
Working T11.1 / Project 1245-D / Rev 1.4
Draft

December 23, 1997

Information Technology -
Scheduled Transfer Protocol (ST)

Secretariat : National Committee for Information Technology Standardization (NCITS)

This is an internal working draft of T11.1, a Task Group of Technical Committee T11 of Accredited Standards
Committee NCITS. As such, this is not a completed standard. The contents are actively being modified by
T11.1.

Permission is granted to members of NCITS, its technical committees, and their associated task groups to
reproduce this document for the purposes of NCITS standardization activities without further permission,
provided this notice is included. All other rights are reserved. Any duplication for commercial or for-profit use is
prohibited.

ABSTRACT

This document describes a data transfer protocol that uses small control messages to pre-arrange data
movement. Buffers are allocated at each end before the data transmission, allowing full-rate, non-congesting
data flow between the end devices. The control and data may use different physical media or may share a single
physical medium. Procedures are provided for moving data over HIPPI and other media.

Contacts : T11.1 Chairman and Technical Editor T11.1 Vice Chairman

Don Tolmie Roger Ronald
Los Alamos National Laboratory Raytheon E-Systems
CIC-5, MS-B255 MS 35300 HD
Los Alamos, NM 87545 PO Box 660023
Voice : 505-667-5502 Dallas, TX 75266-0023
FAX : 505-665-7793 Voice : 972-205-8043
E-mail : det@lanl.gov FAX : 972-272-8144

E-mail : rronald@esy.com

Reference number
ISO/IEC 11518-xx : 199x

NCITS.*** - 199x
Printed 12/23/97

ii

Other Points of Contact:
T11 Chairman T11 Vice-Chairman NCITS Secretariat

Roger Cummings Edward L. Grivna NCITS Secretariat, ITI
Distributed Processing Technology Cypress Semiconductor 1250 Eye Street, NW Suite 200
140 Candace Drive 2401 East 86th Street Washington, DC 20005
Maitland, FL 32751 Bloomington, MN 55425

Voice : 407-830-5522 x348 612-851-5046 202-737-8888
FAX : 407-260-5366 612-851-5087 202-638-4922
E-mail : cummings_roger@dpt.com elg@cypress.com ncitssec@itic.nw.dc.us

T11.1 E-mail Reflector (for HIPPI and ST technical discussions and notification of things on the web site)

Internet address for subscribing to the reflector: Majordomo@network.com
 Message should contain a line stating… subscribe hippi <your E-mail address>
Internet address for distribution via the HIPPI reflector hippi@network.com

T11 E-mail Reflector (for T11 meeting notices, agendas etc.)

Internet address for subscription to the T11 reflector: Majordomo@network.com
 Message should contain a line stating… subscribe T11 <your E-mail address>
Internet address for distribution via T11 reflector: t11@network.com

Web sites:

HIPPI and ST Standards Activities http://www.cic-5.lanl.gov/~det
T11 Activities http://www.dpt.com/t11
NCITS http://www.x3.org/

T11 Document Distribution :

Global Engineering
15 Inverness Way East
Englewood, CO 80112-5704
Voice : 303-792-2181 or 800-854-7179
FAX : 303-792-2192

PATENT STATEMENT
CAUTION: The developers of this standard have requested that holder's of patents that may be required for the
implementation of the standard, disclose such patents to the publisher. However, neither the developers nor the
publisher have undertaken a patent search in order to identify which, if any, patents may apply to this standard.

As of the date of publication of this standard and following calls for the identification of patents that may be
required for the implementation of the standard, some such claims have been made. No further patent search is
conducted by the developer or the publisher in respect to any standard it processes. No representation is made
or implied that licenses are not required to avoid infringement in the use of this standard.

working draft - ST Rev 1.4, 12/23/97

iii

Comments on Rev 1.4

This is a preliminary document undergoing lots of
changes. Many of the additions are just place
holders, or are put there to stimulate discussion.
Hence, do not assume that the items herein are
correct, or final – everything is subject to change.
This page tries to outline where we are; what has
been discussed and semi-approved, and what
has been added or changed recently and
deserves your special attention. This summary
relates to changes since the previous revision.
Also, previous open issues are outlined with a
single box, new open issues ones are marked
with a double bar on the left edge of the box.

Changes are marked with margin bars so that
changed paragraphs are easily found, and then
highlights mark the specific changes. The list
below just describes the major changes, for detail
changes please compare this revision to the
previous revision. The major technical
changes are printed in bold.

Please help us in this development process by
sending comments, corrections, and suggestions
to the Technical Editor, Don Tolmie, of the Los
Alamos National Laboratory, at det@lanl.gov. If
you would like to address the whole group
working on this document, send the comment(s)
to hippi@network.com.

1. In 3.1.9, changed "…data movement
function…" to "…data movement…".

2. In 3.1.18, changed "…identifying a data
Destination's memory area…" to
"…identifying an area of memory…".

3. In 3.1.20, changed "Eight bytes…" to "Six
bytes…".

4. In 3.1.26, added a whole new definition for
"RFC" with most of the text being taken from
the previous footnote to 5.2.7.

5. In 3.3, added new acronyms for IP, RFC,
and UDP.

6. In 4.2, 3rd paragraph, next to last sentence,
changed "…expose multiple persistent…" to
"…allocate multiple persistent…". (Did a
global change so that most of the persistent
memory is "allocated" and one-time buffers
are "exposed".)

7. In 4.2, 4th paragraph, last sentence,
changed "…Blocks are flow-controlled, and
retransmitted when necessary…" to
"…Blocks for transmission and

retransmission are enabled (flow-
controlled)…".

8. In 4.2, 5th paragraph (just below Figure 3),
changed "The persistent memory region is
equivalent to a single-Block Transfer and the
data unit exchanged, without explicit flow
control, is a single Block." to "A persistent
memory region is similar to a region of
memory allocated for the transfer of a Block
(i.e., a starting Bufx and Offset), but is
different in that the persistent memory
region can be used for multiple Put, Get, or
FetchOP sequences. The data unit
exchanged in a Put, Get, or FetchOP
sequence, without explicit flow control, is a
Block (but the Block may be smaller than
the persistent memory region).".

9. In 4.2, 6th paragraph changed the last
sentence with "…for any reason…" to "…for
any purpose…".

10. In 4.2, 7th paragraph (just below Figure 4),
changed "…shows the model…" to "…shows
a model…", changed "…Destination side." to
"…Destination side, data structures.",
changed "…would be similar." to "…may be
similar.". In the second bullet, changed
"…for operation Schedule Headers…" to
"…for Schedule Headers…".

11. In 4.2, next to last paragraph, changed
"…includes pointers…" to "…included
references (Mxn)…", changed "The Transfer
Descriptor for a persistent memory region
contains the size of the region (T_len, in
bytes), and indexes (i.e., Mx) to Block
Descriptors." to "There is only one Block
Descriptor for a persistent memory region.",
and changed "…Descriptors (one for each
persistent memory region)…" to
"…Descriptors…".

12. In Figure 5, deleted "CCI" from the
"Parameters for local end", changed "B_id0,
B_id1, and B_idn" to "Mx0, Mx1, and Mxn",
and added "NOTE – Additional parameters
may be required for control of lower layers.
(See annex A.)", changed the title from
"Model of a local end device's Destination
side" to "A Destination side data structure
model".

working draft - ST Rev 1.4, 12/23/97

iv

13. In 5.1, added the second sentence
reading "An Op code (see 8.1), and a
checksum (see 8.3), are part of every
operation but are not included in this
clause.". Split the paragraph into two
paragraphs.

14. In 5.1.1, under "Request_Connection",
"Flags", changed "F flags…" to "F bits…",
and changed "…supports out of order Block
delivery…" to "…can send and receive
Blocks in any order…".

15. In 5.1.1, under "Connection_Answer",
changed "…for use by…" to "…for use
with…". Under "Flags", changed "F flags…"
to "F bits…", and changed "…supports out of
order Block delivery…" to "…can send and
receive Blocks in any order…".

16. In 5.1.2, under "Request_Disconnect",
changed "– R-Port, I-Port, and R-Key…"
to "– R-Port, I-Port, R-Key, and I-Key…",
i.e., added I-Key.

17. In 5.1.2, under "Disconnect_Answer",
changed "…shall retain…" to "…shall retain
(for at least twice the Op_timeout period)…".
Added "This delay allows for lost or
damaged teardown operations to be re-
issued.". Changed "– I-Port, R-Port, and I-
Key…" to "– I-Port, R-Port, I-Key, and R-
Key…", i.e., added R-Key.

18. In 5.1.2, under "Disconnect_Complete",
changed "…two times the Op_timeout, both
the Initiator and Responder…" to "…twice
the Op_timeout period, the Initiator…".
Added "Disconnect_Complete is the last
step in the three-way teardown handshake.".
Changed "– R-Port, I-Port, and R-Key…"
to "– R-Port, I-Port, R-Key, and I-Key…",
i.e., added I-Key.

19. In 5.2.3, added the sentence reading "Note
that the buffer sizes in each direction may
be different.". Split the paragraph into two,
and changed "…sizes. Get…", to "…sizes,
except that Get…".

20. In 5.2.4, changed "…size of a flow-controlled
unit (i.e., a Block, see 6.2.4)." to "…size of a
Block (see 6.2.4).". Changed "…size
authorized in…" to "…size in…".

21. In 5.2.6, split the third paragraph into two,
and added at the end of the first "A received
Slot value of x'FFFF' indicates that the
remote end does not implement Slot
accounting.". In the next paragraph,
changed "…x'FFFFFFFF'…" to
"…x'FFFF'…", and changed "…not
implement Slot accounting." to "…not
implementing Slot accounting or cannot
supply an update to the Slots value.". In the
last paragraph, added the sentence reading
"A received Slots value of x'FFFF' indicates
that the remote end device cannot supply an
update to the Slots value now.".

22. In 5.2.7, second paragraph, changed "…(see
5.3)." to "…(see annex A).".

23. Deleted clause 5.3 titled "Connection
control information (CCI)". Most of the
text was moved to annex A.

24. In 6.1, added the sentence reading "An
Op code (see 8.1), and a checksum (see
8.3), are part of every operation but are
not included in this clause.".

25. In 6.1.1.1, under "Request_State_
Response", changed "…may be issued by
the Responder…" to "…shall be issued by
the Responder in response to the
Request_State operation above.

26. In 6.1.1.2, under "Request_State", changed
"…shall be issued…" to "…may be
issued…". Under "R-id", changed "…the
Responder's…" to "…specifies the
Responder's…". Added "– I-id specifies the
Initiator's Transfer identifier (see 6.2.1).".

27. Did a global change to use consistent word
for the different actions. For example,
"assigns" means the end device can pick
any value, "specifies" means that the end
device picks one of several pre-assigned
values or uses a specified algorithm, and
"echoes" means that the end device uses a
specific pre-assigned value.

28. In 6.1.1.2, under
Request_State_Response", changed
"…Responder, specifying…" to
"…Responder in response to the
Request_State operation above. In this
Request_State Response, the Responder
specifies…". Added "– R-id echoes the
Responder's Transfer identifier (see
6.2.1).".

working draft - ST Rev 1.4, 12/23/97

v

29. In 6.1.1.3, under "Request_State",
changed "…shall be issued…" to "…may be
issued…". Changed "– R-id, the…" to "– R-
id specifies the…". Added "– I-id specifies
the Initiator's Transfer identifier (see
6.2.1).".

30. In 6.1.1.3, under
"Request_State_Response", changed
"…Responder, specifying…" to
"…Responder in response to either: the
Request_State operation above, or to a Data
operation with Send_State = 1. In this
Request_State Response, the Responder
specifies…". Added "– R-id echoes the
Responder's Transfer identifier (see
6.2.1).".

31. In 6.1.1.4, under "End" changed "…shall be
issued…" to "…may be issued…". Changed
"– R-id echoes…" to "– R-id specifies…" and
changed "…identifier to specify a specific
Transfer…" to "…identifier…". Made the
same change to the I-id.

32. In 6.1.2, changed "…must exist…" to
"…shall exist…", and changed "…can be
initiated" to "…is initiated".

33. In 6.1.2, under "Request_To_Send",
changed "…shall be issued…" to "…may be
issued…". Changed "D flags…" to "D
bits…" (this is a global change that has a
margin bar here but not for the other
instances).

34. In 6.1.2, under "Request_Answer", changed
"…the subsequent…" to "…the
Request_To_Send has been accepted but
the subsequent…".

35. In 6.1.2, under "Clear_To_Send", changed
"– B_num assigns…" to "– B_num
specifies…".

36. In 6.1.2, under "Data", changed "–
STU_num assigns…" to "– STU_num
specifies…".

37. In 6.1.2, under "End", added "(the Write
sequence)"

38. In 6.1.3, made similar changes as were
made in 6.1.2.

39. In 6.1.4, changed "…are preceded by a
sequence that exposes…" to "…shall be
preceded by a sequence that allocates…".
Changed "…must exist before these
sequences can be…" to "…shall exist before
a persistent memory region allocation

sequence is…". Split the paragraph into
two, and changed "…exposed…" to
"…allocated…" in two places.

40. In 6.1.4.1, under
"Request_Memory_Region", changed
"…shall be issued…" to "…may be issued",
and changed "…expose…" to "…allocate…".

41. In 6.1.4.1, under "Request_Answer",
changed "…the subsequent…" to "…the
Request_Memory_Region has been
accepted but the subsequent…".

42. In 6.1.4.1, under
"Memory_Region_Available", changed
"…they must obey…" to "…by…".

43. In 6.1.4.2, under "Data", changed "–
STU_num assigns…" to "– STU_num
specifies…", and changed "– B_num
specifies…" to "– B_num assigns…".

44. In 6.1.4.2, under "End", changed "…abort
the Put…" to "…abort the Put sequence…".

45. In 6.1.4.3, under "Get", changed "…shall
be issued…" to "…may be issued…".
Changed "– R-Mx assigns…" to "– R-Mx
echoes…". Changed T_len from 32 bits to
16 bits.

46. In 6.1.4.3, under "Request_Answer",
changed "…the subsequent…" to "…the Get
has been accepted but the subsequent…".

47. In 6.1.4.3, under "Data", changed "–
STU_num assigns…" to "– STU_num
specifies…".

48. In 6.1.4.3, under "End", changed "…abort
the Get…" to "…abort the Get sequence…".

49. In 6.1.4.4, changed "…fetches from…" to
"…fetches data from…".

50. In 6.1.4.4, under "FetchOP", changed
"…shall be issued…" to "…may be
issued…". Changed "– B_num field =
x'00000008'… to "– Op_len field =
x'0008'…" and changed "…32-bit
length…" to "…16-bit length…".

51. In 6.1.4.4., under "Request_Answer",
changed "…T_len ≠≠ x'00000008'…" to
"…T_len ≠ ≠ x'0008'…". Under Flags,
changed "…"Request_To_Send has been
rejected…" to "…FetchOP has been
rejected…", and changed "…the
subsequent…" to "…the FetchOP has been
accepted but the subsequent…".

working draft - ST Rev 1.4, 12/23/97

vi

52. In 6.1.4.4, under "End", changed "…abort
the FetchOP…" to "…abort the FetchOP
sequence…".

53. In 6.2.1, under F-id and G-id, added
"sequence" at the end of each paragraph.
Under I-id and R-id, added "or persistent
memory region" at the end of each
paragraph. In the last paragraph, changed
"…and only return…" to "…and shall only
return…".

54. In 6.2.2, changed the first sentence to "Like
the Ports, Keys, and Transfer identifiers,
each end device shall also select its own 16-
bit Memory Index (Mx). The Mx parameter
provides a mechanism to identify an area of
memory associated with a Block or
persistent memory region.". Changed
"…associated Data operations shall echo the
Mx…" to "…Data operations on this memory
region shall use the assigned Mx…".

55. In 6.2.3, split out the text into three separate
paragraphs, one for 64-bit T_len with Read
and Write sequences, one for 64-bit T_len
for setting up a persistent memory region,
and one for 16-bit T_len for Get and
FetchOP sequences.

56. In 6.2.4, split the first paragraph into two
paragraphs. In the second paragraph,
added "of a Request Block state" to say
which we are talking about. In the third
paragraph, changed "Blocks comprising a
Transfer shall…" to "Blocks shall…", and
deleted "otherwise go-back N retransmission
must be used.".

57. In 6.2.6, added "but STU sizes shall be no
larger than specified in 5.2.4" at the end of
the paragraph.

58. In 6.2.7, added "(see annex B)" at the end of
the third paragraph.

59. In 6.2.9, changed the size of the opaque
data from 8 bytes to 6 bytes, and
changed its location from the Bufx_2
field to the Op_len field.

60. In 6.2.11, changed "Blocks" to "memory
region" in two places, and changed
"exposed" to "allocated".

61. In 6.3 towards the end, changed "Max_STU
size" to "Max_STU" in two places.

62. In Table 1, added Get and FetchOP as
Rejected operations, and
Request_Answer as the Response to
each.

63. Removed old clause "7.4 Lost Operations"
and moved most of the text to 10.1 and
10.2.

64. In figure 12, split the Bufx_2 field into
two 16-bit fields; Cksum on the left and
Op_len on the right.

65. In 8.3, added initial text for a checksum
based on the TCP/IP checksum.

66. In 9, added "shall not be checked at the
receiver" to the next to last bullet.

67. In Tables 3, 4, 5, 6, and 7, split the Bufx_2
field into two fields; Cksum and Op_len.
Cksum is the parameter for every
operation.

68. In Table 3, moved I-Max_Block and R-
Max_Block from the old Bufx_2 field to
the Offset_2 field. Added I-Key, R-Key,
and I-Key in the Offset field for the
teardown sequence.

69. In Tables 5, 6, and 7, changed the
Opaque data from 64 bits to 32 bits, i.e.,
removed it from the new Cksum field.

70. In Table 7, moved the I-Bufx parameter in
the Get and FetchOP operations to the
B_num field, and the length to the
Op_len field.

71. In 10.1, added the third bullet about the
maximum queuing delay. The text in the
second full paragraph was extracted
from old 7.4.

72. In 10.2, most of the first paragraph is text
extracted from the old 7.4.

73. In Table 8, the title was changed with the
addition of "with mandatory retry". Added
"or Request_Answer" as a response to Get.
Added "Data with Send_State=1" with
"Request_Answer" as a response.
Reordered the items into alphabetical order.

74. In 10.4, added new text about checksum
errors.

75. In 10.5.1, 10.5.2, and 10.6.3, changed
"…logged…" to "…shall be logged…".

working draft - ST Rev 1.4, 12/23/97

vii

76. In 10.6.1, added text about Disconnect
operations possibly not having valid Port
and Key values, and generating legal
responses when an invalid Disconnect
operation is received.

77. In 10.7.1, changed the title from "Invalid
S-id" to "Invalid Transfer identifier".
Changed the text so that only the
destination identifier is checked and the
S-id field is not checked. Changed the
error logged from "Invalid_S-id_Error" to
"Invalid_D-id_Error".

78. In 10.7.2, added an new clause about
checking the Mx parameter.

79. In 10.7.3, added the other operations that
specify Data channels.

80. In 10.7.4, reworded the text about out of
range Block numbers, turning it into a list
with two bullets. Added Get and FetchOP to
the checking for Bufx and Offset out of
range.

81. In 10.7.5, added "or persistent memory
region" in two places.

82. In 10.7.6, deleted
"Request_To_Send_Response".
Changed "…should discard…" to
"…shall discard…".

83. In 10.7.7, changed "…flag = 1 and use of
that flag…" to "…flag value that…".

84. In 10.7.8, changed "…from systems that are
capable of retransmission." to "…from a
data Source that supports Out_Of_Order
(see 5.1.1 and 8.2)."

85. In Table 9, added "Cksum_Error, all", and
"Invalid_Mx_Error, Data". Changed
"Invalid_S-id_Error" to "Invalid_D-
id_Error" and "all with an S_id" to "all
with a non-zero D_id". Reordered the
items in the table to be in alphabetical order.

86. In Annex A, the text in the second and
following paragraphs came from the old 5.3.
In the third paragraph, changed "…is passed
from the ULP to the specified LLP and
stored…" to "…is passed to the specified
LLP and may be stored…". In the fourth
paragraph, added the sentence reading "ST
does not provide the initial CCI; it may come
from the ULP or from another protocol.", and
changed "…should retain…" to "…would
typically retain…".

87. In figures A1, A2, and A3, changed the
Bufx_2 field to Cksum and Op_len.

working draft - ST Rev 1.4, 12/23/97

viii

Contents
Page

Foreword ... xi

Introduction...xii

1 Scope ... 1

2 Normative references.. 1
2.1 Approved references ... 2
2.2 References under development... 2

3 Definitions and conventions .. 2
3.1 Definitions ... 2
3.2 Editorial conventions ... 4

3.2.1 Binary notation ... 4
3.2.2 Hexadecimal notation ... 4

3.3 Acronyms and other abbreviations .. 4

4 System overview .. 5
4.1 Control Channels and Data Channels .. 5
4.2 System model ... 5

5 Connection management ... 8
5.1 Connection management sequences... 8

5.1.1 Virtual Connection setup... 8
5.1.2 Virtual Connection teardown ... 9

5.2 Connection management parameters.. 9
5.2.1 Ports... 9
5.2.2 Keys ... 10
5.2.3 Buffer size (Bufsize) ... 10
5.2.4 Max_STU size .. 10
5.2.5 Maximum Block size (Max_Block) .. 10
5.2.6 Slots ... 10
5.2.7 EtherType... 11

6 Data movement ... 11
6.1 Data movement sequences... 11

6.1.1 Common sequences... 11
6.1.1.1 Request Slot state.. 12
6.1.1.2 Request Transfer state... 12
6.1.1.3 Request Block state ... 13
6.1.1.4 End sequence .. 14

6.1.2 Write sequence .. 14
6.1.3 Read sequence... 16
6.1.4 Put, Get, and FetchOP sequences.. 18

6.1.4.1 Allocate a persistent memory region 18
6.1.4.2 Put sequences ... 19
6.1.4.3 Get sequences... 20
6.1.4.4 FetchOP sequences... 21

working draft - ST Rev 1.4, 12/23/97

ix

6.2 Data movement parameters .. 22
6.2.1 Transfer identifiers (F-id, G-id, I-id, and R-id).............................. 22
6.2.2 Memory Index (Mx) .. 23
6.2.3 Transfer length (T_len) ... 23
6.2.4 Blocks, B_num and B_seq.. 23
6.2.5 Blocksize .. 24
6.2.6 STUs and STU_num... 24
6.2.7 Bufx and Offset .. 24
6.2.8 Sync ... 25
6.2.9 Opaque data... 25
6.2.10 Blocks enabled (CTS_req) .. 25
6.2.11 Persistent memory.. 25

6.3 Packing examples ... 25

7 Operations management.. 26
7.1 Flow control... 26
7.2 Status operations .. 26
7.3 Rejected operations... 26
7.4 Interrupts... 27

8 Schedule Header ... 27
8.1 Op codes... 27
8.2 Flags... 28
8.3 Checksum (optional) ... 29

9 Operations details .. 29

10 Error processing... 36
10.1 Operation timeout.. 36
10.2 Operation Pairs ... 36
10.3 Duplicate operations.. 36
10.4 Checksum errors ... 37
10.5 Syntax errors... 37

10.5.1 Undefined Opcode.. 37
10.5.2 Unexpected Opcode ... 37

10.6 Virtual Connection errors ... 37
10.6.1 Invalid Key or Port .. 37
10.6.2 Slots exceeded ... 37
10.6.3 Unknown EtherType ... 37
10.6.4 Illegal Bufsize ... 37
10.6.5 Illegal STU size .. 37

10.7 Scheduled Transfer errors ... 38
10.7.1 Invalid Transfer identifier .. 38
10.7.2 Invalid Memory Index (Mx) ... 38
10.7.3 Bad Data Channel specification .. 38
10.7.4 Out of Range B_num, Bufx, Offset, or STU_num 38
10.7.5 Block out of order error ... 38
10.7.6 Illegal Blocksize.. 38
10.7.7 Undefined Flag ... 38
10.7.8 Missing Blocks.. 38

working draft - ST Rev 1.4, 12/23/97

x

Tables

Table 1 – Response to a rejected operation ... 27
Table 2 – Op codes and operations.. 27
Table 3 – Connection management sequences.. 30
Table 4 – Common control sequences ... 30
Table 5 – Write sequences .. 32
Table 6 – Read sequences... 32
Table 7 – Put, Get, and FetchOP sequences ... 34
Table 8 – Operation pairs guarded by Op_timeout with mandatory retry 36
Table 9 – Summary of logged errors .. 39

Figures

Figure 1 – System overview... 5
Figure 2 – ST over different media .. 5
Figure 3 – User data hierarchy... 6
Figure 4 – Transmission units .. 6
Figure 5 – A data structure model .. 7
Figure 6 – Connection management example .. 8
Figure 7 – Common sequence examples ... 12
Figure 8 – Write example... 14
Figure 9 – Read example... 16
Figure 10 – Put, Get, and FetchOP examples.. 18
Figure 11 – Data packing examples ... 26
Figure 12 – Schedule Header contents .. 27
Figure 13 – Flags summary ... 28
Figure A.1 – An ST operation carried in a HIPPI-6400-PH Message 41
Figure A.2 – An ST operation carried in a HIPPI-FP packet 42
Figure A.3 – An ST operation carried in an Ethernet packet 44
Figure B.1 – ST Striping Configurations ... 46

Annexes

A Using lower layer protocols .. 40
A.1 HIPPI-6400-PH as the LLP ... 40
A.2 HIPPI-FP as the LLP... 41
A.3 Ethernet as the LLP .. 43
A.4 ATM LAN Emulation as the LLP.. 44
A.5 Fibre Channel as the LLP.. 44

B ST striping ... 45
B.1 Striping principles ... 45
B.2 Many-to-one striping ... 45
B.3 One-to-many striping .. 45
B.4 Many-to-many striping .. 46

C Scheduled Transfer Protocol examples ... 47

D State tables ... 47

working draft - ST Rev 1.4, 12/23/97

xi

Foreword (This foreword is not part of American National Standard X3.xxx-199x.)

This American National Standard specifies a data transfer protocol that uses
small control messages to pre-arrange data movement. Buffers are allocated at
each end before the data transmission, allowing full-rate, non-congesting data
flow between the end devices. The control and data may use different physical
media or may share a single physical medium. Procedures are provided for
moving data over HIPPI and other media.

This document includes annexes which are informative and are not considered
part of the standard.

Requests for interpretation, suggestions for improvement or addenda, or defect
reports are welcome. They should be sent to the National Committee for
Information Technology Standards, 1250 Eye Street, NW, Suite 200,
Washington, DC 20005.

This standard was processed and approved for submittal to ANSI by NCITS.
Committee approval of the standard does not necessarily imply that all
committee members voted for approval. At the time it approved this standard,
the NCITS had the following members:

(List of NCITS members to be included in the published standard by the
ANSI Editor.)

Technical Committee T11 on Device Level Interfaces, which reviewed this
standard, had the following participants:

(List of T11 Committee members, and other active participants, at the time
the document is forwarded for public review, will be included by the
Technical Editor.)

Task Group T11.1 on the High-Performance Parallel Interface, which developed
this standard, had the following participants:

(List of T11.1 Task Group members, and active participants, at the time of
document is forwarded for public review will be included by the Technical
Editor.)

working draft - ST Rev 1.4, 12/23/97

xii

Introduction

This American National Standard specifies a data transfer protocol that uses
small control messages to pre-arrange data movement. Buffers are allocated at
each end before the data transmission, allowing full-rate, non-congesting data
flow between the end devices. The control and data may use different physical
media or may share a single physical medium. Procedures are provided for
moving data over HIPPI and other media.

Characteristics of a ST include:

– A hierarchy of data units (Scheduled Transfer Units (STUs), Blocks, and
Transfers).

– Support for flow-controlled Block Read and Write sequences.

– Support for single Block Get and Put sequences.

– Support for Fetch and modify sequences.

– Parameters exchanged between end devices for Port selection, transfer
identification, and operation validation.

– Features supporting efficient mapping between the issuer's and receiver's
natural buffer sizes.

– Features supporting Block striping.

– Provisions for resending partial Transfers for error recovery.

– Mappings onto HIPPI-6400-PH, HIPPI-FP (for HIPPI-800 traffic), Fibre
Channel, and Ethernet lower-layer protocols.

working draft proposed American National Standard ANSI X3.xxx-199x

1

Scheduled Transfer Protocol (ST)

1 Scope

This American National Standard specifies a data
transfer protocol that uses small control
messages to pre-arrange data movement.
Buffers are allocated at each end before the data
transmission, allowing full-rate, non-congesting
data flow between the end devices. The control
and data may use different physical media or
may share a single physical medium. Procedures
are provided for moving data over HIPPI and
other media.

Specifications are included for:

– Virtual Connection setup and teardown;

– determining the number of operations the
other end can accept;

– determining the buffer size of the other end;

– exchanging Key, Port, transfer identifiers, and
buffer size values specific to the end nodes;

– determining a maximum size transmission
unit that will not overrun receiver buffer
boundaries;

– acknowledging partial transfers so that
buffers can be reused;

– providing means for resending partial
Transfers for error recovery; and

– terminating transfers in progress.

Note that some Scheduled Transfer Protocol
implementations work best with in-order delivery
by the LLP, which may not be available on all
media.

2 Normative references

The following standards contain provisions which,
through reference in the text, constitute
provisions of this standard. At the time of
publication, the editions indicated were valid. All
standards are subject to revision, and parties to
agreements based on this standard are
encouraged to investigate the possibility of
applying the most recent editions of the standards
listed below.

Copies of the following documents can be
obtained from ANSI: Approved ANSI standards,
approved and draft international and regional
standards (ISO, IEC, CEN/CENELEC, ITUT), and
approved and draft foreign standards (including
BSI, JIS, and DIN). For further information,
contact ANSI Customer Service Department at
212-642-4900 (phone), 212-302-1286 (fax) or via
the World Wide Web at http://www.ansi.org.
Additional availability contact information is
provided below as needed.

American National Standard
for Information Technology –

working draft - ST Rev 1.4, 12/23/97

2

2.1 Approved references

ANSI X3.183-1991, High-Performance Parallel
Interface – Mechanical, Electrical, and Signalling
Protocol Specification (HIPPI-PH)

ANSI X3.210-1992, High-Performance Parallel
Interface – Framing Protocol (HIPPI-FP)

ANSI/IEEE Std 802-1990, IEEE Standards for
Local and Metropolitan Area Networks: Overview
and architecture (formerly known as IEEE Std
802.1A, Project 802: Local and Metropolitan Area
Network Standard — Overview and Architecture).

ISO/IEC 8802-2:1989 (ANSI/IEEE Std 802.2-
1989), Information Processing Systems – Local
Area Networks – Part 2: Logical link control.

2.2 References under development

At the time of publication, the following
referenced standards were still under
development. For information on the current
status of the document, or regarding availability,
contact the relevant standards body or other
organization as indicated. For information about
obtaining copies of this document or for more
information on the current status of the
document, contact National Committee for
Information Technology Standards, 1250 Eye
Street, NW, Suite 200, Washington, DC 20005,
202-626-5746.

ANSI X3.xxx-199x, High-Performance Parallel
Interface – 6400 Mbit/s Physical Layer (HIPPI-
6400-PH)

3 Definitions and conventions

3.1 Definitions

For the purposes of this standard, the following
definitions apply.

3.1.1 atomic: An indivisible operation or
transaction, i.e. it updates all of its defined state
variables before another operation can take place
on the same variables.

3.1.2 Block: An ordered set of one or more

STUs within a Scheduled Transfer. (See figure 3
and 6.2.4.)

3.1.3 Buffer Index (Bufx): A 32-bit parameter
identifying the starting address of a data buffer.
(See 6.2.7.)

3.1.4 Bufsize: An end device's buffer size.
(See 5.2.3.)

3.1.5 connection control information (CCI):
Media-dependent information, e.g., physical-layer
addresses, passed from the ULP for use by the
physical layer below ST.

3.1.6 Control Channel: The logical channel
that carries the Control operations.

3.1.7 Control operation: A control function
consisting of a Schedule Header and an optional
32-byte payload. (See figure 4.)

3.1.8 Data Channel: The logical channel that
carries the data payload.

3.1.9 Data operation: A data movement
consisting of a Schedule Header and up to 2
gigabytes of user payload. (See figure 4).

3.1.10 Destination: The end device that
receives an operation or data.

3.1.11 Get: An operation to read data from a
persistent memory region on a remote end
device. (See 6.1.4.3.)

3.1.12 FetchOP: An atomic operation to read
data from a persistent memory region on a
remote end device and execute some function on
the persistent memory location, e.g., increment.
(See 6.1.4.4.)

3.1.13 Initiator: The end device that starts a
sequence of operations. This is typically a host
computer system, but may also be a non-
transparent translator, bridge, or router.

3.1.14 intermediate device: A non-transparent
device (e.g., translator, bridge, or router),
between the end device that generates the data
payload and the end device that receives and
operates on the data payload.

3.1.15 Key: A local identifier used to select and
validate operations. (See 5.2.2.)

3.1.16 log: The act of making a record of an
event for later use.

3.1.17 lower-layer protocol (LLP): A protocol
below the Scheduled Transfer Protocol, e.g., a

working draft - ST Rev 1.4, 12/23/97

3

physical layer.

3.1.18 Memory Index (Mx): A parameter
identifying an area of memory. (See 6.2.2).

3.1.19 Offset: A parameter specifying the data's
starting point relative to the start of a Bufx. (See
6.2.7.)

3.1.20 Opaque data: Six bytes of Source ULP
to Destination ULP peer-to-peer information
carried in the Scheduled Header separately from
the data payload. (See 6.2.9)

3.1.21 operation: The procedure defined by the
parameters in a Schedule Header, and any
payload associated with that Schedule Header
(see figure 4). The code in the Schedule
Header's "Op" field identifies the operation's
name/function (see table 2).

3.1.22 optional: Characteristics that are not
required by ST. However, if any optional
characteristic is implemented, it shall be
implemented as defined in ST.

3.1.23 persistent: Memory that is maintained
for multiple Put, Get, and FetchOP operations.
(See 6.1.4 and 6.2.11.)

3.1.24 Port: A logical connection within an end
device. (See 5.2.1.)

3.1.25 Put: An operation to write data into a
persistent memory region on a remote end
device. (See 6.1.4.2.)

3.1.26 Request For Comment (RFC): RFC
(Request For Comment) documents are working
standards documents from the TCP/IP
internetworking community. Copies of these
documents are available from numerous
electronic sources (e.g., http://www.ietf.org) or by
writing to Internet Engineering Task Force (IETF)
Secretariat, c/o Corporation for National
Research Initiatives, 1895 Preston White Drive,
Suite 100 Reston, VA 20191-5434, USA.

3.1.27 Responder: The end device that
responds to the sequence of operations started
by the Initiator. This is typically a host computer
system, but may also be a non-transparent
translator, bridge, or router.

3.1.28 Scheduled Transfer: An information
transfer, normally used for bulk data movement,
where the end devices prearrange the transfer
using the protocol defined in this standard.

3.1.29 Scheduled Transfer Unit (STU): The
data payload portion of a Data operation. STUs
are the basic components of Blocks and are the
smallest units transferred. (See figure 3 and
6.2.6.)

3.1.30 sequence: An ordered group of
operations providing a particular function, e.g.,
Read, Write, Get, etc., between an Initiator and a
Responder. The roles of Initiator and Responder
are constant for all operations in the sequence.

3.1.31 Slot: A space reserved for a Control
operation, or the Schedule Header portion of an
STU, in the end device. (See 5.2.6.)

3.1.32 Source: The end device that sends an
operation or data.

3.1.33 Sync: A parameter used to synchronize
the state across a Virtual Connection. (See
5.2.6.)

3.1.34 Transfer: An ordered set of one or more
Blocks within a Scheduled Transfer. (See figure
3 and 4.2.)

3.1.35 Universal LAN MAC address (ULA): A
logical address that uniquely identifies a Source
or Destination. The ULA conforms to the 48-bit
MAC address specified by the IEEE 802
Overview Standard.

3.1.36 upper-layer protocol (ULP): The
protocol above ST. A ULP could be implemented
in hardware or software, or could be distributed
between the two.

3.1.37 Virtual Connection: A bi-directional
logical connection used for Scheduled Transfers
between two end devices. A Virtual Connection
contains a logical Control Channel and one or
more logical Data Channels in each direction.
(See 5.)

working draft - ST Rev 1.4, 12/23/97

4

3.2 Editorial conventions

A number of conditions, sequence parameters,
events, states, or similar terms are printed with
the first letter of each word in uppercase and the
rest lowercase (e.g., Block, Transfer). Any
lowercase uses of these words have the normal
technical English meaning.

The word shall, when used in this American
National standard, states a mandatory rule or
requirement. The word should, when used in this
standard, states a recommendation.

Multiword parameters and field names are joined
with an underscore, e.g., D_Port. A parameter
associated with a particular end device uses a
single letter prefix and a hyphen as a joiner, e.g.,
I-Port denoting the Initiator’s Port.

All numbers are represented as unsigned
integers.

3.2.1 Binary notation

Binary notation is used to represent relatively
short fields. For example a two-bit field
containing the binary value of 10 is shown in
binary format as b'10'. An "x" in a bit position
indicates a "don't care" value.

3.2.2 Hexadecimal notation

Hexadecimal notation is used to represent some
fields. For example a two-byte field containing a
binary value of b'1100010000000011' is shown in
hexadecimal format as x'C403'.

3.3 Acronyms and other abbreviations

Ack acknowledge indication
CCI connection control information
D_ associated with the Destination
DSAP Destination Service Access Protocol
FTP File Transfer Protocol
HIPPI High-Performance Parallel Interface
I- Prefix for an Initiator's parameter
id identifier
IP Internet Protocol
IEEE Institute of Electrical and Electronic

Engineers
LAN local area network
LLP lower-layer protocol
MAC Media Access Control
R- Prefix for a Responder's parameter
RFC Request For Comment
S_ associated with the Source
SNAP SubNetwork Access Protocol
SSAP Source Service Access Protocol
ST Scheduled Transfer Protocol
STU Scheduled Transfer Unit
TCP Transmission Control Protocol
UDP User Data Protocol
ULA Universal LAN address
ULP upper-layer protocol

working draft - ST Rev 1.4, 12/23/97

5

4 System overview

This clause provides an overview of the structure,
concepts, and mechanisms used in Scheduled
Transfers. Figure 1 gives an example of
Scheduled Transfers being used to communicate
between a local end device and a remote end
device over some physical media. Annex C
describes the steps in a typical Scheduled
Transfer. Figure 2 shows ST being used over
different media.

4.1 Control Channels and Data Channels

Each end device shall have a Control Channel
and one or more Data Channels. Control
operations shall be exchanged over the Control
Channel. Scheduled Transfer Units (STUs), i.e.,
data payload, shall be exchanged over the Data
Channel(s). The information volume on the Data
Channel(s) will probably be many times the
volume on the Control Channel; hence the
available bandwidths should be balanced
accordingly. For best performance, the Control
Channel should have low latency.

4.2 System model

Scheduled Transfers between end devices are
pre-arranged to decrease computational
overhead during the Transfer by allocating
buffers at each end device. The bi-directional
path between the end devices is called a Virtual
Connection. The end devices can be either

Initiators or Responders. The Initiator is the end
device that starts a Read, Write, request
persistent memory region, Put, Get, or FetchOP
sequence. The Responder is at the other end.
The end device sending an operation is the
Source and the end device receiving the
operation is the Destination. The end device
sending data is the data Source and the end
device receiving the data is the data Destination.

Translators,
Routers, or

Bridges

HIPPI-6400
switch(es)

HIPPI-6400 end
nodes with ST

Ethernet
fabric

Ethernet, or
Gigabit Ethernet,
end nodes with

ST

ATM
fabric

ATM end
nodes with ST

HIPPI-800
switch(es)

HIPPI-800 end
nodes with ST

Fibre Channel
or other
fabric

Fibre Channel,
or other media
end nodes with

ST

Figure 2 – ST over different media

Destination

Control Channel

Data Channel(s)

Source

Control Channel

Data Channel(s)

ST ST
Lower

Layer(s)

Source

Control Channel

Data Channel(s)

Destination

Control Channel

Data Channel(s)

Lower
Layer(s)

(May contain
intermediate

devices,
e.g., switches)

Interconnect
Network(s)

local end device remote end device

Figure 1 – System overview

working draft - ST Rev 1.4, 12/23/97

6

Once the data Destination has indicated its ability
to accept a Block, the Virtual Connection should
not become congested. In essence, the data
Destination smoothly controls the flow. For
comparison, without pre-arranging the buffers,
the data Source would blindly send data into the
interconnection network where it might have to
wait for buffers to be assigned in the data
Destination. On the down-side, Scheduled
Transfers require additional Control operations
and round-trip latency. Once established, a
Virtual Connection may be used to carry multiple
Read and Write Transfers, allocate multiple
persistent memory regions, or execute multiple
Put, Get, and FetchOP sequences. This
Scheduled Transfer protocol does not handle
network resource reservations.

Multiple independent Write or Read sequences
may be executed to move user data units, called
Transfers, over Virtual Connections. As shown in
figure 3, a Transfer is composed of one or more
Blocks, and Blocks are composed of one or more
STUs. The Scheduled Transfer protocol shall
package the Transfer in Blocks and STUs for
delivery using a lower layer protocol (LLP) and
media. The Blocks for transmission and
retransmission are enabled (flow-controlled), with
Clear_To_Send operations.

Transfer

Blocks

STUs

Figure 3 – User data hierarchy

Multiple Put, Get, and FetchOP sequences may
also be executed to move user data to/from a
persistent memory region. A persistent memory
region is similar to a region of memory exposed
for the transfer of a Block (i.e., a starting Bufx
and Offset), but is different in that the persistent
memory region can be used for multiple Put, Get,
or FetchOP sequences. The data unit exchanged
in a Put, Get, or FetchOP sequence, without
explicit flow control, is a Block (but the Block may
be smaller than the persistent memory region).

As shown in figure 4, an STU shall be the data
payload portion of a Data operation. A Data
operation shall consist of a 40-byte Schedule
Header and an STU of up to 2 gigabytes (231

bytes). A Control operation shall consist of a 40-
byte Schedule Header, and may contain an
additional 32 bytes of optional payload. The
optional payload can be used by a ULP entity for
any purpose, e.g., passing file names.

Schedule
Header

Schedule
Header

Optional
payload

40 bytes 32 bytes

Control
Operation

data payload (STU)

40 bytes ≤ 231 bytes

Data
Operation

Figure 4 – Transmission units

Figure 5 shows a model of a local end device's,
Destination side, data structures. An end
device's Source side may be similar.

As Control operations and Data operations are
received, the Schedule Header of each is placed
in the Schedule Header queue for execution.
State information about the number of empty
Slots in the queue is available to the other end so
that it can avoid overrunning the queue.

The Virtual Connection Descriptor (selected and
validated by the ordered set remote-Port, local-
Port, and local-Key), contains:

– static parameters identifying the Virtual
Connection from the view of both the remote
end device and local end device (the top
portion of the Virtual Connection Descriptor box
in figure 5). Since the values assigned to local-
Port and local-Key are determined by the local
end device, it is left up to the local end device
as to which parameters to use to select and
which to use to validate;

– current state information about the number of
empty "Slots" for Schedule Headers associated
with this Virtual Connection, and Retry and
Timeout parameters;

working draft - ST Rev 1.4, 12/23/97

7

– identifiers for each of the Virtual Connection's
Transfers or persistent memory regions.

A Transfer Descriptor, for each Transfer, contains
the Transfer length (T_len, in bytes), the Block
size (in bytes), and includes references (Mxn), to
Block Descriptors. There is only one Block
Descriptor for a persistent memory region. The
Block Descriptors identify the set of contiguous
Buffer Index (Bufx) values assigned to the Block
or persistent memory region. And finally, the

Buffer Descriptor Table provides a base memory
address for each Bufx.

In an effort to achieve maximum transfer rates
and efficiency, the receiver's job is made as easy
as possible, even at the expense of the transmit
side. It is expected that after validating an
operation in the receiving end, only a single
lookup will be needed to derive the absolute
memory address and correctly place the data.

NOTE – Additional parameters may be required for control of lower layers. (See annex A.)

Figure 5 – A Destination side data structure model

T_len
Blocksize
CTS_req
F_Offset
Mx0

Mx1

Mxn

Port
Key
Max Slots
Bufsize
Max-STU Size
Max-Block Size
Out_of_Order
 capable

remote Slots local Slots
local Sync #

remote-id1

remote-id2

remote-idi

....

local-id1

local-id2

local-idi

....

Op_timeout
Max_retry

Virtual Connection Descriptors
[local-Port,
local-Key,
remote-Port]

Selection and
validation criteria

To other
Transfer
Descriptors

....

Transfer
Descriptor

To other
Block
Descriptors

Block
Descriptor

Bufx0

Bufx1

Bufxk

....

Buffer Descriptor
Table

....

address 0
address 1

address n

Buffers

Slot

Slot

Slot

Slot

Slot

....

Schedule Header
Queue

Port
Key
Max Slots
Bufsize
Max-STU Size
Max-Block Size
Out_of_Order
 Capable

Ethertype
NOTE – The Transfer
Descriptor for a
persistent memory
region does not use the
Blocksize, CTS_req, or
F_Offset parameters.

Parameters for
remote end

Parameters for
local end

working draft - ST Rev 1.4, 12/23/97

8

5 Connection management

5.1 Connection management sequences

The connection management sequences are
shown in figure 6 and detailed in table 3. An Op
code (see 8.1), and a checksum (see 8.3), are
part of every operation but are not included in this
clause. Parameters transmitted as zeros, and not
checked at the receiver, are marked in the tables
as *, and are not included in this clause.

The end device that starts a sequence is called
the Initiator, and the other end device is called
the Responder. The label of an end device as
Initiator or Responder remains constant within a
sequence. An "I-" prefix indicates that a
parameter is associated with the Initiator. An "R-"
prefix indicates that a parameter is associated
with the Responder.

Request_Connection

Initiator Responder

Connection_Answer

Either end can
start a sequence

to set up a
Virtual

Connection

Request_Disconnect

Initiator Responder

Disconnect_Answer

Either end can
start a sequence
to tear down a

Virtual
Connection Disconnect_Complete

Figure 6 – Connection management example

5.1.1 Virtual Connection setup

A sequence consisting of a Request_Connection
operation and a Connection_Answer operation
shall be used to construct a symmetric Virtual
Connection between two end devices. Either end
device can initiate the Virtual Connection setup
sequence, and sequences that follow need not
use the same Initiator and Responder. (See table
3, C1.)

Request_Connection shall be issued by the
Initiator to establish a Virtual Connection.
Parameters are passed to inform the remote end
of the Initiator's capabilities and preferences.

– Flags (see 8.2): F bits specify the Initiator's
support for persistent operations and big/little
endian ULP architecture. I = 1 specifies that an
interrupt shall be generated at the Responder.
O = 1 specifies that the Initiator can send and
receive Blocks in any order (see 6.2.5).

– I-Slots specifies the initial number of Slots
available in the Initiator for this Virtual
Connection (see 5.2.6).

– R-Port specifies a "well-known Port" or other
value to select an upper-layer protocol or
service at the Responder (see 5.2.1).

– I-Port assigns the Initiator's Port value (see
5.2.1).

– I-Bufsize specifies the Initiator's buffer size
(see 5.2.3).

– I-Key assigns the Initiator's Key (see 5.2.2).

– I-Max_STU specifies the maximum size STU
the Initiator is prepared to receive (see 5.2.4).

– EtherType identifies the protocol associated
with this Virtual Connection (see 5.2.7).

– I-Max_Block specifies the maximum Block
size that the Initiator will send (see 5.2.5).

Connection_Answer shall be issued by the
Responder upon receipt of a
Request_Connection. The Responder may either
reject the request, or reply with parameters to
inform the Initiator of the Responder's capabilities
and preferences. If accepted, a Virtual
Connection will have been established for use
with subsequent sequences.

– Flags (see 8.2): F bits specify the
Responder's support for persistent operations
and big/little endian ULP architecture. I = 1
specifies that an interrupt shall be generated at
the Initiator. O = 1 specifies that the
Responder can send and receive Blocks in any
order (see 6.2.5). R = 1 specifies that the
Responder has rejected this Virtual Connection.

– R-Slots specifies the number of Slots
available in the Responder for this Virtual
Connection (see 5.2.6).

working draft - ST Rev 1.4, 12/23/97

9

– I-Port echoes the Initiator's Port value (see
5.2.1).

– R-Port assigns the Responder's Port value,
which may not be the same as the R-Port value
in the Request_Connection (see 5.2.1).

– I-Key echoes the Initiator's Key (see 5.2.2).

– R-Bufsize specifies the Responder's buffer
size (see 5.2.3).

– R-Key assigns the Responder's Key (see
5.2.2).

– R-Max_STU specifies the maximum size
STU the Responder is prepared to receive (see
5.2.4).

– R-Max_Block specifies the maximum Block
size that the Responder will send (see 5.2.5).

The parameters assigned and specified during
setup shall apply for the life of the Virtual
Connection. Once established, the Virtual
Connection is selected and validated as shown in
figure 5 by the ordered set "remote-Port", "local-
Port", and "local-Key".

5.1.2 Virtual Connection teardown

Either end device of a Virtual Connection can
initiate a three-way handshake sequence to
disconnect, or tear down, the Virtual Connection.
(See table 3, C2.)

Request_Disconnect shall be issued by the
Initiator to tear down a Virtual Connection and
release the resources assigned to the Virtual
Connection. A Request_Disconnect should only
be issued when the Transfers are complete or
appear to be stalled. Request_Disconnect is the
first step in the three-way teardown handshake
that decreases timeout dependency for releasing
resources.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Responder.

– R-Port, I-Port, R-Key, and I-Key echo the
Port and Key values assigned during Virtual
Connection setup (see 5.1.1).

Disconnect_Answer shall be issued by the
Responder to acknowledge receipt of a
Request_Disconnect. The Disconnect_Answer
issuer may release any buffers associated with

this Virtual Connection, but shall retain (for at
least twice the Op_timeout period), the Port and
Key values for use in further Disconnect
operations. This delay allows for lost or damaged
teardown operations to be re-issued.
Disconnect_Answer is the second step in the
three-way teardown handshake.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Initiator.

– I-Port, R-Port, I-Key, and R-Key echo the
Port and Key values assigned during Virtual
Connection setup (see 5.1.1).

Disconnect_Complete shall be issued by the
Initiator to complete the three-way teardown
handshake, acknowledging that the actions
associated with a Request_Disconnect have been
completed. After waiting an interval of at least
twice the Op_timeout period, the Initiator shall
release the Virtual Connection's Port and Key
values. This delay allows for lost or damaged
teardown operations to be re-issued.
Disconnect_Complete is the last step in the three-
way teardown handshake.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Responder.

– R-Port, I-Port, R-Key, and I-Key echo the
Port and Key values assigned during Virtual
Connection setup (see 5.1.1).

5.2 Connection management parameters

5.2.1 Ports

Ports identify upper-layer entities within an end
device. The Port values shall be assigned by the
local end device and have no meaning on the
remote end device. For example, when the local
end device requests a Virtual Connection, the
local end device shall select the value for local-
Port and shall send it to remote end device in the
Request_Connection operation. The remote end
device shall store the value as remote-Port and
shall return it to the local end device in every
operation over this Virtual Connection. Likewise,
the remote end device shall select its Port value.

An exception to this is necessary when Virtual
Connections are set up. The Destination Port
(D_Port) value in a Request_Connection

working draft - ST Rev 1.4, 12/23/97

10

operation shall be a "well-known Port" or other
value that selects an upper layer protocol or
service. The interpretation of Port numbers for
establishing Virtual Connections shall be as
defined by the Internet Assigned Numbers
Authority (IANA) and as published at
http://www.isi.edu/div7/infra/iana.html. For
example, if an FTP application were to use ST
rather than TCP, then it would send a
Request_Connection operation to Port 20 (the
FTP Port) at the remote end system by specifying
Port 20 in the D_Port field. The subsequent
Connection_Answer operation would return a
potentially different Port number in the S_Port
field to use in subsequent data transfer
operations (see 6).

If the incoming local-Port, remote-Port, and local-
Key values are not a valid combination, then the
operation shall not be executed (see 10.6.1).

5.2.2 Keys

Like the Ports (see 5.2.1), each end device shall
select its own 32-bit Key for use on the Virtual
Connection. The Key shall be assigned by the
local end device and have no meaning on the
remote end device.

If the incoming local-Port, remote-Port, and local-
Key values are not a valid combination, then the
operation shall not be executed (see 10.6.1).

5.2.3 Buffer size (Bufsize)

Each end shall define its receiving buffer size, in
bytes. Buffer sizes may be the same as host
page sizes. The buffer sizes shall be ≥ 256 bytes
and shall be an integral power of two, i.e., 2Bufsize

where 8 ≤ Bufsize ≤ 63. Note that the buffer
sizes in each direction may be different.

Transmitting buffer sizes are not exchanged, and
may be different from the receiving buffer sizes,
except that Get and FetchOP operations require
that the transmit and receive buffers be the same
size (see 6.2.11).

5.2.4 Max_STU size

The Max_STU size, exchanged during Virtual
Connection setup, establishes the maximum data
payload size of an STU (see 6.3). Each end

device declares the Max_STU size it is prepared
to receive. The Max_STU size shall be no larger
than its Bufsize. Intermediate devices with
smaller buffer sizes may lower this value. Note
that the Max_STU size in each direction may be
different.

Additionally, an STU’s maximum data payload
size shall be ≥ 256 bytes and an integral power of
two i.e., 2Max_STU where 8 ≤ Max_STU ≤ 31.

5.2.5 Maximum Block size (Max_Block)

The maximum Block size, exchanged during
Virtual Connection setup, establishes the
maximum size of a Block (see 6.2.4). This
number is the Max_Block parameter and is
expressed as a power of two, i.e., 2Max_Block where
8 ≤ Max_Block ≤ 63. Each end device declares
the desired maximum Block size (see 6.2.5), it
would like to send. Intermediate devices with
smaller buffer sizes may lower the Max_Block
value. End devices shall restrict the Block size in
subsequent Clear_To_Send operations to ≤
2Max_Block. Note that the maximum Block size in
each direction may be different.

5.2.6 Slots

The term Slot denotes memory at a Destination,
associated with a specific Virtual Connection,
reserved for storing the Schedule Header of an
incoming operation. Each operation arriving at a
Destination consumes one Slot, except
Request_Connection operations (see 5.1.1), or
Data operations which have Silent = 1 (see 8.2).
A Source shall control the flow of operations by
sending no more operations than there are Slots
available at the Destination for this Virtual
Connection. Any operations that are sent in
excess of the number of available Slots may be
discarded by the Destination (see 10.6.2).

In order to avoid potential deadlocks that can
happen if a Source consumes all of its allocated
slots at the Destination, the Source shall never
consume all of its slots with data movement
operations. Instead, the Source shall hold at
least one Slot in reserve for possible use for an
End, Request_State, Request_State_Response,
or Request_Disconnect sequence.

working draft - ST Rev 1.4, 12/23/97

11

An end device learns the initial number of Slots
available (Slots value) at the remote end device
during the Virtual Connection setup (see 5.1.1).
A received Slots value of x'FFFF' indicates that
the remote end does not implement Slot
accounting.

Later, an end device obtains the current Slots
value for a specific Virtual Connection by reading
the Slots parameter in a received
Request_State_Response. An end device may
solicit a Request_State_Response from the
remote end by one of two methods: by setting the
Send_State flag in the Schedule Header of a
Data operation, or by sending a Request_State
operation. A received Slots value of x'FFFF'
indicates that the remote end device does not
implement Slot accounting or cannot supply an
update to the Slots value.

NOTE – Slot accounting may not be needed when
the maximum number of Control operations is
otherwise bounded or where dropped operations
are acceptable.

The received Slot value is a snapshot of the
number of Slots available at the remote end
device for the specified Virtual Connection when
the remote end device received the soliciting
operation. A received Slots value of x'FFFF'
indicates that the remote end device cannot
supply an update to the Slots value now. The
local end device may continue to send operations
after soliciting a Request_State_Response and
may also solicit multiple responses before
receiving a reply. The lower bound on the
number of available Slots at the remote end
device is determined by the local end device
which adjusts its vision of the number of Slots to
account for outstanding operations. The
adjustment consists of subtracting the number of
Slot-consuming operations sent by the local end
device from the number of Slots indicated in the
received Request_State_Response operation
after a Request_State_Response solicitation.

5.2.7 EtherType

EtherType parameter values shall be as assigned
in the current "Assigned Numbers" RFC, e.g.,
RFC 1700 (see http://www.iana.org/iana/). The
EtherType parameter value in a
Request_Connection operation shall identify the
protocol associated with this ST Virtual

Connection. For example, if ST is used to
encapsulate TCP/IP, then this EtherType would
be x'0800'. If ST is being used to encapsulate
legacy HIPPI-FP data, then this EtherType would
be x'8180'. EtherType = x’0000’ means no
further encapsulation.

The other use of EtherType is in the IEEE 802.2
LLC/SNAP header of an LLP, where EtherType =
x'8181' specifies that the LLP protocol is carrying
ST information. This EtherType parameter may
be supplied to an LLP as part of the CCI (see
annex A). For an example, see HIPPI-6400-PH.

6 Data movement

6.1 Data movement sequences

The data movement sequences are detailed in
tables 4–7. An Op code (see 8.1), and a
checksum (see 8.3), are part of every operation
but are not included in this clause. Parameters
transmitted as zeros, and not checked at the
receiver, are marked in the tables as *, and are
not included in this clause.

The end device that starts a sequence is called
the Initiator, and the other end device is called
the Responder. The label of an end device as
Initiator or Responder remains constant within a
sequence. An "I-" prefix indicates that a
parameter is associated with the Initiator. An "R-"
prefix indicates that a parameter is associated
with the Responder.

The data movement sequences rely on having a
Virtual Connection established (see 5).

6.1.1 Common sequences

The Request_State and End sequences, as
shown in the figure 7 examples, and detailed in
table 4, are available for use with other data
movement sequences.

Request_State sequences are used to find one or
more pieces of remote end information:

– Slot state – number of available Slots for a
specific Virtual Connection (see 5.2.6);

working draft - ST Rev 1.4, 12/23/97

12

– Transfer state – same as Slot state, plus the
highest numbered Block of the specified
Transfer received correctly where all lower
numbered Blocks are also received correctly
(see 6.2.4);

– Block state – same as Transfer state, plus
whether the specified Block was received
correctly (see 6.2.4).

End sequences are used to abort a Transfer
currently in progress, or terminate a persistent
memory region, from either end device.

Request_State

Initiator Responder

Request_State_Response

Either end can
request state

information from
the other end

End

End_Ack

Either end can
start a sequence

to abort a Transfer
or terminate a

persistent memory
region

Initiator Responder

Figure 7 – Common sequence examples

6.1.1.1 Request Slot state

Request Slot state may be initiated by either end
device to determine the number of available
Slots at the other end device for this Virtual
Connection. (See table 4, Com1.)

Request_State may be issued by the Initiator to
request the Responder's view of its current
number of available Slots in the Responder for
this Virtual Connection.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Responder.

– R-Port, I-Port, and R-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– D_id field = x'FFFF', i.e., we are only
requesting Slot accounting information (see
6.2.1).

– Sync assigns the Initiator's Sync value (see
6.2.8).

Request_State_Response shall be issued by
the Responder in response to the Request_State
operation above. In this
Request_State_Response, the Responder
specifies its view of the number of currently
available Slots in the Responder for this Virtual
Connection.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Initiator.

– I-Port, R-Port, and I-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– R-Slots specifies the Responder's number of
currently available Slots for this Virtual
Connection (see 5.2.6).

– D_id field echoes the D_id field (see 6.2.1).

– Sync echoes the Initiator's Sync value (see
6.2.8).

6.1.1.2 Request Transfer state

Request Transfer state may be initiated by the
data Source to determine the general status of a
Transfer and to get the number of Slots currently
available at the data Destination for this Virtual
Connection. (See table 4, Com2.)

Request_State may be issued by the Initiator to
request the Responder's view of its current
number of available Slots in the Responder for
this Virtual Connection and the highest numbered
Block of the specified Transfer received correctly
where all lower numbered Blocks are also
received correctly.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Responder.

– R-Port, I-Port, and R-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– R-id specifies the Responder's Transfer
identifier, i.e., asks about a specific Transfer
(see 6.2.1).

– I-id specifies the Initiator's Transfer identifier
(see 6.2.1).

– Sync assigns the Initiator's Sync value (see
6.2.8).

working draft - ST Rev 1.4, 12/23/97

13

– B_num field = x'FFFFFFFF', i.e., we are not
asking about a specific Block (see 6.2.4).

Request_State_Response shall be issued by
the Responder in response to the Request_State
operation above. In this Request_State
Response, the Responder specifies its view of the
number of currently available Slots in the
Responder for Schedule Headers associated with
this Virtual Connection, and the highest
numbered Block of the specified Transfer
received correctly where all lower numbered
Blocks are also received correctly.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Initiator.

– R-Slots specifies the Responder's number of
currently available Slots for this Virtual
Connection (see 5.2.6).

– I-Port, R-Port, and I-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– I-id echoes the Initiator's Transfer identifier
(see 6.2.1).

– R-id echoes the Responder's Transfer
identifier (see 6.2.1).

– B_seq specifies the highest numbered Block
of the specified Transfer received correctly
where all lower numbered Blocks are also
received correctly (see 6.2.4).

– Sync echoes the Initiator's Sync value (see
6.2.8).

– B_num field = x'FFFFFFFF' (see 6.2.4).

6.1.1.3 Request Block state

Request Block state may be initiated by the data
Source to determine if the specified Block was
received correctly, the general status of the
Transfer, and the number of Slots available at the
data Destination for this Virtual Connection. (See
table 4, Com3.)

Request_State may be issued by the Initiator to
request the Responder's view of its current
number of available Slots in the Responder for
this Virtual Connection, the highest numbered
Block of the specified Transfer received correctly
where all lower numbered Blocks are also
received correctly, and the status of a specific

Block.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Responder.

– R-Port, I-Port, and R-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– R-id specifies the Responder's Transfer
identifier, i.e., asks about a specific Transfer
(see 6.2.1).

– I-id specifies the Initiator's Transfer identifier
(see 6.2.1).

– Sync assigns the Initiator's Sync value (see
6.2.8).

– B_num asks about a specific Block (see
6.2.4).

Request_State_Response shall be issued by
the Responder in response to either: the
Request_State operation above, or to a Data
operation with Send_State = 1. In this
Request_State Response, the Responder
specifies its view of: the number of currently
available Slots in the Responder for Schedule
Headers for the specified Virtual Connection, the
highest numbered Block of the specified Transfer
received correctly where all lower numbered
Blocks are also received correctly, and if the
Block specified (B_num in the Request_State or
Data operation being responded to), was received
correctly.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Initiator.

– R-Slots specifies the Responder's number of
currently available Slots for this Virtual
Connection (see 5.2.6).

– I-Port, R-Port, and I-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– I-id echoes the Initiator's Transfer identifier
(see 6.2.1).

– R-id echoes the Responder's Transfer
identifier (see 6.2.1).

– B_seq specifies the highest numbered Block
of the specified Transfer received correctly
where all lower numbered Blocks are also
received correctly (see 6.2.4).

working draft - ST Rev 1.4, 12/23/97

14

– Sync echoes the Initiator's Sync value (see
6.2.8).

– B_num indicates if the specified Block was
received correctly (see 6.2.4).

6.1.1.4 End sequence

End sequences allow either end device of the
Virtual Connection to terminate a Transfer before
it has completed, or to terminate a Transfer of
unlimited size, or to terminate a persistent
memory region. The end device receiving an
End operation shall stop sending Control
operations (other than End_Ack), and STUs
associated with this Transfer. An End kills a
Transfer, but shall not affect the Virtual
Connection. (See table 4, Com4.)

End may be issued by the Initiator.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Responder.

– R-Port, I-Port, and R-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– R-id specifies the Responder's Transfer
identifier (see 6.2.1).

– I-id specifies the Initiator's Transfer identifier
(see 6.2.1).

End_Ack shall be issued by the Responder to
confirm that the End operation has been seen
and acted on, i.e., acknowledgement that the
Transfer has been terminated.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Initiator.

– I-Port, R-Port, and I-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– I-id echoes the Initiator's Transfer identifier
(see 6.2.1).

– R-id echoes the Responder's Transfer
identifier (see 6.2.1).

6.1.2 Write sequence

A Write sequence, as shown in the figure 8
example and detailed in table 5, moves a
Transfer, which contains one or more Blocks,
from an Initiator to a Responder. A Virtual
Connection shall exist before a Write sequence is
initiated. Multiple Write sequences can be active
at one time in both directions on a single Virtual
Connection. (See table 5, W1 through W4.)

Request_To_Send

Initiator Responder

<Request_Answer>

Request a Write

<Request_State_Response>

Clear_To_Send

Delayed or
rejected ?

Responder
enables a Block

Data

Data

The Block is
sent as one or

more STUs

State information,
if requested in Data

Clear_To_Send

Clear_To_Send
Responder enables

multiple Blocks

....

....

<Request_State_Response>

Data

Data

The Blocks are
sent as one or

more STUs

State information,
if requested in Data

....

Figure 8 – Write example

Request_To_Send may be issued by the Initiator
to request that space be exposed in the
Responder for a data Transfer from the Initiator
to the Responder.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Responder.
D bits specify the Data Channel to be used.

– CTS_req specifies the number of Blocks that
the Initiator would like continuously exposed
(see 6.2.10).

working draft - ST Rev 1.4, 12/23/97

15

– R-Port, I-Port, and R-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– I-id assigns the Initiator's Transfer identifier
(see 6.2.1).

– T_len assigns the Transfer length (see 6.2.3).

Request_Answer may be issued by the
Responder to reject or pause the
Request_To_Send. If rejected, then this is the
end of the Write sequence.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Initiator. R =
1 specifies that the Request_To_Send has
been rejected. R = 0 specifies that the
Request_To_Send has been accepted but the
subsequent Clear_To_Send operation may be
delayed (see 10.1).

– I-Port, R-Port, and I-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– I-id echoes the Initiator's Transfer identifier
(see 6.2.1).

Clear_To_Send operations (one for each Block
of the Transfer), shall be issued by the
Responder to expose a non-persistent memory
region to receive subsequent Data operations.
One Block per Clear_To_Send is exposed for a
single use.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Initiator.

– R-Mx assigns the Responder's Memory Index
for this Block (see 6.2.2).

– I-Port, R-Port, and I-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– I-id echoes the Initiator's Transfer identifier
(see 6.2.1).

– R-id assigns the Responder's Transfer
identifier (see 6.2.1).

– R-Bufx assigns the Responder's first Buffer
Index for this Block (see 6.2.7).

– R-Offset assigns the Responder's initial
Offset for this Block (see 6.2.7).

– Blocksize assigns the Block size for this
Block (see 6.2.5).

– B_num specifies the Block number for this
Block (see 6.2.4).

– F_Offset specifies the initial Offset for the
Transfer (see 6.2.7).

Data operations (one for each STU of the Block),
shall be issued by the Initiator to send the Block
from the data Source (the Initiator), to the data
Destination (the Responder). The data
Destination shall place the STU data in the
memory area pointed to by the Bufx and Offset
parameters. The data Destination shall only
accept data into pre-allocated memory regions.
The data Destination is responsible for ensuring
that all of the Blocks of a Transfer are received
(see 10.7.8).

– Flags (see 8.2): T = 1 specifies that the data
shall be delivered silently. I = 1 specifies that
an interrupt shall be generated at the
Responder. S = 1 specifies that the Responder
shall reply with a Request_State_Response
upon successful receipt of this STU. L = 1
marks the last STU of the Block. D bits echo
the Data Channel assignment.

– STU_num specifies the number for this STU
(see 6.2.6).

– R-Port, I-Port, and R-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– R-id echoes the Responder's Transfer
identifier (see 6.2.1).

– R-Mx echoes the Responder's Memory Index
(see 6.2.2).

– R-Bufx assigns the Responder's Buffer Index
for this STU (see 6.2.7). If this is the first STU
of the Block, then R-Bufx echoes the R-Bufx
value in the Clear_To_Send operation.

– R-Offset assigns the Responder's Offset for
this STU (see 6.2.7). If this is the first STU of
the Block, then R-Offset echoes the R-Offset in
the Clear_To_Send operation.

– Sync assigns the Initiator's Sync value (see
6.2.8).

– B_num echoes the Block number for this
Block (see 6.2.4).

– Opaque contains the Opaque data for this
STU (see 6.2.9).

working draft - ST Rev 1.4, 12/23/97

16

Request_State_Response shall be issued by
the Responder if S = 1 in the previous Data
operation.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Initiator.

– R-Slots specifies the number of available
Slots in the Responder for this Virtual
Connection (see 5.2.6).

– I-Port, R-Port, and I-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– I-id echoes the Initiator's Transfer identifier
(see 6.2.1).

– R-id echoes the Responder's Transfer
identifier (see 6.2.1).

– B_seq specifies the highest numbered Block
of the specified Transfer received correctly
where all lower numbered Blocks are also
received correctly (see 6.2.4).

– Sync echoes the Initiator's Sync value (see
6.2.8).

– B_num indicates if the Block specified in the
Data operation with S = 1 was received
correctly (see 6.2.4).

An End operation may be issued by either end
device to abort the Transfer (the Write
sequence), or terminate an unlimited size
Transfer. (See 6.1.1.4 and table 4, Com4.)

A Request_State operation may be issued by the
Responder to determine the number of available
Slots in the Initiator for this Virtual Connection (to
know how many Clear_To_Sends the Responder
can issue). (See 6.1.1.1 and table 4, Com1.)

6.1.3 Read sequence

A Read sequence, as shown in the figure 9
example and detailed in table 6, moves a
Transfer, which contains one or more Blocks,
from a Responder to the Initiator. A Virtual
Connection shall exist before a Read sequence is
initiated. Multiple Read sequences can be active
at one time in both directions on a single Virtual
Connection. (See table 6, R1 through R4.)

Request_To_Send

Initiator Responder

<Request_Answer>

Responder
echos as a Write

Clear_To_Send

Delayed or
rejected ?

Initiator
enables a Block

Data

Data

The Block is
sent as one or

more STUs

Clear_To_Send

Clear_To_Send
Initiator enables
multiple blocks

....

....

Data

Data

The Blocks are
sent as one or

more STUs

....

Request_To_Receive

<Request_Answer>

Request a Read

Delayed or
rejected ?

Figure 9 – Read example

Request_To_Receive may be issued by the
Initiator to request a data Transfer from the
Responder to the Initiator. The Responder shall
echo the Request_To_Receive's parameters back
in a Request_To_Send operation.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Responder.
D bits specify the Data Channel to be used.

– R-Port, I-Port, and R-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– I-id assigns the Initiator's Transfer identifier
(see 6.2.1).

– T_len assigns the Transfer length (see 6.2.3).

Request_Answer may be issued by the
Responder to reject or pause the
Request_To_Receive. If rejected, then this is the
end of the Read sequence.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Initiator. R =

working draft - ST Rev 1.4, 12/23/97

17

1 specifies that the Request_To_Receive has
been rejected. R = 0 specifies that the
Request_To_Receive has been accepted but
the subsequent Request_To_Send operation
may be delayed (see 10.1).

– I-Port, R-Port, and I-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– I-id echoes the Initiator's Transfer identifier
(see 6.2.1).

Request_To_Send shall be issued by the
Responder to request that space be exposed in
the Initiator for a data Transfer from the
Responder (the data Source), to the Initiator, (the
data Destination).

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Initiator. D
bits echo the Data Channel to be used.

– CTS_req specifies the number of Blocks that
the Responder would like continuously exposed
(see 6.2.10).

– I-Port, R-Port, and I-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– I-id echoes the Initiator's Transfer identifier
(see 6.2.1).

– R-id assigns the Responder's Transfer
identifier (see 6.2.1).

– T_len echoes the Transfer length (see 6.2.3).

Request_Answer may be issued by the Initiator
to reject or pause the Request_To_Send. If
rejected, then this is the end of the Read
sequence.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Responder.
R = 1 specifies that the Request_To_Send has
been rejected. R = 0 specifies that the
Request_To_Send has been accepted but the
subsequent Clear_To_Send operation may be
delayed (see 10.1).

– R-Port, I-Port, and R-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– R-id echoes the Responder's Transfer
identifier (see 6.2.1).

Clear_To_Send operations (one for each Block
of the Transfer), shall be issued by the Initiator to
expose a non-persistent memory region to
receive subsequent Data operations. One Block
per Clear_To_Send is exposed for a single use.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Responder.

– I-Mx assigns the Initiator's Memory Index for
this Block (see 6.2.2).

– R-Port, I-Port, and R-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– R-id echoes the Responder's Transfer
identifier (see 6.2.1).

– I-id echoes the Initiator's Transfer identifier
(see 6.2.1).

– I-Bufx assigns the Initiator's first Buffer Index
for this Block (see 6.2.7).

– I-Offset assigns the Initiator's initial Offset for
this Block (see 6.2.7).

– Blocksize assigns the Block size for this
Block (see 6.2.5).

– B_num specifies the Block number for this
Block (see 6.2.4).

– F_Offset specifies the initial Offset for the
Transfer (see 6.2.7).

Data operations (one for each STU of the Block),
shall be issued by the Responder to send the
Block from the data Source (the Responder), to
the data Destination (the Initiator). The data
Destination shall place the STU data in the
memory area pointed to by the Bufx and Offset
parameters. The data Destination shall only
accept data into pre-allocated memory regions.
The data Destination is responsible for ensuring
that all of the Blocks of a Transfer are received
(see 10.7.8).

– Flags (see 8.2): T = 1 specifies that the data
shall be delivered silently. I = 1 specifies that
an interrupt shall be generated at the Initiator.
S = 1 specifies that the Initiator shall reply with
a Request_State_Response upon successful
receipt of this STU. L = 1 marks the last STU
of the Block. D bits echo the Data Channel
assignment.

working draft - ST Rev 1.4, 12/23/97

18

– STU_num specifies the number for this STU
(see 6.2.6).

– I-Port, R-Port, and I-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– I-id echoes the Initiator's Transfer identifier
(see 6.2.1).

– I-Mx echoes the Initiator's Memory Index (see
6.2.2).

– I-Bufx assigns the Initiator's Buffer Index for
this STU (see 6.2.7). If this is the first STU of
the Block, then I-Bufx echoes the I-Bufx value
in the Clear_To_Send operation.

– I-Offset assigns the Initiator's Offset for this
STU (see 6.2.7). If this is the first STU of the
Block, then I-Offset echoes the I-Offset in the
Clear_To_Send operation.

– Sync assigns the Responder's Sync value
(see 6.2.8).

– B_num echoes the Block number for this
Block (see 6.2.4).

– Opaque contains the Opaque data for this
STU (see 6.2.9).

An End operation may be issued by either end
device to abort the Transfer (the Read
sequence), or terminate an unlimited size
Transfer. (See 6.1.1.4 and table 4, Com4.)

A Request_State operation may be issued by the
Initiator to determine the number of available
Slots in the Responder for this Virtual Connection
(to know how many Clear_To_Sends the Initiator
can issue). (See 6.1.1.1 and table 4, Com1.)

6.1.4 Put, Get, and FetchOP sequences

The Put, Get, and FetchOP sequences, as shown
in the figure 10 example and detailed in table 7,
shall be preceded by a sequence that allocates a
persistent memory region in the Responder. A
Virtual Connection shall exist before a persistent
memory region allocation sequence is initiated.

Once allocated, the persistent memory region is
available for multiple Put, Get, and FetchOP
sequences from the Initiator. By assigning
unique values to the G-id and F-id parameters,
multiple Get and FetchOP operations may be

outstanding to the same persistent memory
region. The Put, Get, or FetchOP Blocks shall be
contained within a persistent memory region. A
Virtual Connection can have multiple persistent
memory regions allocated.

Memory_Region_Available

Initiator Responder

Memory Region
is available

<Request_State_Response>

Data

Data
Put data as one
or more STUs

State information,
if requested in Data

GetGet data request

....

Data

Data

The data is
sent as one or

more STUs

....

Request_Memory_Region

<Request_Answer>

Request a
Memory Region

Delayed or
rejected ?

FetchOPFetch, and operate
on the data

FetchOP_Complete

DataData is sent in a
single 64-bit STU

Confirm the
Operation

<Request_Answer>Delayed or
Rejected ?

<Request_Answer>Delayed or
rejected ?

Figure 10 – Put, Get, and FetchOP examples

6.1.4.1 Allocate a persistent memory region

Request_Memory_Region may be issued by the
Initiator to request that the Responder allocate a
persistent memory region. (See table 7, PG1 and
PG2.)

working draft - ST Rev 1.4, 12/23/97

19

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Responder.
D bits specify the Data Channel to be used.

– R-Port, I-Port, and R-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– I-id assigns the Initiator's Transfer identifier
(see 6.2.1).

– T_len specifies the persistent memory
region's length (see 6.2.3).

Request_Answer may be issued by the
Responder to reject or pause the
Request_Memory_Region. If rejected, then this
is the end of the Put, Get, and FetchOP
sequences for this persistent memory region.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Initiator. R =
1 specifies that the Request_Memory_Region
has been rejected or the Responder does not
support persistent memory operations. R = 0
specifies that the Request_Memory_Region
has been accepted but the subsequent
Memory_Region_Available operation may be
delayed (see 10.1).

– I-Port, R-Port, and I-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– I-id echoes the Initiator's Transfer identifier
(see 6.2.1).

Memory_Region_Available shall be sent by the
Responder upon receipt of an acceptable
Request_Memory_Region operation.
(Unacceptable requests result in Request_Answer
with Reject = 1.) Once established, the persistent
memory region (see 6.2.11), shall remain
available (for Put, Get, and FetchOP operations),
until terminated by an End or Disconnect
sequence (which may come from either end of
the Virtual Connection). The Put, Get, and
FetchOP operations to the persistent memory
region are not flow controlled other than by the
Slot accounting rules (see 5.2.6).

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Initiator.

– R-Mx assigns the Responders Memory Index
for this persistent memory region (see 6.2.2).

– I-Port, R-Port, and I-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– I-id echoes the Initiator's Transfer identifier
(see 6.2.1).

– R-id assigns the Responder's Transfer
identifier (see 6.2.1).

– R-Bufx assigns the Responder's first Buffer
Index for this persistent memory region (see
6.2.7).

– R-Offset assigns the Responder's initial
Offset for this persistent memory region (see
6.2.7).

6.1.4.2 Put sequences

A Put sequence moves a single Block from the
Initiator (the data Source), to the Responder (the
data Destination). The Block size may be the
same, or smaller than, the size of the persistent
memory region. If smaller, different data
Destination Bufx and Offset values than those
specified in the Memory_Region_Available
operation, may be used. The Responder shall
only accept data into the pre-allocated persistent
memory region. (See table 7, PG3 and PG4.)

Data operations (one for each STU of the Block),
shall be issued by the Initiator to send the Block
being "Put", from the data Source (the Initiator),
to the data Destination (the Responder).

– Flags (see 8.2): T = 1 specifies that the data
shall be delivered silently. I = 1 specifies that
an interrupt shall be generated at the
Responder. S = 1 specifies that the Responder
shall reply with a Request_State_Response
upon successful receipt of this STU. L = 1
marks the last STU of the Block. D bits echo
the Data Channel assignment.

– STU_num specifies the number for this STU
(see 6.2.6).

– R-Port, I-Port, and R-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– R-id echoes the Responder's Transfer
identifier (see 6.2.1).

– R-Mx echoes the Responder's Memory Index
(see 6.2.2).

working draft - ST Rev 1.4, 12/23/97

20

– R-Bufx assigns the Responder's Buffer Index
for this STU (see 6.2.7).

– R-Offset assigns the Responder's Offset for
this STU (see 6.2.7).

– Sync assigns the Initiator's Sync value (see
6.2.8).

– B_num specifies the Block number for this
Block (see 6.2.4).

– Opaque contains the Opaque data for this
STU (see 6.2.9).

Request_State_Response shall be issued by
the Responder if S = 1 in the previous Data
operation.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Initiator.

– R-Slots specifies the number of available
Slots in the Responder for this Virtual
Connection (see 5.2.6).

– I-Port, R-Port, and I-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– I-id echoes the Initiator's Transfer identifier
(see 6.2.1).

– R-id echoes the Responder's Transfer
identifier (see 6.2.1).

– B_seq specifies the highest numbered Block
of the specified Transfer received correctly
where all lower numbered Blocks are also
received correctly (see 6.2.4).

– Sync echoes the Initiator's Sync value (see
6.2.8).

– B_num indicates if the Block, specified in the
Data operation with S = 1, was received
correctly (see 6.2.4).

An End operation may be issued by either end
device to abort the Put sequence and terminate
the persistent memory region. (See 6.1.1.4 and
table 4, Com4.)

6.1.4.3 Get sequences

A Get sequence moves a single Block from the
Responder (the data Source), to the Initiator (the
data Destination). The Block size may be the
same, or smaller than, the size of the persistent
memory region. If smaller, different data Source

Bufx and Offset values than those specified in
the Memory_Region_Available operation may be
used. The Responder shall only send data from
the pre-allocated persistent memory region. (See
table 7, PG5.)

Get may be issued by the Initiator to specify both
the Initiator's and Responder's Memory Index,
Buffer Index, and Offset values.

 – Flags (see 8.2): F = b'000'. I = 1 specifies
that an interrupt shall be generated at the
Responder. D bits echo the Data Channel
assignment.

– I-Mx assigns the Initiator's Memory Index for
this Block (see 6.2.2).

– R-Port, I-Port, and R-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– R-id echoes the Responder's Transfer
identifier (see 6.2.1).

– G-id assigns the Initiator's Get identifier (see
6.2.1).

– R-Bufx assigns the Responder's first Buffer
Index for this Block (see 6.2.7).

– R-Offset assigns the Responder's initial
Offset for this Block (see 6.2.7).

– R-Mx echoes the Responder's Memory Index
(see 6.2.2).

– I-Bufx assigns the Initiator's first Buffer Index
for this Block (see 6.2.7).

– T_len assigns the Block length (see 6.2.3).
Note that a 16-bit length parameter is used,
rather than the 64-bit length parameter of most
other operations.

– I-Offset assigns the Initiator's initial Offset for
this Block (see 6.2.7).

Request_Answer may be issued by the
Responder to reject or pause the Get operation.
If rejected, then this is the end of the Get
sequence.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Initiator. R =
1 specifies that the Get operation has been
rejected. R = 0 specifies that the Get has been
accepted but the subsequent Data operation
may be delayed (see 10.1).

working draft - ST Rev 1.4, 12/23/97

21

– I-Port, R-Port, and I-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– G-id echoes the Initiator's Get identifier (see
6.2.1).

Data operations (one for each STU of the Block),
shall be issued by the Responder to send the
Block from the data Source (the Responder), to
the data Destination (the Initiator). The data
Destination shall place the STU data in the pre-
allocated memory area pointed to by the I-Bufx
and I-Offset parameters. The data Source shall
only send data from the pre-allocated persistent
memory region.

– Flags (see 8.2): T = 1 specifies that the data
shall be delivered silently. I = 1 specifies that
an interrupt shall be generated at the Initiator.
L = 1 marks the last STU of the Block. D bits
echo the Data Channel assignment.

– STU_num specifies the number for this STU
(see 6.2.6).

– I-Port, R-Port, and I-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– G-id echoes the Initiator's Get identifier (see
6.2.1).

– I-Mx echoes the Initiator's Memory Index (see
6.2.2).

– I-Bufx assigns the Initiator's Buffer Index for
this STU (see 6.2.7). If this is the first STU of
the Block, then I-Bufx echoes the I-Bufx value
in the Get operation.

– I-Offset assigns the Initiator's Offset for this
STU (see 6.2.7). If this is the first STU of the
Block, then I-Offset echoes the I-Offset in the
Get operation.

– Sync assigns the Responder's Sync value
(see 6.2.8).

– Opaque contains the Opaque data for this
STU (see 6.2.9).

An End operation may be issued by either end
device to abort the Get sequence and terminate
the persistent memory region. (See 6.1.1.4 and
table 4, Com4.)

6.1.4.4 FetchOP sequences

A FetchOP sequence fetches data from, and then
operates on, a 64-bit aligned, 64-bit data Block in
an established persistent memory region in the
Responder. The fetch and operation of a
FetchOP shall be atomic. The data received by
the Initiator shall be the value before the
operation is performed. A FetchOP may be
retried if the associated Data operation is not
returned within the Timeout period (see 10.1).
The Responder shall provide the ability to return
the same value, upon receipt of subsequent
FetchOPs with the same F-id, until the operation
is acknowledged with a FetchOP_Complete.
Upon receipt of FetchOP_Complete, the
Responder shall release its ability to retry the
original FetchOP. (See table 7, PG6.)

FetchOP may be issued by the Initiator to specify
both the Initiator's and Responder's Buffer Index
and Offset values, and the function to be
performed on the 64-bit Block.

 – Flags (see 8.2): F = function to be
performed. I = 1 specifies that an interrupt
shall be generated at the Responder. D bits
echo the Data Channel assignment.

– I-Mx assigns the Initiator's Memory Index for
this Block (see 6.2.2).

– R-Port, I-Port, and R-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– R-id echoes the Responder's Transfer
identifier (see 6.2.1).

– F-id assigns the Initiator's FetchOP identifier
(see 6.2.1).

– R-Bufx assigns the Responder's Buffer Index
for this Block (see 6.2.7).

– R-Offset assigns the Responder's Offset,
evenly divisible by 8, for this Block (see 6.2.7).

– R-Mx echoes the Responder's Memory Index
(see 6.2.2).

– I-Bufx assigns the Initiator's Buffer Index for
this Block (see 6.2.7).

– Op_len field = x'0008', i.e., Block length = 8
bytes (see 6.2.3). Note that a 16-bit length
parameter is used, rather than the 64-bit length
parameter of most other operations.

working draft - ST Rev 1.4, 12/23/97

22

– I-Offset assigns the Initiator's Offset for this
Block (see 6.2.7).

Request_Answer may be issued by the
Responder to reject or pause the FetchOP. If
rejected, then this is the end of the FetchOP
sequence. FetchOP operations shall be rejected
by the Responder with a Request_Answer
operation with Reject = 1 if: T_len ≠ x'0008', the
Responder does not implement atomic FetchOP
operations, or a bad parameter, e.g., Bufx or
Offset, is supplied in the FetchOP operation.

– Flags (see 8.2): I = 1 specifies that an
interrupt shall be generated at the Initiator. R =
1 specifies that the FetchOP has been rejected.
R = 0 specifies that the FetchOP has been
accepted but the subsequent Data operation
may be delayed (see 10.1).

– I-Port, R-Port, and I-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– F-id echoes the Initiator's FetchOP identifier
(see 6.2.1).

A Data operation shall be issued by the
Responder to send the 64-bit Block in one STU
from the data Source (the Responder), to the
data Destination (the Initiator). The data
Destination shall place the STU data in the pre-
allocated memory area pointed to by the I-Bufx
and I-Offset parameters. The data Source shall
only send data from the pre-allocated persistent
memory region.

– Flags (see 8.2): T = 1 specifies that the data
shall be delivered silently. I = 1 specifies that
an interrupt shall be generated at the Initiator.
L shall = 1 to specify that this is the last STU of
the Block. D bits echo the Data Channel
assignment.

– Param field = x'0000', i.e., a FetchOP
contains only one STU, so STU_num = x'0000'
(see 6.2.6).

– I-Port, R-Port, and I-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– F-id echoes the Initiator's FetchOP identifier
(see 6.2.1).

– I-Mx echoes the Initiator's Memory Index (see
6.2.2).

– I-Bufx echoes the Initiator's Buffer Index for
this STU (see 6.2.7).

– I-Offset echoes the Initiator's Offset for this
STU (see 6.2.7).

– Sync assigns the Responder's Sync value
(see 6.2.8).

– Opaque contains the Opaque data for this
STU (see 6.2.9).

FetchOP_Complete shall be issued by the
Initiator to indicate receipt of the 64-bit data
Block. Upon receipt, the Responder shall release
its ability to retry the original FetchOP.

 – Flags (see 8.2): F = b'111'. I = 1 specifies
that an interrupt shall be generated at the
Responder.

– R-Port, I-Port, and R-Key echo the Port and
Key values assigned during Virtual Connection
setup (see 5.1.1).

– R-id echoes the Responder's Transfer
identifier (see 6.2.1).

– F-id echoes the Initiator's FetchOP identifier
(see 6.2.1).

– Sync echoes the Responder's Sync value
(see 6.2.8).

An End operation may be issued by either end
device to abort the FetchOP sequence and
terminate the persistent memory region. (See
6.1.1.4 and table 4, Com4.)

6.2 Data movement parameters

6.2.1 Transfer identifiers (F-id, G-id, I-id, and
R-id)

Like the Ports and Keys, each end device shall
also select its own 16-bit Transfer identifier for a
data movement on the Virtual Connection.
x'FFFF' is a reserved value. The Transfer
identifiers are:

– F-id = FetchOP Transfer identifier. F-id shall
be assigned by the Initiator and passed to the
Responder in FetchOP operations. The
Responder shall return the F-id in all
subsequent operations concerning this
FetchOP sequence.

working draft - ST Rev 1.4, 12/23/97

23

– G-id = Get Transfer identifier. G-id shall be
assigned by the Initiator and passed to the
Responder in Get operations. The Responder
shall return the G-id in all subsequent
operations concerning this Get sequence.

– I-id = Initiator's Transfer identifier. I-id shall
be assigned by the Initiator and passed to the
Responder in Request_To_Send,
Request_To_Receive, and
Request_Memory_Region operations. The
Responder shall return the I-id in all subsequent
operations concerning this Transfer or
persistent memory region.

– R-id = Responder's Transfer identifier. R-id
shall be assigned by the Responder and passed
to the Initiator in Clear_To_Send,
Request_To_Send, and
Memory_Region_Available operations. The
Initiator shall return the R-id in all subsequent
operations concerning this Transfer or
persistent memory region.

In a Request_State operation, D_id field =
x'FFFF' means that the Responder shall not look
for a current Transfer and shall only return the
current number of empty Slots for this Virtual
Connection. If a Request_State operation
contains an R-id value that the Responder does
not recognize, perhaps due to prior completion or
termination of the Transfer, then the Responder
shall return x'FFFF' in the S_id field of the
Request_State_Response operation.

6.2.2 Memory Index (Mx)

Like the Ports, Keys, and Transfer identifiers,
each end device shall also select its own 16-bit
Memory Index (Mx). The Mx parameter provides
a mechanism to identify an area of memory
associated with a Block or persistent memory
region. A data Destination shall assign locally
significant Mx values in each Clear_To_Send,
Memory_Region_Available, Get, and FetchOP
operation that the data Destination issues. Each
assignment may use a different Mx value. The
Data operations on this memory region shall use
the assigned Mx value. The Mx values are
opaque at the data Source, i.e., have no
meaning.

6.2.3 Transfer length (T_len)

The 64-bit Transfer length parameter (T_len) in
Read and Write sequences specifies the total
number of data payload bytes in the Transfer.
T_len does not include the Schedule Header or
any LLP headers. T_len = all zeros shall indicate
an unlimited size Transfer. An unlimited size
Transfer may be terminated by an End sequence
(see 6.1.1.4).

The 64-bit T_len parameter in a
Request_Memory_Region operation specifies the
size of the persistent memory region. The size of
the persistent memory region is independent of
the maximum Block size specified in 5.2.5.

A 16-bit T_len parameter specifies the Block size
in Get and FetchOP sequences, exclusive of the
Schedule Header or any LLP headers. The Block
size in Get and FetchOP sequences shall be ≤
the size of the persistent memory region, and
shall conform to the maximum Block size
specification in 5.2.5.

6.2.4 Blocks, B_num and B_seq

Scheduled Transfer flow control, striping,
acknowledgments, and resource allocation are all
done on a Block basis. Block numbers (B_num)
for Read sequences, Write sequences, or a set of
Puts to a persistent memory region, shall be
numbered starting at zero and shall increment by
one for each following Block. B_num shall wrap
from x'FFFFFFFE' to x'00000000'.

B_num = x'FFFFFFFF' is reserved for use as a
flag by Request_State and
Request_State_Response operations. In a
Request_State operation, B_num = x'FFFFFFFF'
indicates that the requestor is not asking if a
particular Block has been received correctly. In a
Request_State_Response operation of a Request
Block state, B_num = x'FFFFFFFF' indicates that
the Block (identified by the B_num parameter in
the Request_State operation), has not been
correctly received by the data Destination.

Blocks shall be enabled for transmission in
sequential order unless both end devices
indicated Out_of_Order capability during the
Virtual Connection setup. Note that
Out_of_Order capability is necessary for

working draft - ST Rev 1.4, 12/23/97

24

retransmission to correct flawed Blocks.

The Blocks associated with Read and Write
sequences are not persistent. This means that
once exposed with a Clear_To_Send operation, a
Block can be used only once and may be
allocated for other uses after that Block is
complete.

Request_State_Response operations indicate (in
the B_seq parameter), the highest numbered
Block of the specified Transfer received correctly
where all lower numbered Blocks are also
received correctly. For example, if Blocks 0
through 9 have been received and only Block 6
had an error, then the Request_State_Response
operation would have B_num = 5. B_seq =
x'FFFFFFFF' indicates that no Blocks have been
received by the data Destination for this Transfer.

Request_State_Response operations can be
requested by setting the Send_State flag bit in
Data operations or by sending Request_State
operations. In addition, Request_State
operations can ask if a particular Block (B_num)
was received correctly for the specified Transfer.
Use of these mechanisms allows the data Source
to verify correct reception and to identify flawed
Blocks for potential retransmission.

6.2.5 Blocksize

The maximum number of bytes in a Block in a
Read or Write Transfer (and not applicable for
persistent memory regions), is established when
the Transfer is initiated. This number is the
Blocksize parameter and is expressed as a power
of two, i.e., 2Blocksize where 8 ≤ Blocksize ≤ 63. All
of the Blocks of a Transfer shall be the same
size, except for the first and/or last Block of a
Transfer which can be smaller.

The size of the first Block shall be:

 Blocksize - (Offset mod Blocksize)

unless the Transfer length is less than this value
in which case the first Block contains the entire
Transfer. When Blocksize ≥ Bufsize, this rule
forces the first Block to end on a buffer boundary
and makes all subsequent Offsets zero. When
Bufsize > Blocksize, this rule forces the first
Block to end on one of the hypothetical 2k Block
boundaries within the buffer that would exist if the

Offset were zero, thus making all subsequent
Offsets some multiple of the Blocksize. The last
Block will be whatever completes the Transfer.

6.2.6 STUs and STU_num

For performance reasons the STUs shall be
transmitted in order. STU numbers (STU_num)
for a Block shall start with zero and increment by
one for each following STU. The last STU of a
Block shall be marked with Last = 1. No STU
shall extend past a data Destination's buffer
boundary, Block boundary, or Transfer boundary.
Out of order delivery may cause errors or reduce
performance (see 10.7.4). There is no
requirement that STU sizes be consistent
throughout a Block or Transfer, but STU sizes
shall be no larger than specified in 5.2.4.

6.2.7 Bufx and Offset

Bufx contains a Buffer Index. If more than one
Buffer Index is required for a Block, i.e., buffer
size (Bufsize) is less than Blocksize, then the
Bufx parameter in a Clear_To_Send, Get, or
FetchOP operation shall specify the initial Bufx,
and any additional Bufx values shall be
sequential.

Offset may be used to start at other than the first
byte of a buffer. For the first STU of a Block, the
Offset shall be the same as received in the
Clear_To_Send, Get, or FetchOP for the Block.
Subsequent STUs of the Block shall adjust the
Bufx and Offset based on the data Destination's
buffer size and the STU size used by the data
Source.

The Offset associated with the first block of a
Transfer (F_Offset) is included in all
Clear_To_Send operations. This allows the data
Destination to compute the starting address for
any Block without having received the
Clear_To_Send for the first Block.
Clear_To_Send operations can occur out of
order, e.g., as the result of striping (see annex B).

Best performance will usually be achieved when
an Offset of zero is specified. Use of non-zero
Offset may degrade performance, depending
upon underlying hardware transfer mechanisms.

working draft - ST Rev 1.4, 12/23/97

25

6.2.8 Sync

The 32-bit Sync parameter shall be used to
associate a Request_State_Response operation
with one of many Data or Request_State
solicitations (see 5.2.6 concerning updating a
local end device's image of the number of
available Slots at the remote end device for this
Virtual Connection). Sync shall also be used to
associate a FetchOP_Complete operation with a
Data operation.

The Sync parameter provides a mechanism for a
data Source to identify and track subsequent
operations within a sequence. These Sync
values have no meaning at the data Destination.
A data Source shall assign a locally significant
Sync value in each Data operation that the data
Source issues. Each assignment may use a
different Sync value. The associated
Request_State_Response and FetchOP_Com-
plete operations shall echo the Sync value.

A local end device (regardless of whether it is the
data Source or data Destination), shall assign a
locally significant Sync value in each
Request_State operation that the local end
device issues. Each assignment may use a
different Sync value. The associated
Request_State_Response shall echo the Sync
value.

6.2.9 Opaque data

Opaque data is six bytes of ULP peer-to-peer
information carried in a Data operation’s
Schedule Header Op_len and Offset_2 fields.
The Opaque data shall be delivered to the
recipient’s ULP when Silent = 0 or Send_State =
1 (see 8.2). The Opaque data shall be passed,
unmodified by any intermediate device, from the
Source to the Destination. Note that the Opaque
data uses Slot resources while the data payload
uses Bufx resources. The Opaque data shall not
be counted in the length, tiling, or Bufx
calculations.

6.2.10 Blocks enabled (CTS_req)

In Read and Write sequences, the data Source
specifies in the Request_To_Send operation the
number of Blocks that the data Source would like
to see continuously exposed for maximum

performance. Since each Block is exposed for a
single use with a Clear_To_Send operation, this
parameter is named CTS_req. CTS_req =
x'0000' means don't care. The CTS_req is
"advice" to improve performance; it is not
mandatory that the other end comply by issuing
that number of Clear_To_Send operations.
Specifying the number of simultaneously enabled
Blocks is useful for pipelining and striping where
multiple Blocks can be en-route simultaneously
(see annex B).

6.2.11 Persistent memory

The memory region associated with a
Request_Memory_Region operation is persistent.
That means that once allocated, the memory
region remains available for multiple Put, Get,
and FetchOP sequences until released by an End
or Port teardown sequence.

For Get and FetchOP sequences, the
Responder's transmit and receive buffer sizes
shall the same size. Note that the Initiator must
know the Responder's transmit buffer size to
correctly calculate the R-Bufx and R-Offset
values, and only an end device's receive buffer
size is exchanged during Virtual Connection
setup (see 5.1.1 and 5.2.3).

6.3 Packing examples

Figure 11 shows three possibilities for packing the
same Transfer into a data Destination's buffers.
All three examples show a group of seven of the
data Destination's buffers on the top line. Each
buffer is pointed to by a Bufx, and the data in the
first buffer starts at an Offset. The Transfer is the
shaded bar, with transmission going from left to
right. The Block boundaries are shown above the
shaded bar, and the resulting STU boundaries are
shown below the shaded bar.

Example (a), at the top, shows the case where
the buffers and Blocks are the same size. Notice
that the first Block is smaller than the other
Blocks by the Offset. Offset = zero for the other
Blocks. The last Block of the Transfer is also
smaller, i.e., the Transfer did not end on a Block
boundary. While the STU boundaries lined up
nicely, the issuer could have used multiple STUs,
but the STUs cannot be larger than Max_STU.

working draft - ST Rev 1.4, 12/23/97

26

Offset

(a) Receiver’s buffers
Block boundaries

Transfer
Resulting STU boundaries

Offset

(b) Receiver’s buffers
Block boundaries

Transfer
Resulting STU boundaries

Offset

(c) Receiver’s buffers
Block boundaries

Transfer
Resulting STU boundaries

Figure 11 – Data packing examples

Example (b) shows multiple Blocks per receiver
buffer. The Blocks that do not start on a buffer
boundary would use the Offset parameter to
position the data.

Example (c) shows the Block size covering two of
the receiver's buffers.

In summary, STUs cannot cross Block, buffer, or
Transfer boundaries. Relationships include:

STU size ≤ 2Max_STU

Max_STU ≤ Blocksize

Max_STU ≤ Bufsize

Note that the Blocksize can be larger, smaller, or
the same as Bufsize.

7 Operations management

7.1 Flow control

Data flow control in Read and Write sequences is
achieved with Clear_To_Send operations; each
Clear_To_Send received gives the data Source

permission to send one Block one time. There is
no equivalent flow control for Put, Get, and
FetchOP operations.

Operation flow control is achieved by an
operation's issuer not overrunning the Slots value
(see 5.2.6).

7.2 Status operations

Request_State and Request_State_Response
operations are used to request and supply status
information about the state of the remote end
device. They can be used to see which Blocks
have been received correctly for a specific
Transfer, and the number of empty Slots
available for this Virtual Connection. The Sync
parameter (see 5.2.6) is used to provide a
common reference point for the local and remote
end devices, i.e., to match Request_State and
Request_State_Response operations.

7.3 Rejected operations

If the receiving end device is unable to execute
an operation, then the receiving device shall set
the Reject flag bit = 1 in the response. Table 1
shows the response when an operation is

working draft - ST Rev 1.4, 12/23/97

27

rejected. The recovery actions taken when an
operation is rejected are beyond the scope of this
standard.

Table 1 – Response to a rejected operation

Rejected operation Response (w/ Reject=1)

Request_Connection Connection_Answer

Request_To_Send Request_Answer

Request_To_Receive Request_Answer

Request_Memory_Region Request_Answer

Get Request_Answer

FetchOP Request_Answer

7.4 Interrupts

An Interrupt causes a signal to be delivered to the
receiving end device ULP. An Interrupt can be
requested with any operation by setting Interrupt
= 1.

8 Schedule Header

The Schedule Header is shown in figure 12 as a
group of 32-bit words. The Schedule Header
fields are named for the most common parameter
for which the field is used. Many of the fields
have different uses depending on the operation
type, and some operations do not use one or
more of the fields at all. The usage for each field
is specified in tables 3-7.

If an operation does not use a particular Schedule
Header field, then that field shall be transmitted
as zeros. If a parameter does not completely fill
a field then the parameter shall be right justified
with leading zeros used to pad out the field.

Bytes

Op Flags Param 00-03

D_Port S_Port 04-07

D_Key 08-11

D_id S_id 12-15

Bufx 16-19

Offset 20-23

Sync 24-27

B_num 28-31

Cksum Op_len 32-35

Offset_2 36-39

Figure 12 – Schedule Header contents

8.1 Op codes

The operations, and their 5-bit Op code are listed
in table 2. Unspecified Op values are reserved.

Table 2 – Op codes and operations

Op Operation

x'01' Request_Connection

x'02' Connection_Answer

x'03' Request_Disconnect

x'04' Disconnect_Answer

x'05' Disconnect_Complete

x'13' Request_Memory_Region

x'14' Memory_Region_Available

x'15' Get, FetchOP, FetchOP_Complete

x'16' Request_To_Send

x'17' Request_Answer

x'18' Request_To_Receive

x'1A' Clear_To_Send

x'1B' Data

x'1C' Request_State

x'1D Request_State_Response

x'1E' End

x'1F' End_Ack

working draft - ST Rev 1.4, 12/23/97

28

8.2 Flags

Figure 13 shows the flags, and their relative
position within the Flags field. The flag functions
are detailed below for the case where the bit = 1.
The Flags field column in tables 3-7 specify the
flags that are valid for each operation.

F: Function
T: Silent
I: Interrupt
S: Send_State
O: Out_of_Order
L: Last
R: Reject
D: Data Channel assignment

FOp bits T I S O L R D

Byte 0 Byte 1

Figure 13 – Flags summary

Function: In FetchOP operations, the Function
flags shall have the following meanings. The
unspecified values are reserved.

b'000xxxxxxxx' = NOP (i.e., Get)
b'001xxxxxxxx' = Fetch and Increment
b'010xxxxxxxx' = Fetch and Decrement
b'011xxxxxxxx' = Fetch and Clear
b'111xxxxxxxx' = FetchOP Complete

In Request_Connection and Connection_
Answer operations, the Function flags specify
the issuing end device's attributes:

b'x00xxxxxxxx' = Does not support
persistent memory

b'x01xxxxxxxx' = Supports persistent
memory but not FetchOP operations

b'x11xxxxxxxx' = Supports persistent
memory and FetchOP operations

b'1xxxxxxxxxx' = Little endian ULP
architecture

Silent (b'xxx1xxxxxxx') = Requests silent
delivery of a Data operation (see 5.2.6). When
Silent = 1 the data transfer to the data
Destination Bufx is carried out normally, but the
Schedule Header shall not be delivered to any
ULP. This provides the basis for remote
memory write semantics where the intent is to
modify the contents of a remote memory
without executing software in the remote host
computer. This also provides a means for

reducing overhead by suppressing all but the
final Schedule Header delivery to the ULP
during a lengthy Scheduled Transfer. Silent is
overridden when Send_State = 1.

Interrupt (b'xxxx1xxxxxx') = Requests that a
signal or interrupt be generated and delivered
to the appropriate ULP. The Interrupt flag is
independent of the Silent flag, i.e., Interrupt = 1
calls for a signal whether or not Silent = 1.
(See 7.5.)

NOTE 1 – The Silent and Interrupt flags together
provide for three delivery modes for Data
operations: silent, polled, or interrupt-driven. If
Silent = 1, the data payloads are delivered silently.
If Silent = 0, then the ULP is informed by the same
means used for all other Schedule Headers and
the Schedule Header for this operation is delivered
to the ULP. This mode is suitable for polled
interfaces. If Interrupt = 1, then a signal is
delivered.

Send_State (b'xxxxx1xxxxx') = Requests that
the receiving ULP respond with a
Request_State_Response upon successful
receipt of this STU. Send_State is valid in all
Data operations. Send_State = 1 overrides the
Silent flag actions, and always consumes a
Slot.

Out_of_Order (b'xxxxxx1xxxx') = The Source
is able to send and receive Blocks in any order.

Last (b'xxxxxxx1xxx') = Marks the last STU of
a Block.

Reject (b'xxxxxxxx1xx') = The Request_
Connection, Request_To_Send, Request_To_
Receive, Get, Request_Memory_Region, or
FetchOP operation has been rejected.

Data Channel assignment: The Data Channel
to be used to carry Data operations. The Data
Channel value is assigned in a
Request_To_Send, Request_To_Receive, or
Request_Memory_Region operation, and is the
Data Channel to be used for Data operations
associated with this Transfer. The Data
Channel Assignment is not checked at the data
Destination.

b'xxxxxxxxx01' = Data Channel 1
b'xxxxxxxxx10' = Data Channel 2
b'xxxxxxxxx11' = Data Channel 3

The maximum STU size sent on Data
Channels 1 and 2 shall be 217 bytes (i.e., 128

working draft - ST Rev 1.4, 12/23/97

29

Kbytes). The maximum STU size sent on Data
Channel 3 shall be 231 bytes (i.e., 2 gigabytes).

NOTE 2 – Data Channel assignment value b'00' is
reserved.

8.3 Checksum (optional)

The 16-bit end-to-end checksum (Cksum) shall
be transmitted in every operation, and optionally
checked (see 10.4) at each Destination. End
device that support checksums shall compute
Cksum as the one's complement of the one's
complement sum of all of the bytes (taken two
bytes, or 16 bits at a time), in the operation,
including the ST Header with zeros in the Cksum
field. If the computed Cksum = x'0000', then
Cksum = x'FFFF' shall be transmitted.

If a Source does not support checksums, then it
shall transmit Cksum = x'0000'.

NOTE – The checksum algorithm is basically the
same as used with the Internet Protocol (i.e., IP,
RFC 791), Transmission Control Protocol (i.e.,
TCP, RFC 793), and User Datagram Protocol (i.e.,
UDP, RFC 768). Transmitting Cksum = x'FFFF' in
place of a computed Cksum = x'0000', and
transmitting Cksum = x'0000' to indicate non-
support of checksums, is the same as in UDP.
Also, note RFC 1936, Implementing the Internet
Checksum in Hardware.

Open Issue – The checksum algorithm is preliminary
and may change as the result of further investigation,
e.g., comparisons to the ISO and Fletcher checksums.

9 Operations details

Tables 3-7 define the parameters that shall be
carried in each field of the Schedule Header for
each operation. Within the operations, the
following prefixes are used:

I- = associated with the Initiator

R- = associated with the Responder

Other rules associated with the tables include:

– Operations contained within <…> are
conditional, and may not occur.

– The entries under the Flags parameter are
abbreviations for the individual flag bits as
shown in figure 13.

– Multiword parameters and field names are
joined with an underscore, e.g., D_Port.

– Values in bold italics are assigned by the
specific operation and may be used by later
operations.

– A * marks a field carrying an unused value;
that field shall be transmitted as zeros and shall
not be checked at the receiver.

– If a parameter does not completely fill a field
then the parameter shall be right justified with
leading zeros used to pad out the field.

working draft - ST Rev 1.4, 12/23/97

30

Table 3 – Connection management sequences

Operation Issued by Op Flags Param D_Port S_Port D_Key

(C1) A Virtual Connection is set up between the Initiator and Responder end devices

Request_Connection Initiator x'01' FIO I-Slots R-Port I-Port *

Connection_Answer Responder x'02' FIOR R-Slots I-Port R-Port I-Key

(C2) A Virtual Connection teardown sequence can be initiated from either end

Request_Disconnect Initiator x'03' I * R-Port I-Port R-Key

Disconnect_Answer Responder x'04' I * I-Port R-Port I-Key

Disconnect_Complete Initiator x'05' I * R-Port I-Port R-Key

NOTE - The Initiator in C1 and C2 can be either party of the Virtual Connection.

Table 4 – Common control sequences

Operation Issued by Op Flags Param D_Port S_Port D_Key

(Com1) Request Slot state: free Slots (a Transfer does not need to be in progress)

Request_State Initiator x'1C' I * R-Port I-Port R-Key

Request_State_Response Responder x'1D' I R-Slots I-Port R-Port I-Key

(Com2) Request Transfer state: free Slots, highest Block received OK

Request_State Initiator x'1C' I * R-Port I-Port R-Key

Request_State_Response Responder x'1D' I R-Slots I-Port R-Port I-Key

(Com3) Request Block state: free Slots, highest Block received OK, specific Block OK?

Request_State Initiator x'1C' I * R-Port I-Port R-Key

Request_State_Response Responder x'1D' I R-Slots I-Port R-Port I-Key

(Com4) Terminate the Transfer and release resources

End Initiator x'1E' I * R-Port I-Port R-Key

End_Ack Responder x’1F’ I * I-Port R-Port I-Key

NOTE - The Initiator in any sequence in this table can be either party of the Virtual Connection.

working draft - ST Rev 1.4, 12/23/97

31

Table 3 (cont.) – Connection management sequences

D_id S_id Bufx Offset Sync B_num Cksum Op_len Offset_2

(See 5.1.1.)

* * I-Bufsize I-Key I-Max_STU EtherType Cksum * I-Max_Block

* * R-Bufsize R-Key R-Max_STU * Cksum * R-Max_Block

(See 5.1.2)

* * * I-Key * * Cksum * *

* * * R-Key * * Cksum * *

* * * I-Key * * Cksum * *

Table 4 (cont.) – Common control sequences

D_id S_id Bufx Offset Sync B_num Cksum Op_len Offset_2

(See 6.1.1.1.)

x'FFFF' * * * Sync * Cksum * *

x'FFFF' * * * Sync * Cksum * *

(See 6.1.1.2.)

R-id I-id * * Sync x'FFFFFFFF' Cksum * *

I-id R-id * B_seq Sync x'FFFFFFFF' Cksum * *

(See 6.1.1.3.)

R-id I-id * * Sync B_num Cksum * *

I-id R-id * B_seq Sync B_num Cksum * *

(See 6.1.1.4.)

R-id I-id * * * * Cksum * *

I-id R-id * * * * Cksum * *

working draft - ST Rev 1.4, 12/23/97

32

Table 5 – Write sequences

Operation Issued by Op Flags Param D_Port S_Port D_Key

(W1) The Initiator requests to write data (a Transfer) to the Responder

Request_To_Send Initiator x'16' ID CTS_req R-Port I-Port R-Key

<Request_Answer> Responder x'17' IR * I-Port R-Port I-Key

(W2) The Responder exposes a memory region (a Block) to the Initiator

Clear_To_Send Responder x'1A' I R-Mx I-Port R-Port I-Key

(W3) The Initiator sends data (an STU) to the Responder

Data Initiator x'1B' TISLD STU_num R-Port I-Port R-Key

(W4) The Responder sends state information, if so requested in the Data operation

<Request_State_Response> Responder x'1D' I R-Slots I-Port R-Port I-Key

NOTE - The Initiator in this table is the end device that issues the Request_To_Send operation.

Table 6 – Read sequences

Operation Issued by Op Flags Param D_Port S_Port D_Key

(R1) The Initiator requests to read data (a Transfer) from the Responder

Request_To_Receive Initiator x'18' ID * R-Port I-Port R-Key

<Request_Answer> Responder x'17' IR * I-Port R-Port I-Key

(R2) The Responder echoes the Initiator's request as a request to write data

Request_To_Send Responder x'16' ID CTS_req I-Port R-Port I-Key

<Request_Answer> Initiator x'17' IR * R-Port I-Port R-Key

(R3) The Initiator exposes a memory region (a Block) to the Responder

Clear_To_Send Initiator x'1A' I I-Mx R-Port I-Port R-Key

(R4) The Responder sends data (an STU) to the Initiator

Data Responder x'1B' TISLD STU_num I-Port R-Port I-Key

NOTE - The Initiator in this table is the end device that issues the Request_To_Receive operation.

working draft - ST Rev 1.4, 12/23/97

33

Table 5 (cont.) – Write sequences

D_id S_id Bufx Offset Sync B_num Cksum Op_len Offset_2

(See 6.1.2.)

* I-id * * T_len Cksum * *

I-id * * * * * Cksum * *

(See 6.1.2.)

I-id R-id R-Bufx R-Offset Blocksize B_num Cksum * F_Offset

(See 6.1.2.)

R-id R-Mx R-Bufx R-Offset Sync B_num Cksum Opaque

(See 6.1.2.)

I-id R-id * B_seq Sync B_num Cksum * *

Table 6 (cont.) – Read sequences

D_id S_id Bufx Offset Sync B_num Cksum Op_len Offset_2

(See 6.1.3.)

* I-id * * T_len Cksum * *

I-id * * * * * Cksum * *

(See 6.1.3.)

I-id R-id * * T_len Cksum * *

R-id * * * * * Cksum * *

(See 6.1.3.)

R-id I-id I-Bufx I-Offset Blocksize B_num Cksum * F_Offset

(See 6.1.3.)

I-id I-Mx I-Bufx I-Offset Sync B_num Cksum Opaque

working draft - ST Rev 1.4, 12/23/97

34

Table 7 – Put, Get, and FetchOP sequences

Operation Issued by Op Flags Param D_Port S_Port D_Key

(PG1) The Initiator requests a persistent memory region on the Responder

Request_Memory_Region Initiator x'13' ID * R-Port I-Port R-Key

<Request_Answer> Responder x'17' IR * I-Port R-Port I-Key

(PG2) The Responder allocates a persistent memory region (a Block) to the Initiator

Memory_Region_Available Responder x'14' I R-Mx I-Port R-Port I-Key

(PG3) The Initiator Puts data (an STU) in the Responder's persistent memory region

Data Initiator x'1B' TISLD STU_num R-Port I-Port R-Key

(PG4) The Responder sends state information, if so requested in the Data operation

<Request_State_Response> Responder x'1D' I R-Slots I-Port R-Port I-Key

(PG5) The Initiator Gets data from the Responder's persistent memory region

Get Initiator x'15' FID I-Mx R-Port I-Port R-Key

<Request_Answer> Responder x'17' IR * I-Port R-Port I-Key

Data Responder x'1B' TILD STU_num I-Port R-Port I-Key

(PG6) The Initiator fetches and operates on data in the Responder's persistent memory

FetchOP Initiator x'15' FID I-Mx R-Port I-Port R-Key

<Request_Answer> Responder x'17' IR * I-Port R-Port I-Key

Data Responder x'1B' TILD x'0000' I-Port R-Port I-Key

FetchOP_Complete Initiator x’15’ FI * R-Port I-Port R-Key

NOTE - The Initiator is the end device that issues the Request_Memory_Region operation.

working draft - ST Rev 1.4, 12/23/97

35

Table 7 (cont.) – Put, Get, and FetchOP sequences

D_id S_id Bufx Offset Sync B_num Cksum Op_len Offset_2

(See 6.1.4.1.)

* I-id * * T_len Cksum * *

I-id * * * * * Cksum * *

(See 6.1.4.1.)

I-id R-id R-Bufx R-Offset * * Cksum * *

(See 6.1.4.2.)

R-id R-Mx R-Bufx R-Offset Sync B_num Cksum Opaque

(See 6.1.4.2.)

I-id R-id * B_seq Sync B_num Cksum * *

(See 6.1.4.3.)

R-id G-id R-Bufx R-Offset R-Mx I-Bufx Cksum T_len I-Offset

G-id * * * * * Cksum * *

G-id I-Mx I-Bufx I-Offset Sync * Cksum Opaque

(See 6.1.4.3.)

R-id F-id R-Bufx R-Offset R-Mx I-Bufx Cksum x'0008' I-Offset

F-id * * * * * Cksum * *

F-id I-Mx I-Bufx I-Offset Sync * Cksum Opaque

R-id F-id * * Sync * Cksum * *

working draft - ST Rev 1.4, 12/23/97

36

10 Error processing

Table 9 is a summary of the logged errors. The
logging shall be on a per-Port basis, and shall be
available to the ULP that is using the Port. The
nature and size of the logs are system
dependent.

Open Issue – The whole error processing clause
needs a very detailed review, the editor keeps finding
exceptions and errors.

10.1 Operation timeout

Errors other than syntactic errors are manifested
as missing operations, occurring when the
underlying physical medium discard or damage a
transmission. Such errors are detected by
Op_timeout, which is system and/or Port
dependent. Op_timeout_Occurances shall be
logged. Example means for determining the
Op_timeout value for a Virtual Connection
include:

– a time longer than the measured round-trip
time through the software path (use a
Request_State / Request_State_Response pair
to measure on a per-Port basis); or

– a long fixed time period; or

– a time equal to the maximum queuing delay
for a maximum size message (e.g., for a
Control operation queued behind a large
Transfer).

When reliable data movement operations are
required by the ULP, each operation that expects
a response shall be guarded with a timeout
whose value is Op_timeout. Data transmissions
(i.e., Data operations) are an exception to this
timeout mechanism and are referred to the ULP
for resolution (see 10.7.8). The ULP that issues a
Clear_To_Send or a Request_To_Receive is
responsible for timing out these operations. The
ULP may or may not use Op_timeout to time out
Data operations.

Another system and/or Port dependent
parameter, Max_Retry, specifies the maximum
number of times to retry an operation. If enabled,
an operation shall be re-tried up to Max_Retry
times if the sending end device does not receive
the expected response (see table 8). If
Max_Retry is reached without success, then the

operation is considered to be aborted and control
shall be passed to the ULP.
Max_Retry_Occurances shall be logged.

10.2 Operation Pairs

Each Scheduled Transfer operation is defined as
part of a two-way handshake or a three-way
handshake. Thus, for each command operation
there is a corresponding response operation, and
for some response operations there is also a
corresponding completion operation. Table 8
lists the operation pairs – command and
response, or response and completion – that shall
be retried if the associated response is not
received within an Op_timeout.

Additionally, Request_State_Response is a
corresponding pair for Data operations which
have Send_State = 1. If the
Request_State_Response is not received, then
the data Source may send a Request_State to
obtain the state information.

Table 8 – Operation pairs guarded by
Op_timeout with mandatory retry

Operation Response(s)

Data (w/ Send_State=1) Request_State_Response

Disconnect_Answer Disconnect_Complete

End End_Ack

FetchOP Data, or Request_Answer

Get Data, or Request_Answer

Request_Connection Connection_Answer

Request_Disconnect Disconnect_Answer

Request_State Request_State_Response

Request_To_Send Request_Answer or
Clear_To_Send

Request_To_Receive Request_Answer or

Request_To_Send

working draft - ST Rev 1.4, 12/23/97

37

10.3 Duplicate operations

Open Issue – Greg Chesson has an action item to
draft some text on how you differentiate duplicate
operations from legal operations.

10.4 Checksum errors

If an end device that supports checksums
computes a Cksum value (see 8.3) different from
that received in the operation's ST Header, and
the received Cksum ≠ x'0000', then the operation
shall be discarded and a Cksum_Error shall be
logged.

10.5 Syntax errors

10.5.1 Undefined Opcode

An operation with an undefined Opcode value
shall be discarded, an Undefined_Opcode_Error
shall be logged, and the Opcode shall be logged
in Undefined_Opcode_Value.

10.5.2 Unexpected Opcode

Most of the operations require previous
operations to set up state on each device. If a
device receives an out of sequence Opcode
(e.g., receiving a Connection_Answer without
having sent the initiating Request_Connection),
the operation shall be discarded, an
Unexpected_Opcode_Error shall be logged, and
the Opcode shall be logged in
Unexpected_Opcode_Value.

10.6 Virtual Connection errors

10.6.1 Invalid Key or Port

All operations, excluding Request_Connection
and Disconnect operations, should have a Key
(see 5.2.2) value that validates the operation for
the Virtual Connection. Operations with an
invalid Key shall not be executed, and an
Invalid_Key_Error shall be logged.

All operations, excluding Disconnect operations,
should have a valid Destination Port value (see
5.2.1). Operations with an invalid Destination
Port value shall not be executed, and an
Invalid_Port_Error shall be logged.

If a Request_Disconnect is received and the Port
and/or Key values are invalid, then a
Disconnect_Answer shall be issued. If a
Disconnect_Answer is received and the Port
and/or Key values are invalid, then a
Disconnect_Complete shall be issued. In both
cases, the R-Port, I-Port, R-Key and I-Key,
values in the received operation shall be used to
form the operation issued.

NOTES
1 – Multiple contiguous invalid Key and/or Port
values may indicate a problem with the link or a
malicious host on the network. The supervising
process should be informed.

2 – Since the Disconnect operations have a
complete set of parameters for both the Initiator
and Responder, legal Disconnect responses can be
generated, even if one end device has lost the state
information for the Virtual Connection, e.g., due to
a power-down.

10.6.2 Slots exceeded

Operations that exceed the number of Slots (see
5.2.6) for the Virtual Connection may not be
executed, and a Slots_Exceeded_Error shall be
logged.

10.6.3 Unknown EtherType

If a Request_Connection operation contains an
unknown EtherType (see 5.2.7), the receiver shall
issue a Connection_Answer with Reject = 1 and
shall log an Unknown_EtherType_Error.

10.6.4 Illegal Bufsize

If a Request_Connection contains a Bufsize (see
5.2.3) value that is < 8 or > 63, (i.e., Buffer size <
28 bytes, or > 263 bytes), then the receiver shall
respond with a Connection_Answer with Reject =
1. If a Connection_Answer contains a Bufsize
value that is < 8 or > 63, then the receiver shall
respond with a Request_Disconnect. In either
case, an Illegal_Bufsize_Error shall be logged.

10.6.5 Illegal STU size

The maximum STU sizes (Max_STU) for each
end device were determined during the Virtual
Connection setup (see 5.1.1 and 5.2.4). If the
received STU in a Data operation is greater than

working draft - ST Rev 1.4, 12/23/97

38

the maximum STU size, then the STU shall be
discarded and an Illegal_STU_Size_Error shall
be logged.

10.7 Scheduled Transfer errors

10.7.1 Invalid Transfer identifier

Many Scheduled Transfer operations use a
Transfer identifier (see 6.2.1), in the D_id field for
quickly accessing state information for a
sequence. An operation with an invalid Transfer
identifier shall be discarded and an Invalid_D-
id_Error shall be logged.

10.7.2 Invalid Memory Index (Mx)

Data operations echo previously assigned
Memory Index (Mx) values (see 6.2.2). If the Mx
value in a Data operation does match a valid Mx
value, then the Data operation shall be discarded
and an Invalid_Mx_Error shall be logged.

10.7.3 Bad Data Channel specification

During Request_To_Send, Request_To_Receive,
and Request_Memory_Region operations, the
initiating device declares the LLP Data Channel
that will carry Data operations for the sequence.
Some Data Channels may not be available for
Data operations depending on the LLP (e.g., b'00'
is not a valid choice on HIPPI-6400 as it indicates
VC0 which is reserved for Control operations). If
the Data Channel value is in error, then the
receiver shall issue an appropriate response with
Reject = 1.

10.7.4 Out of Range B_num, Bufx, Offset, or
STU_num

If the Block number (see 6.2.4) in a received:

– Clear_To_Send operation is outside the
calculated number of Blocks for the Transfer;

– Data or Request_State operation, to other
than a persistent memory region, has not been
previously exposed by a Clear_To_Send
operation;

then the offending operation shall be discarded
and an Out_Of_Range_B_num_Error shall be
logged.

If a Data, Get, or FetchOP operation contains a
Bufx and/or Offset (see 6.2.7) that exceeds the
buffer range allocated by the data Destination,
then the receiver shall discard the operation and
shall log an Out_Of_Range_Bufx_Error.

If a Data, Get, or FetchOP operation contains an
Offset (see 6.2.7) larger than the buffer size, the
receiver shall discard the operation and shall log
an Oversized_Offset_Error.

If a Data operation contains an STU_num (see
6.2.6) that is not one greater than the previous
STU for this Block, then the STU is out of order.
The receiver may discard the STU and log an
Out_Of_Order_STU_Error if it cannot
accommodate out of order STU delivery.

10.7.5 Block out of order error

If a Data operation contains a B_num that is not
one greater than the previous B_num for this
Transfer or persistent memory region, and
Out_of_Order (see 8.2) capability was not
specified during the Virtual Connection setup (see
5.1.1), then the data Destination shall log an
Out_Of_Order_B_num and may terminate the
Transfer or persistent memory region with an End
sequence.

10.7.6 Illegal Blocksize

If a Clear_To_Send operation contains a
Blocksize (see 6.2.5) value that is < 8 or > 63,
(i.e., Block size < 28 bytes, or > 263 bytes), then
the receiver shall discard the operation and shall
log an Illegal_Blocksize_Error.

Open Issue – The first "shall" above was previously a
"should". The change needs to be checked for
correctness.

10.7.7 Undefined Flag

If a received operation contains a flag value that
is not defined for that operation, then the flag
shall be ignored and an
Improper_Flag_Use_Error should be logged.

10.7.8 Missing Blocks

If the data Destination detects that a Block of a
Transfer is missing, it may re-issue the
associated Clear_To_Send operation to request

working draft - ST Rev 1.4, 12/23/97

39

retransmission of the Block from a data Source
that supports Out_Of_Order (see 5.1.1 and 8.2).
Other actions to be taken if a Block is missing are
beyond the scope of this standard.

Table 9 – Summary of logged errors

Name Occurs in operation

Cksum_Error all

Illegal_Blocksize_Error CTS

Illegal_Bufsize_Error CA, RC

Illegal_STU_Size_Error Data

Improper_Flag_Use_Error all

Invalid_D-id_Error all with a non-zero D_id

Invalid_Key_Error all except RC

Invalid_Mx_Error Data

Invalid_Port_Error all

Max_Retry_Occurance
End, DA, RC, RD, RS,

RTR, RTS

Op_timeout_Occurance
End, DA, RC, RD, RS,

RTR, RTS

Out_Of_Order_B_num Data

Out_Of_Order_STU_Error Data

Out_Of_Range_B_num_Error CTS, Data, RS, RSR

Out_Of_Range_Bufx_Error Data

Oversized_Offset_Error Data

Slots_Exceeded_Error all with Op ≥ x'06'

Undefined_Opcode_Error not applicable

Undefined_Opcode_Value not applicable

Unexpected_Opcode_Error all except RC

Unexpected_Opcode_Value all except RC

Unknown_EtherType_Error RC

Operation abbreviations:
CA = Connection_Answer
CTS = Clear_To_Send
DA = Disconnect_Answer
RC = Request_Connection
RD = Request_Disconnect
RS = Request_State
RSR = Request_State_Response
RTR = Request_To_Receive
RTS = Request_To_Send

working draft - ST Rev 1.4, 12/23/97

40

Annex A
(normative)

Using lower layer protocols

This Scheduled Transfer Protocol (ST) may be
used with a variety of lower layer and physical
media protocols. Mappings to some of the more
common protocols are specified below. This is
not intended to be an all inclusive set of
protocols, i.e., ST may be used with other LLPs
than those listed. Specific items addressed by
each mapping include:

– CCI information such as physical layer
addresses,

– protocol data unit (PDU) size restrictions,

– and the mappings for the ST Control and
Data Channels.

However, the methods used to pass this
information between ST and the LLP are outside
the scope of this standard.

For Request_Connection and
Connection_Answer operations, connection
control information (CCI) for the Virtual
Connection being set up is passed to the
specified LLP and may be stored in the Virtual
Connection Descriptor (see figure 5). Examples
of CCI parameters include, but are not limited to:

– LLP-specific destination address;

– LLP-specific source address;

– quality of service.

ST does not provide the initial CCI; it may come
from the ULP or from another protocol. The CCI
is not carried in the Schedule Header. However,
an ST implementation would typically retain the
CCI for further operations on the Port. Note that
some situations, e.g., striping, may use other
than the retained addresses.

A.1 HIPPI-6400-PH as the LLP

ANSI X3.xxx defines HIPPI-6400-PH, portions of
which are repeated here as an aid to the reader.
As shown in figure A.1, ST operations shall be

carried over HIPPI-6400-PH with the first eight
bytes of the Schedule Header occupying the last
eight bytes of the HIPPI-6400-PH Header
micropacket.

HIPPI-6400-PH specifies that its ULP (ST in this
case), provide information to be used to generate
the MAC header. The ULP provides the
Destination address (D_ULA) in a
Request_Connection operation, and may provide
the Source address (S_ULA). In the
corresponding Connection_Answer, the received
S_ULA would be used as the D_ULA, and the
ULP may provide the S_ULA value. (See HIPPI-
6400-PH 5.3.1.) In ST these parameters are in
the CCI. Included are:

– LLC/SNAP header with:
– DSAP = x'AA' (SNAP);
– SSAP = x'AA' (SNAP);
– Ctl = x'03' (unnumbered packets);
– Org = x'00', x'00', x'00' (generic packets);
– EtherType = x'8181' (Scheduled Transfer).

– Destination physical address (D_ULA),

– optionally the Source physical address
(S_ULA).

All ST Control operations shall be carried on
HIPPI-6400-PH Virtual Channel VC0. Data
operations shall use Virtual Channel 1, 2, or 3 as
specified in the ST Data Channel Assignment
flag bits (see 8.2) and carried in a
Request_To_Send operation (see Q.2).

The buffers available in some HIPPI-6400-PH
intermediate device implementations (e.g., for
translators, routers, etc.), may limit the STU and
Block sizes. These size restrictions shall be
resolved with the Max_STU and Max_Block
parameters (see 5.2.4 and 5.2.5).

M_len (in the HIPPI-6400-PH MAC Header),
specifies the number of bytes following M_len,
exclusive of any padding in the last micropacket.
Hence, M_len will have the following values:

working draft - ST Rev 1.4, 12/23/97

41

– M_len = 48 for Control operations without an
optional payload (i.e., 48 = 8 byte IEEE 802.2
LLC/SNAP Header + 40-byte ST Schedule
Header);

– M_len = 80 for Control operations with
optional payload;

– M_len = (48 + number of user data payload
bytes) for Data operations.

A.2 HIPPI-FP as the LLP

ANSI X3.210 defines HIPPI-FP, portions of which
are repeated here as an aid to the reader. As
shown in figure A.2, ST operations shall be
carried over HIPPI-FP in the D2_Area. The
HIPPI-FP D1_Area shall not be used. The
HIPPI-FP D2_Offset shall be set to zero. Short
bursts shall only be used at the end of a packet,
i.e., short first burst is disallowed. Note that
D2_Size = M_len + 16.

HIPPI-6400-PH
MAC and

LLC/SNAP
Headers

40-byte
ST Header
(defined in 8

and figure 12,
and shown

here as an aid
to the reader)

First 32-byte
HIPPI-6400-PH

Type = Data
micropacket

D_ULA

(lsb)

(lsb)
S_ULA

M_len

DSAP=x’AA’ SSAP=x’AA’ Ctl=x’03’ Org=x’00’

EtherType=x’8181’Org=x’00’ Org=x’00’

Op Flags Param

D_Port S_Port

D_Key

D_id S_id

Bufx

Offset

Sync

B_num

Cksum

Offset_2

Optional 32-byte payload
(in Control Operations)

or

Up to 231 bytes (2 gigabytes) of
ST data payload (i.e., STU)

(in Data Operations)

ST payload

NOTE – Shown as 32-bit words

32-byte
HIPPI-6400-PH
Type = Header

micropacket

Additional 32-byte
HIPPI-6400-PH

Type = Data
micropacket(s)

Op_len

Figure A.1 – An ST operation carried in a HIPPI-6400-PH Message

working draft - ST Rev 1.4, 12/23/97

42

HIPPI-FP
Header

HIPPI-6400-PH
MAC and

LLC/SNAP
Headers

HIPPI-FP
Header Area

HIPPI-FP
D2_Area

ULP-id P B Reserved D1_Area_Size
D2_
Offset

D2_Size

D_ULA

(lsb)

(lsb)
S_ULA

M_len

DSAP=x’AA’ SSAP=x’AA’ Ctl=x’03’ Org=x’00’

EtherType=x’8181’Org=x’00’ Org=x’00’

Op Flags Param

D_Port S_Port

D_Key

D_id S_id

Bufx

Offset

Sync

B_num

Cksum

Offset_2

Optional 32-byte payload
(in Control Operations)

or

Up to 231 bytes (2 gigabytes) of
ST data payload (i.e., STU)

(in Data Operations)

ST payload

NOTE – Shown as 32-bit words

40-byte
ST Header
(defined in 8
and figure 12
and shown

here as an aid
to the reader)

Op_len

Figure A.2 – An ST operation carried in a HIPPI-FP packet

Open Issue – Should one, or both, Headers be in the HIPPI-FP D1_Area instead of the D2_Area? Another mapping
may be added with the Header in the D1 area.

The HIPPI-6400-PH MAC and LLC/SNAP
Headers are defined in ANSI X3.xxx, portions of
which are repeated here as an aid to the reader.
As shown in figure A.2, the MAC and LLC/SNAP
headers shall precede the Schedule Header to
facilitate translation to other protocols. The same
CCI information as specified in A.1 above shall
be used to create the MAC and LLC/SNAP
headers. The following additional parameters
shall be included in the CCI for use by the HIPPI-
FP protocol:

– ULP-id = x'0C' signifying HIPPI-6400
Encapsulation,

– 12-bit Destination Addresses as specified by
ANSI X3.222, High-Performance Parallel
Interface - Physical Switch Control (HIPPI-SC).

All ST Control operations shall specify Virtual
Channel VC0. Data operations shall specify
Virtual Channel 1, 2, or 3 as specified in the ST
Data Channel Assignment flag bits (see 8.2) and

working draft - ST Rev 1.4, 12/23/97

43

carried in a Request_To_Send operation (see
Q.2). Note that HIPPI-FP and ANSI X3.183,
High-Performance Parallel Interface –
Mechanical, Electrical, and Signalling Protocol
Specification (HIPPI-PH), also known as HIPPI-
800, do not provide multiple channels.
Therefore, all of the Control and Data operations
share the HIPPI-800 physical link, and a long
Data operation can block delivery of Control
operations until the Data operation completes.
The Virtual Channel specifications are needed
when going from HIPPI-800 to HIPPI-6400.

All ST Control operations shall specify Virtual
Channel VC0. Data operations shall specify
Virtual Channel 1, 2, or 3 as specified in the ST
Data Channel Assignment flag bits (see 8.2) and
carried in a Request_To_Send operation (see
Q.2). Note that HIPPI-FP and ANSI X3.183,
High-Performance Parallel Interface -
Mechanical, Electrical, and Signalling Protocol
Specification (HIPPI-PH), also known as HIPPI-
800, do not provide multiple channels.
Therefore, all of the Control and Data operations
share the HIPPI-800 physical link, and a long
Data operation can block delivery of Control
operations until the Data operation completes.
The Virtual Channel specifications are needed
when going from HIPPI-800 to HIPPI-6400.

The buffers available in some HIPPI-FP
intermediate device implementations (e.g., for
translators, routers, etc.), may limit the STU and
Block sizes. These size restrictions shall be
resolved with the Max_STU and Max_Block
parameters (see 5.2.4 and 5.2.5).

A.3 Ethernet as the LLP

Figure A.3 shows a 40-byte ST header
immediately following the 14-byte Ethernet 802.3
MAC header and 8-byte 802.1 SNAP header. An
802.3 MAC header is needed because the ST
header does not contain a length field, and
because the number of non-pad bytes in an
Ethernet frame cannot be inferred from the
physical frame size. The SNAP header is
required because the ST header does not contain
an EtherType. The SNAP header values shall be
identical to those defined for use with HIPPI-
6400-PH as the LLP (see A.1), i.e.,:

– DSAP = x'AA' (SNAP);
– SSAP = x'AA' (SNAP);
– Ctl = x'03' (unnumbered packets);
– Org = x'00', x'00', x'00' (generic packets);
– EtherType = x'8181' (Scheduled Transfer).

The payload bytes are optional. If the ST header
contains a Control operation, then the payload
shall be either zero bytes or 32 bytes (see 4.2).
If the ST header contains a Data operation, then
the payload can be any size up to 1024 bytes.

Ethernet frames must be an even number of
bytes and must also satisfy a minimum length
requirement. In conventional implementations
these constraints are satisfied by logic in low-
level device drivers as well as physical-layer
hardware. Since ST is an upper-layer client of
the physical layer, the padding details are not
described here.

The length of an ST message on Ethernet is
determined from the 16-bit 802.3 length field
which specifies the number of bytes following the
length field exclusive of any padding. Possible
values for the length are:

– len = 48 for Control operations without an
optional payload.

– len = 80 for Control operations with payload

– len = 48 + (size of payload) for Data
operations

The EtherTypes used with ST on Ethernet shall
be as specified in 5.2.7.

Ethernet does not provide virtual circuits or
virtual channels, therefore both Control and Data
operations are queued and processed in FIFO
order. Control operations and Data operations
may be interleaved: there is no requirement for
all the STUs of a multi-STU Block to be
transmitted contiguously on the medium.

ST requires in-order transmission and delivery of
STUs within a Block. It is expected that many
implementations will handle out-of-order Blocks.
If an Ethernet environment cannot preserve STU
ordering, then the Blocksize (see 6.2.5) should be
set to 1024 bytes, making use of out-of-order
Block processing.

working draft - ST Rev 1.4, 12/23/97

44

EtherType=x’8181’

Ethernet MAC
Header

40-byte
ST Header
(Defined in 8
and figure 12,

and shown
here as an aid
to the reader.)

D_ULA

(lsb)

(lsb)
S_ULA

M_len DSAP=x’AA’ SSAP=x’AA’

Ctl=x’00’ Org=x’00’ Org=x’00’ Org=x’00’

Op Flags

Param

S_Port

D_Keylow

S_id

D_id

Bufxlow

Offsetlow

Synclow

B_numlow

Op_len

Offset_2low

Optional 32-byte payload
(in Control Operations)

or

Up to 1024 bytes of
ST data payload (i.e., STU)

(in Data Operations)

ST payload

NOTE – Shown as 32-bit words

LLC/SNAP
Header

D_Port

D_Keyhigh

Bufxhigh

Offsethigh

Synchigh

B_numhigh

Cksum

Offset_2high

Figure A.3 – An ST operation carried in an Ethernet packet

A.4 ATM LAN Emulation as the LLP

Open Issue – The contents of this clause may be
based on Robert Hyerle's proposal.

A.5 Fibre Channel as the LLP

Open Issue – Jerry Leitherer of Genroco has an action
item to draft text for ST over Fibre Channel.

working draft - ST Rev 1.4, 12/23/97

45

Annex B
(informative)

ST striping

B.1 Striping principles

ST is capable of supporting multiple physical
interfaces for a single Transfer (see figure B.1).
This striping capability may be of benefit when a
single interface is not able to support required
data rates. It may be especially useful where data
is moved from many slower interfaces to a single
faster interface or vice-versa. It may also be
used with multiple interfaces at both the Source
and Destination. Mechanisms to set up, select,
and control the underlying physical interfaces are
beyond the scope of this standard.

The Block is the basic striping unit. Each Block
contains sufficient information to completely
identify an individual Transfer and the Block's
location within the Transfer. The only difference
between striped and non-striped operation is the
selection of port MAC addresses to allow
concurrent data movement. Striping is not done
on an STU basis because striped STUs can not
be guaranteed to be delivered in-order as
required by ST.

There are a few conventions that should be
followed to facilitate striping:

– Block sizes (when striping is desirable) must
be small enough to support concurrency and
allow each channel to have at least one Block
to send.

– Sufficient Clear_To_Send operations should
be kept outstanding by a data receiver to allow
concurrent Data operations.

– The interface adapter(s) must be capable of
handling multiple Blocks simultaneously. This
may require communication between interfaces
(or their software drivers) within a system.

– The return physical address (e.g., Source
ULA), for each operation is specified by the
LLP source address for that operation. ST
implementers should not assume that the
source LLP address for a given Port will remain
constant.

– The Destination must signify that it supports
delivery of Blocks in any order (i.e.,
Out_of_Order = 1, see 8.2) during the Virtual
Connection setup.

B.2 Many-to-one striping

Part a of figure B.1 shows using a number of
lower-throughput interfaces, aggregated together,
to communicate with one higher-throughput
interface (using a translator or bridge). Striping
the lower-throughput interfaces together can
allow legacy systems to communicate quickly
over newer network infrastructures. In this case,
action to implement striping is required only on
the side of the lower-throughput interface.

After the Ports are assigned, data movement is
initiated with a Request_To_Send operation. A
Request_To_Send_Response will be received,
either as a discrete message or as part of a
Clear_To_Send. As Clear_To_Send operations
are received, the system with multiple lower-
throughput ports can move a Block of data for
each Clear_To_Send received. As many Blocks
can be in transit concurrently as there are ports
to carry them and Clear_To_Send operations
authorizing them.

The system receiving these Blocks processes
them normally, placing them into memory as their
Bufx and Offset values dictate.

B.3 One-to-many striping

Part b of figure B.1 shows how Transfers made
from one higher-throughput interface can also be
spread across more than one lower-throughput
interface without any special action on the part of
the higher-throughput system.

After the Ports are assigned, the Transfer is
initiated with a Request_To_Send operation from
the higher-throughput interface. The lower-
throughput interface that has done the Port

working draft - ST Rev 1.4, 12/23/97

46

assignment will return a
Request_To_Send_Response, either as a
discrete operation or as part of a Clear_To_Send.
Each Clear_To_Send issued should be sent from
the interface desiring the data.

An alternative is to send all of the
Clear_To_Send operations from a single
interface and substitute the desired physical
return address (e.g., Source physical address) for
the Clear_To_Send's Source physical address
(making it appear that the Clear_To_Send's
Source physical address was generated by the
interface desiring the data). Subsequent Data
operations may then be done concurrently and
will use a Source physical address from the
Clear_To_Send operation as the Destination
physical address. Using this substitution method

in combination with a dedicated control channel
may also prevent or reduce blocking effects
where the underlying physical medium suffers
from high latency.

B.4 Many-to-many striping

Part c of figure B.1 shows many-to-many striping
as the combination of the one-to-many and
many-to-one striping. The system receiving data
indicates its desire to receive in a striped fashion
by issuing multiple Clear_To_Send operations
with differing return interface addresses. The
system sending data chooses to stripe by sending
from multiple interfaces that are capable of
reaching the proper destination.

System with
4 lower-

throughput
interfaces

System with a
single higher-

throughput
interface

Block 1

Block 2

Block 3

Block 4

Intermingled STUs
for Blocks 1 to 4

(a) Many-to-one striping

System with
4 lower-

throughput
interfaces

System with a
single higher-

throughput
interface

Block 1

Block 2

Block 3

Block 4

Intermingled STUs
for Blocks 1 to 4

(b) One-to-many striping

System with
four

interfaces

System with
four

interfaces

Block 1

Block 2

Block 3

Block 4

Block 1

Block 2

Block 3

Block 4

(c) Many-to-many striping

NOTE: A Clear_To_Send for each Block is sent in the reverse direction on the same path that each Block
traverses (or is made to appear that way) for figure B.1 (a-c).

Figure B.1 – ST Striping Configurations

working draft - ST Rev 1.4, 12/23/97

47

Annex C
(informative)

Scheduled Transfer Protocol examples

NOTE – This annex has not been updated for
some time, and hence is quite out of date, e.g.,
names, functions, etc.. Rather than leave it in
place and possibly confuse readers, it has been
removed until it can be brought up to date. Jim
Pinkerton has offered to draft text based on his
work at SGI.

Annex D
(informative)

State tables

Open Issue – Jeffrey Chung of SGI has an action
item to provide the state tables. Note that the
state tables are informative rather than normative.

