE 802
documentation as well as ANSI FDDI. A potential starting point for a state diagram is included in this
message. The diagram is not an attempt to document the current state of FC-AL-2. After significant
work we abandoned that effort as we felt the current draft was too ambiguous to document without
significant changes in the external behavior. The provided state diagram makes a number of
simplifications that we believe would significantly enhance the operation of arbitrated loops.
However, our real goal is to achieve precise specification of external behavior.

2. Remove all references to Annex 1.2.2 loop recovery. There are a number of reasons for this, based
on the current state of the standard, current field experience with FC-AL products and the limited
effectiveness of the trace operation in FDDI. Let me elaborate on each of these points:

The degree of specification of Annex 1.2.2 is so loose that it is impossible to understand what
proper behavior is. It is poorly integrated into the behavior of the LPSM. Actual use of this
process in an arbitrated loop is very unlikely to be successful and could easily leave nodes in a
bypassed state for no reason. The whole concept of removing devices from a loop using a set of
AL_PAs that may no longer be valid is questionable — but if allowed should not be up to the
discretion of an implementor but carefully documented by the standard.

To our knowledge no product has actually implemented this process and there is not a need to
address backwards compatibility. Its existence causes needless complexity in an area where the
standard should be simple and robust. The process of selecting a loop master in order to get a
loop going is not that complex and very similar processes have been done in both Token Ring
and FDDI. These solutions can't be adopted but the process can be simplified and made more
robust.

Field experience has shown that the FDDI trace mechanism though well defined and
documented, is seldom useful in resolving problems even though FDDI can easily bound the
fault domain and has the ability to reach the faulting node through a second path. The basic
problem is that when the station has gone bad, and not the physical connection itself, it has
seldom responded to trace. In FC-AL we do not really have a good mechanism to isolate the
fault domain and we do not have a second path to get to the fault. Our chances of actually
recovering from a loop failure condition through the use of mechanism outlined in Annex 1.2.2
are almost nil.

If Annex 1.2.2 recovery is removed it is reasonable to eliminate all state transitions in
INITIALIZING and OPEN-INIT associated with LPB and LPE. This would help simplify the
standard significantly and not impact currently running loops. This would help in the robustness
of loops as the use of LPB and LPE when the AL_PA is not solid can lead to unexpected
behaviors.

3. Define the external behavior of a station when it enters the loop during power up. If this proves to be
unacceptable at least limit the duration of time during which arbitrary behavior can take place. There
are too many cases in the field where stations do not behave in a defined manner until disk power
up cycling has completed or drivers loaded.

4. Although we realize that an effort has been made and rejected for establishing a standard for hubs
there is still a need to bring legacy devices into a FC-AL loop in a manner that will allow stable
operation. Concentrating devices that shield the loop from the destructive behavior of current
L_Ports appear to offer a realistic avenue towards stable loop operation. The goals for the
concentrating device should be basic:

- Properly insert current legacy L_Ports into the loop. This can be done in any number of ways but
the standard should provide a set of specifications that will ensure proper and consistent
behavior during loop insertion.

A clear market segment has developed for concentrating devices and vendors are creating
products without guidance of a standard. This is currently causing a new type of interoperability
problem and as additional features are added the potential for new problems will grow.

The following section contains the state diagram and associated documentation:

‘Saje]s UsaMla(suollisuel] ajousp

0] Saul| [eluozLoy pue sajels Juasaidal 0] syeys [eantan Buisn passaldxa ale sweibeiq ajels — SaoN [elauas)

A:OLD-PORT

8:INITIALIZING

9:0OPEN-INIT

CEW = Idle LP_BYPASS =0 ACCESS = TRUE(1)
Alternate BB_Credit Management bit = 0 8 2 recovery 8 1 norm a' CFW = Idle
BB_Credit = 1 o — Alternate BB_Credit Management bit = 1
xmit(LIP(F8).continuous) xmit(LIP(LIP_type,continuous) BB_Credit = 0
start(t_2_max_AL_TIME)
—————
< exp(t_LP_TOV) 9.4:not LIM
from any state LIP_type = F7 93 it for LIM start(t_LP_TOV)
except Fail t LP TOV 3:wait for process_rexmit(LIM[n])
INITIALIZING or (M» < exp(t —) . - - ————
when LP_BYPASS LIP_type = F7 rexmit(valid_frames,single)
= TRUE(1) exp(t_2_max_AL_TIME)
&& loss of sync 9.1:check LIP
xmit(LIP(LIP_type),12+) LIM[n] && n<7 &&
LIP && t_AL_TIME ni=4
L / \ XPUAL) 9.4-9.4a
- exp(t_2_max_AL_TIME) && sync && OLD-PORT supported LIP_type = received_LIP() 1
from any state 9.179.3!&LIMfsupporlt—:‘d && LIP_type != AL_PS ARB(F0) > n=n+1
except when LIP start(t_AL_TIME), start(t_LP_TOV) n=1
power on LP_BYPASS = LIP_type = LIM[4] && LIM[4] &&
-~ LIP && exp(t_AL_TIME,
pope=rr ™ TRUE(1) received_LIP() [l P(LAL_TIME) LIRP_LILP_supported | (CLIRP_LILP_supported)
LIP_type = received_LIP() && LI FL=1 || (LI_LFL=0))
] REQ(initialize) — 9.4-9.4b | 9.4-9.4c
rom any state except initialize, LIP_type = my_AL_PA && RESET_TYPE_1 &&
INITIALIZING % LIP_type = F7 || AL_PD > 01930 LIM_supported < n=n+1 > < n=n+3
o perform(vendor_specified_reset),
start(t_AL_TIME), start(t_LP_TOV) LIM[7] &&
(n=5| n=7)
0:MONITORING 9.7:vendor reset 9.2:select LIM rexmitLIM7].5ingle)
" perform(vendor_specified_reset) xmit(my_LISM,continuous)
ERR_INIT = FALSE(0) star(t AL_TIME) .
DUPLEX = FALSE(0) start(t_LP_TOV) 9.5:LIM
ARB_WON = FALSE(0) reset_complete() | LIP_type = my AL_PA start(t_LP_TOV)
REPLICATE = FALSE(0) LIP_type = F7 2& RESET TYPE 2 LIP_type = my_AL_PA && RESET_TYPE_1 && xmit(LIM[n],single)*
- — — 0102 LIM_supported > ———
.1-9.2a
perform(vendor_specified_reset)
lower_LISM() LIM[n] && n<7 &&
LIM_supported && ((LIP_type != F8 && LIP_type o505a Tt
1= my_AL_PA) || (LIP_type = F8 &&
! ERR_INIT_supported)) n=n+1
9.1-9.2b P
my_LISM() -
LIM_supported && LIP_type = F8 && n=0
ERR_INIT_supported && ERR_INIT = FALSE
LIM[4] && LI_FL=1 |} LIM[4] && LI_FL=0
9.1-9.2¢ P
ERR_INIT = TRUE li 9.5-9.5b [9.5-9.5¢ —l
< LIP && exp(t_AL_TIME) n=n+1 - n=n+3
LIP_type = received_LIP()
LIM[7] && n=7
LIP && exp(t_AL_TIME)
¢

&& ERR_INIT = TRUE

LIP_type = F8 && ERR_INIT_supported

LIP_type = received_LIP()

exp(t_LP_TOV)

9.6:error

—
xmit(LIP(F8),continuous)
start(t_LP_TOV)

————

>

< LIP(F7)

LIP_type = F7

exp(t_LP_TOV)

LIP_type = F7

LIP_type = F7

To maintain consistency with FC-AL 4.5 the INITIALIZING and OPEN-INIT states are broken into sub-
states. When entering a sub-state the from outside of the parent state the entry actions for both the
parent state and the sub-state are performed. The combined entry actions of the state and sub-state
are assumed to start simultaneously. When entering a different sub-state within the same parent state
only the entry actions of the sub-state are to be performed.

Transitions are illustrated with the triggering condition located above the horizontal line and any actions
to be performed with the transitions below the line. All transitions are performed while remaining in the
previous state, before entry to the new state.

All times are assumed to be global and are only reset by explicit action. An expired timer remains
expired until it is reset with the start() procedure.

The following rules are associated with event processing:

1. All conditions are evaluated in the context of the current state.

2. If the conditions for a transition are satisfied then: (a) perform the actions associated with the
transition in the current state, (b) enter the new state, (c) perform the entry actions for the new state,
and (d) evaluate conditions for exiting the new state.

3. No two transitions in a given state may be true at the same time or the state diagram is in error.

State Variables

1. ERR_INIT — Set to true to indicate that the L_Port has already attempted to initialize the loop by
sending LISM frames while receiving LIP F8.

2. ERR_INIT_supported — Set to true to indicate that the L_Port will send LIP F8 when receiving LIP
F8 after an attempt has been made to bring up the loop by sending LISM frames. If set to false the
L_Port will not send continuous LIP F8 frames.

3. LI_FL — The value of bit 8 of the 16 bit LI_FL field as defined in section 10.4.1.

4. LIM[0..7] — An array containing the different sequences that are used in the loop initialization
process. This array is logically initialized using the following C programming language notation: LIM[
] ={ARB FO, LIFA, LIPA,LIHA,LISA,LIRP,LILP,CLS}

5. LIM_supported — This is true if the L_PORT can perform the operations required of a loop master.

6. LIP_type — The type of LIP to be transmitted in the current or next state. May take on the value of
F8, F7 or any valid AL_PD as defined in Annex K.

7. RESET_TYPE_1 — This is true if the implementation supports a type of reset that when externally
observed would be identical to the external behavior of receiving LIP F7. The station shall continue
in the OPEN-INIT sub state 9.3

8. RESET_TYPE_2 — This shall be the logical opposite of RESET_TYPE_1. It indicates that the
vendor specific reset causes behavior different than that expected from a LIP F7

9. T_AL TIME — A timer set to the value of AL_TIME.

10. T_LP_TOV — A timer set to the value of LP_TOV.

State Procedures (do not return a value)

1. Lower_LISM() — Returns true if (rx_D_ID <my_D_ID) or ((rx_D_ID =my_D_ID) && (rx_S_ID <
my_S_ID)) or ((rx_D_ID =my_D_ID) && (rx_S_IS = my_S_ID) && (rx_WWN < my_WWN)).

2. My_LISM() — Returns true if the received LISM frame’s D_ID, S_ID, and WWN match the D_ID,
S_ID, and WWN of my LISM frame.

3. Perform(arg) — This procedure is a notational convenience that allows a complex action to be
expressed. The actions being performed by this function do not alter that behavior of the LPSM.

4. Process_rexmit() — Performs the necessary actions on the received frame before retransmitting it.
The actions are defined in section 10.4.3.

5. Rexmit(arg) — Transmit the last logical item received.

6. Start(arg) — This procedure starts the timer passed in as an argument. It is logically equivalent to
starting a count down timer by loading the timer with the time value specified as an argument.

7. Xmit(argl,arg2) — Transmit the first argument in the manner described by the second argument.
The second argument may be either single, 12+, or continuous.

State Functions (return a value)
Expire() — This function is true when the timer associated with the argument reaches zero.

Receive_LIP() — Returns the type of LIP received in accordance with the FC-AL 3.1.22. This function
can take on the values F7,F8 or a valid AL_PD as defined for the reset LIP.

Reset_complete() — True when the L_Port has completed the vendor specific reset process and is ready
to reenter the INITIALIZING state.

Transitions — The following text provides additional information about particular transitions.

1. X-8.1 — The value of LIP_type is established by the LPSM as defined in section 7.8. It shall be
either LIP F7 or LIPr.

2. 9.1-8.1a — The L_Port shall respond to the LIPr by performing a vendor specific reset. The station
shall remain in state 9.7, Vendor Reset, until it is ready to reenter the initializing state. The external
behavior of the station is as if it were bypassed until the station is ready to reenter the loop.

3. 9.1-9.2a - If the first character following the LIP is the AL_PA of this L_Port the L_Port is to perform
a vendor specific reset procedure. The external behavior of the L_Port shall be the same as if a LIP
F7 was received.

4. 9.1-9.3a and 9.1-9.3b — If the first character following the LIP is the AL_PA of this L_Port the L_Port
is to perform a vendor specific reset procedure. The external behavior of the L_Port shall be the
same as if a LIP F7 was received.

5. 9.4-0 — The L_Port transitions into monitoring only when CLS is received LIM[7]. This transitions is
further constrained by checking to see that six or eight sequences have been sent. If these
conditions are not met the station will time out on LP_TOV.

6. 9.4-9.4a — Each of the loop initialization sequences must be received in order to be processed by
this transition. The exception to this rule is the LISA frame which is processed by 9.4-9.4b and 9.4-
9.4c. If a loop initialization sequence is out of order the frame will not be forwarded and the LIM is
expected to time out on LP_TOV.

7. 9.1-9.7 — This transition is taken if the reset process will cause external behavior different from that
of receiving a LIP F7. This expected behavior of this type of reset is that of a power on reset.

8. 9.5-9.5a — When n=0 the xmit(LIM[n],single) function shall not transmit a single item but shall
transmit ARB FO continuously.

FC-AL-2 v5.8 comments

INITIALIZING state

The cases of normal initialization and Loop recovery should be two separate states or substates.

The behavior is different depending on which operation is performed.

Annex |.2.2 should be removed from the standard. It causes needless complexity and ambiguity.

The expected behavior for an L_Port detecting Loop Failure is unclear. Some interpretations of the

behavior for a device powering up receiving no signal:

1. Enter normal initializing section and transmit LIP(F7,F7) for up to 2*max AL_TIME. If Annex
1.2.2 is supported, transmit LIP(F8,F7) for 2*AL_TIME followed by LBPyx for up to 2*AL_TIME
for each AL_PA (recovery). Then what?

2. Enter normal initializing section and transmit LIP(F7,F7) for up to 2*max AL_TIME. If Annex
1.2.2 is not supported, transmit LIP(F8,F7) for 2*AL_TIME. Then what?

3. Enter Loop recovery and transmit LIP(F8,F7) for 2*AL_TIME. Then what?

If a device powers up receiving no signal, and it directly enters recovery, it cannot perform Annex

1.2.2.

The last paragraph of INITIALIZING states that if a device begins to either bypass or enable another

port by transmitting LPB or LPE, it shall transmit the primitive until it is received or until the request

has been dropped. By definition of what the port is transmitting, it is in the recovery section at this
point. What if the port receives LIP? Should it continue to send the LPB or LPE or should LIP
cause a transition into OPEN-INIT?

OPEN-INIT state
The vendor specific reset mentioned in the first bullet point should not cause the external behavior
of an L_Port to be undefined. The device then may continue with the initialization procedure. What
happens if it does not? After the reset, the L_Port should go to the INITIALIZING state, as if from
power up.
It is not specified in the text what an L_Port should do if the received LIP is a reset LIP and
yt AL_PA of the L_Port. This behavior should be the same as for a LIP(F7).
The third to last bullet point on page 41 (reception of ARB(F0)) should be clarified. What should
happen if a device is transmitting its own LISM frames and receives ARB(F0) before receiving its
LISM back? This should never happen, but if it does, shouldn’t the L_Port ignore the ARB?
The second to last bullet point on page 41 (reception of CLS) should be constrained. Receiving
CLS at any point during the initialization process should not cause a transition into MONITORING.
This transition should only be allowed after receiving LISA or LILP.
On page 64, the last paragraph states "The frame header shall not be used to validate the Loop
Initialization Sequences.” What exactly does this mean?
In section 10.3, P63, the last paragraph should have all but the first sentence should be removed.
The entire paragraph should read, "The L_Port that is attempting to initialize shall make the
transition to the INITIALIZING state (REQ(initialize)) (see 8.4.3, item 21)."[end]
The second bullet point on page 41 states "...the L_Port shall ignore LIPs for AL_TIME" after
receiving LIP(F7). Is this timer started upon entering the OPEN-INIT state or after the L_Port has
finished transmitting LIP?
The transmission and reception of LPB and LPE should not be allowed during the Loop initialization
procedure (i.e., the L_Port is in the INITIALIZING or OPEN-INIT state).

MONITORING state
On page 32, "If the L_Port detects Loop Failure, on its inbound fibre and LP_BYPASS is TRUE(1),
the LPSM shall transmit LIP(F8), but remain in the MONITORING state." There is not a case when
LP_BYPASS is FALSE(0). Although this transition exists in Table 4, it should be in the text as well.
There should also be an explicit statement requiring the L_Port to stop transmitting LIP and continue
retransmitting received transmission words once the Loop Failure condition has disappeared.

