Working T11.1/ Project 1231/ Rev 1.9
Draft

January 5, 1998

Information Technology -
High-Performance Parallel Interface - 6400 Mbit/s Physical
Switch Control (HIPPI-6400-SC)

Secretariat: National Committee for Information Technology Standardization (NCITS)

This is an internal working draft of T11, a Technical Committee of Accredited Standards Committee NCITS. As
such, this is not a completed standard, but us considered to be technically correct by the T11.1 Task Group. The
contents may be modified as a result of comments received during the review process. This document is made
available for review and comment only.

Permission is granted to members of NCITS, its technical committees, and their associated task groups to repro-
duce this document for the purposes of NCITS standardization activities without further permission, provided this
notice is included. All other rights are reserved. Any duplication for commercial or for-profit use is prohibited.

ABSTRACT

This document describes a protocol for controlling physical layer switches which are based on the High-Perfor-
mance Parallel Interface at 6400 Mbit/s (HIPPI-6400-PH), a high-performance, point-to-point interface for transmit-
ting digital data at peak rates of 6400 Mbit/s between data processing equipment.

Contacts: T11.1 Vice Chairman and Technical Editor T11.1 Chairman
Roger Ronald Don Tolmie
Raytheon E-Systems Los Alamos National Laboratory
MS 35300 HD CIC-5, MS-B255
PO Box 660023 Los Alamos, NM 87545
Dallas, TX 75266-0023 Voice: 505-667-5502
Voice: 972-205-8043 FAX: 505-665-7793
FAX: 972-272-8144 E-mail: det@lanl.gov

E-mail: rronald@esy.com

Reference number
ISO/IEC 11518-xx: 199x
NCITS. ***- 199x
Printed 2/12/98

Other Points of Contact:

T11 Chairman T11 Vice-Chairman NCITS Secretariat
Roger Cummings Edward L. Grivna NCITS Secretariat, ITI
Distributed Processing Technology = Cypress Semiconductor 1250 Eye Street, NW Suite 200
140 Candace Drive 2401 East 86th Street Washington, DC 20005
Maitland, FL 32751 Bloomington, MN 55425

Voice: 407-830-5522 x348 612-851-5046 202-737-8888

FAX: 407-260-5366 612-851-5087 202-638-4922

E-mail: cummings_roger@dpt.com elg@cypress.com ncitssec@itic.nw.dc.us

T11.1 E-mail Reflector (for HIPPI technical discussions and notifications of web changes

Internet address for subscription to the HIPPI reflector: Majordomo@network.com
Messages should contain a line stating... subscribe hippi <your e-mail address>
Internet address for distribution via the HIPPI reflector: hippi@network.com

T11 E-mail Reflector (forT11 meeting notices, agendas, etc.)

Internet address for subscription to the T11 reflector: Majordomo@network.com
Messages should contain a line stating... subscribe T11 <your e-mail address>
Internet address for distribution via the T11 reflector: tl1@network.com
Web Sites:
HIPPI Standards Activities http://www.cic-5.lanl.gov/~det
T11 Activities http://www.dpt.com/t11
NCITS http://www.x3.org/

T11 Document Distribution

Global Engineering

15 Inverness Way East

Englewood, CO 80112-5704

Voice: 303-792-2181 or 800-854-7179
FAX: 303-792-2192

PATENT STATEMENT

CAUTION: The developers of this standard have requested that holder’s of patents that may be required for the im-
plementation of the standard, disclose such patents to the publisher. However, neither the developers nor the pub-
lisher have undertaken a patent search in order to identify which, if any, patents may apply to this standard.

As of the date of the publication of this standard and following calls for the identification of patents that may be re-
quired for the implementation of the standard, no such claims have been made. No further patent search is conduct-
ed by the developer or the publisher in respect to any standard it processes. No representation is made or implied
that licenses are not required to avoid infringement in the use of this standard.

dpANS X3.xxx-199x

Table Of Contents

SCOPE . o 1
Normative references 1
2.1 Approvedreferences 1
2.2 References under development. 2
Definitions and conventions 2
3.1 Definitions e 2
3.2 Editorial conventions 3
3.2.1 Binarynotation 3
3.2.2 Hexadecimal notation 3
3.2.3 Bit/Byte naming conventions. 3
3.2.4 Acronyms and other abbreviations 3
SYStemM OVEIVIEW 3
4.1 Switchfunction. 3
4.2 Micropacket 4
4.3 MeSsage. 5
4.4 Admin micropackets. 5
4.5 Broadcast. 5
SWItCh processing ... e 5
5.1 Micropacket data passed through fabric 5
5.2 Routing of Header micropacket 6
5.2.1 Switchaddressing.......................... 6
5.2.2 Full Destination ULA processing. 6
5.2.3 Partial Destination ULA processing. 6
5.3 Routing of subsequent micropackets in a Message. 6
54 Error protection 7
5.4.1 Mandatory error checking 7
5.4.2 Optional errorchecking. 7
5.4.3 Congestion management 7
5.5 Datainterleaving 7
5.5.1 Micropacketinterleaving 7
5.5.2 Message/Admin micropacket interleaving. 7
Admin micropackets. 8
6.1 Elements 9
6.2 Admin micropacket functions. 9
6.3 Admin micropacketformat....................... ... 9
6.4 Admin micropacket commands and responses 11
6.41 PING..... ... 11
6.4.2 PING_RESPONSE 13
6.4.3 SET_ELEMENT ADDRESS................. 13
6.4.4 SET_ELEMENT_ADDRESS_RESPONSE...... 14
6.45 RESET 14
6.4.6 EXCHANGE_ELEMENT_FUNCTION. 14
6.4.7 ELEMENT_FUNCTION_RESPONSE.......... 15
6.48 ULA_REQUEST 15
6.49 ULA RESPONSE.............. 16
6.4.10 READ REGISTER 16

dpANS X3.xxx-199x

6.4.11 READ_REGISTER_RESPONSE 16

6.4.12 WRITE_REGISTER 17

6.4.13 WRITE_REGISTER_RESPONSE 17

6.4.14 INVALID_ COMMAND 17

6.4.15 ULA_LIST REQUEST 17

6.4.16 ULA_LIST_RESPONSE 18

6.4.17 PORT_REMAP 18

6.4.18 REMAP_RESPONSE 18

6.4.19 PORT_MAP_REQUEST.................... 19

6.4.20 PORT_MAP_RESPONSE................... 19

6.4.21 Reserved Admin micropacket functions 19

6.5 Sending Admin micropackets. 19

6.6 Addressing of Admin micropackets 20

6.7 Processing Admin micropackets 20

6.8 Admin Element address assignment 20

6.9 Admin micropacket flowcontrol 21

7 ULA configuration. 21
7.1 Determination of connectivity. 21

7.2 ULAexchange 23

7.2.1 Endpointsonbothends 23

7.2.2 Switchesonbothends 23

7.2.3 Endpointtoswitch............... 23

8 Broadcast/multicast 23
8.1 Broadcast/multicast operation 23

8.2 Supported broadcast and multicast ULAs 23

8.3 Registration for broadcast and multicast 24

8.4 Spanning tree operation. 24

9 Broadcast emulation. 24
9.1 Selection of broadcastserver. 25

9.2 Broadcast server configuration 25

9.3 Sending broadcast Messages 25

10 Configuration sequUeNncCe. i e 25

dpANS X3.xxx-199x

Figures
Figure 1 - SYSIEM OVEIVIEW ...t e e e e et e e e e enaeen 4
Figure 2 - Y LS EE Y= Vo TN (0] o = L O 5
Figure 3 - Header micropacket addressingcccueevieeiieiiiiiieeviiiiiieeeeeennns 6
Figure 4 - HIPPI-6400 SWItCH ...uvveeiiiiiis e 8
Figure 5 - Potential HIPPI-6400 Elements.........cccccoovveiviiiiiiiiecceeeiiee e, 8
Figure 6 - Admin micropacket byte format................cooviiii, 10
Figure 7 - Admin micropacket addreSSiNgccovvvviiiieiiiiiiiiieeeeeiin e 11
Figure 8 - Element function byte..........oooiviiiiiiiii e 14
Figure 9 - Endpoint to endpoint CONNECL.............ccoeeeeiiiiiiiieee 22
Figure 10 - Hosts and switch configurationcccccooeveiiiiiiiiiiecie e 27

dpANS X3.xxx-199x

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9

\Y

Tables
- Data carried through fabric.............cccccvviiiiiic e,
- Data to route 1st micropacket in a Message.........ccccvvvvvvveennnnnnn.
- Data to Route subsequent micropackets in a Message..............
- Data used for error checking and reporting...........ccccccveveveennnnnnn.
- Admin micropacket FOrmatccoooveeviiiiiiii e
- StAtUS flagS .ovveeiiiiie e
- Admin commands and reSPONSES.......c.uuvvieevieiiiiiieeeeiiiiiinieeeanns
- Supported broadcast and multicast ULAS............ccevvvviiniiivennnnn,
- Port [00K-Up tablecccooeiiieii e

Annex
SWItChiNg ... 27
Al General 27
A.2 Logicaladdressingt 27
A.3 Input specific logical addressing 28

dpANS X3.xxx-199x
Foreword (This Foreword is not part of American National Standard X3.xxx-199x.)

This American National Standard specifies the behavior and control for HIPPI-6400
physical layer switches. HIPPI-6400 is an efficient high-performance point-to-point
interface. HIPPI-6400 physical layer switches may be used to give the equivalent of
multi-drop capability, connecting together multiple data processing equipments.

This standard provides an upward growth path for legacy HIPPI-based systems.

This document includes annexes which are informative and are not considered part of
the standard.

Requests for interpretation, suggestions for improvement or addenda, or defect
reports are welcome. They should be sent to the National Committee for Information
Technology Standards (NCITS), ITI, 1250 Eye Street, NW, Suite 200, Washington, DC
20005.

This standard was processed and approved for submittal to ANSI by Accredited Stan-
dards Committee on Information Processing Systems, X3. Committee approval of the
standard does not necessarily imply that all committee members voted for approval.
At the time it approved this standard, the NCITS had the following members:

Karen Higgenbottom, Chairman (Acting)

Karen Higgenbottom, Vice-Chair
Monica Vago, Secretary

Organization Represented
AMP, Inc.

Apple Computer Inc.
AT&T

Bull HN Information Systems Inc.
Compaq Computer Corporation

Digital Equipment Corporation

Eastman Kodak Company
Hewlett-Packard Copany

Hitachi American Ltd.

Hughes Aircraft Company
IBM Corporation

Imation

Institute for Certification of Computer Professionals (ICCP)

Lucent Technologies Inc.

National Communications Systems

National Institute of Standards & Technology

Panasonic Technologies Inc.
Share Inc.

Sony Electronics Inc.

Name of Representative
John Hill

Charles Brill (Alt.)
David Michael

Jerry Kellenbenz (Alt.)
Thomas Frost

Paul Bartoli (Alt.)
Patrick L Harris
Stephen Heil

Steve Park (Alt.)

Scott Jameson
Richard Hovey (Alt.)
Michael Nier

Karen Higginbottom
Donald Loughry (Alt.)
John Neumann

Kei Yamashita (Alt.)
Harold Zebrack

Ron Silletti

Joel Urman (Alt.)
Philip E. Friedlund
Kenneth M. Zemrowski
Herbert Bertine

Tom Rultt (Alt.)

Dennis Bodson
William Olden (Alt.)
Frank McClelland (Alt.)
Michael Hogan

Bruce K. Rosen (Alt.)
Judson Hofmann

Y. Machida (Alt.)

Dave Thewlis

Gary Ainsworth (Alt.)
Masataka Ogawa
Michael Deese (Alt.)

vii

dpANS X3.xxx-199x

viii

Storage Technology Corporation
Sun Microsystems Inc.

Sybase Inc.

Texas Instruments Inc.

Unisys Corporation

U.S. Department of Defense/DISA
U.S. Department of Energy

Xerox Corporation

Joseph Zajaczkowski
Gary Robinson
Donald Deutsch
Clyde Camp

Fritz Whittington (Alt.)
Arnold F. Winkler
Stephen Oksala (Alt.)
C.J. Pasquariello (Alt.)
Carol Blackston
Bruce R. White (Alt.)
John B. Flannery
Roy Pierce (Alt.)

Technical Committee T11 on Device Level Interfaces, which reviewed this standard, had the fol-

lowing members:

Roger Cummings, Chairman
Ed Grivna, Vice Chairman

A. Abe

I. Ahmed
Allan
Allen
Anantharaman
. Atkinson
Baldwin
Bazaar
Berglund
Berman
Binford
Bossard
Boulay
Bowerman
Brill

. Bryant
Cady
Calle
Chang

. Chenery
Conroy
Cook
Coomes
Cornelius
Crouch
Crow
Daggett
Dahlgren
Darnell
Dedek

. Deming
Desai

. Dorsett
Dumont
Edge

. Fitzpatrick
Ford
Ford

. Foster
Foster
Franse

. Fredericks
. Frymoyer

MADZOUUZWEZIAOCNINOGIICTIRAIMEMEOSTVIOONOOTWI OO

. Gardner
Ghiasi
Griffin
Hagerman
Ham

. Harrington
Harris
Haydu
Hepner
Hoard

. Hollenback
Hudson
Hyer
Instone
Johnson
Johnson
Joiner
Jones
Jones
Karg

. Kelley
Kembel
Kembel
Ketchum
. Kleckowski
Kuypers
Kwiat

. LaFollette
Lawthers
Lee lll
Levin

. Lindsay
Lohmeyer
A. Martin

W. Martin

J. Mathis

J. McGrath
V. Melendy
G. Milligan
C. Monia

H. Naidu

J. Neer

J. Nelson

CHUIMUUAWAWICPZINCPVUWOUADZUL<ZAWOZ»M

C. Nieves

M. O'Donnell
J. Oliver

T. Palkert

J. Parker

R. Pedersen
D. Perkins

D. Peterson
W. Rickard
C. Ridgeway
R. Ronald

E. Rydell

J. Salamone
J. Schaefer
J. Scheible
P. Seto

B. Smith

R. Snively

R. Soderstrom
T. Sprenkle
J. Stai

G. Stephens
A. Stone

S. Swanson
T. Szostak
R. Taborek
J. Tatum

T. Thompson
L. Thorsbakken
D. Tolmie

H. Truestedt
S. Van Doorn
M. Wakeley
N. Wanamaker
G. Warden
C. Whitby-Strevens
B. Willard

J. Williams
S. Wilson

M. Wingard
K. Witte

R. Yonemoto
C. Zeitler

dpANS X3.xxx-199x
Task Group T11.1 on the High Performance Parallel Interface, which developed this standard,
had the following participants:

Don Tolmie, Acting Chairman
Roger Ronald, Vice Chairman and HIPPI-6400-SC Technical Editor

M. Bancroft A. Kelley

A. Beckman M. Kelley

B. Boas D. Knasel
G. Boyd M. Leib

H. Brandt J. Leitherer
C. Brill D. Liberty
D. Brown S. Locke

E. Cady B. McCoy
G. Chesson M. McGowen
J. Chung B. Newhall
R. Clarkson R. Nikel

H. Collins C. Olson

R. Cummings C. Pan

C. Davidson J. Parker

J. Davis D. Parry

R. DeFillips B. Pearson
M. Derstine I. Philp

M. Donhowe C. Pick

M. Doppke J. Pinkerton
A. G. Dornhoff J. M. Pittet
J. Ellis S. Quan

R. Ellison J. Renwick
M. Ficarra D. Sanders
S. Foreman C. Satterlee
C. Foster D. Schwartz
M. Foster W. St. John
F. Gaullier S. Swirhun
A. Ghiasi F. Templin
J. Gibbon C. Theorin
T. Gilbert H. Van Deusen
M. Griffin S. Van Doorn
M. Hoard B. Weber

J. Hoffman V. Welch
G. Huff A. Widmer
D. Hyer B. Willard
R. Hyerle J. Young

S. Joiner

M. Karg

dpANS X3.xxx-199x

Introduction

This 6400 Mbits/second High-Performance Parallel Interface, Physical Switch Control
(HIPPI-6400-SC) standard defines the control for HIPPI-6400 physical layer switches.
HIPPI-6400 is an efficient high-performance point-to-point interface. Small fixed-size
micropackets provide an efficient, low-latency, structure for small messages, and a
building block for large messages. HIPPI-6400 physical layer switches may be used to
give the equivalent of multi-drop capability, connecting together multiple data process-
ing equipments.

Characteristics of this HIPPI-6400 physical switch control protocol include

¢ support for 48-bit Universal LAN Addresses (ULAS);

* support for restricted mode operation with a 16-bit subset of the ULA,;

¢ procedures for use of Admin micropackets to automate ULA assignment;

¢ ability to span multiple physical layer switches within a fabric;

¢ support for physical layer switches with differing numbers of ports, all within the
same fabric;

* specified reserved ULAs to aid address self-discovery, switch management, and
switch control;

¢ support for 4 Virtual Channels; and

* broadcast capabilities with loop avoidance, using the IEEE 802.1d Spanning Tree
Algorithm and Protocol, either within a switch or provided by an attached server.

Working draft proposed American National Standard

ANSI| X3.xxx-199x

American National Standard
for Information Technology —

High-Performance Parallel Interface —

6400 Mbit/s Physical Switch Control (HIPPI-6400-SC)

1 Scope

This American National Standard provides switch
control for physical layer switches using the 6400
Mbits/second High-Performance Parallel Interface
(HIPPI-6400), a high-performance point-to-point
interface between data-processing equipment.

The purpose of this standard is to facilitate the
development and use of the HIPPI-6400 in com-
puter systems by providing common physical
switch control. The standard provides switch con-
trol structures for physical layer switches intercon-
necting computers, high-performance display
systems, and high-performance, intelligent block-
transfer peripherals. This standard also applies to
point-to-point HIPPI-6400 topologies.

Specifications are included for

- interleaving of Virtual Channels (VCs) within
a physical channel;

- selection of Messages for transmission on
physical channels;

- self discovery of configuration information;
and

- broadcast capability with loop avoidance
using the IEEE 802.1d Spanning Tree Algorithm
and Protocol.

2 Normative references

The following standards contains provisions which,
through reference in this text, constitute provisions
of this standard. At the time of publication, the edi-
tions indicated were valid. All standards are subject
to revision, and parties to agreements based on
this standard are encouraged to investigate the
possibility of applying the most recent edition of the
standard listed below.

Copies of the following documents can be obtained
from ANSI: Approved ANSI standards, approved
and draft international and regional standards
(ISO, IEC, CEN/CENELEC, ITUT) and approved
and draft foreign standards (including BSI, JIS, and
DIN). For further information, contact ANSI Cus-
tomer Service Department at 212-642-4900
(phone), 212-302-1286 (fax) or via the World Wide
Web at http://www.ansi.org. Additional availability
contact information is provided below as needed.

2.1 Approved references

ANSI X3.183-1991, High-Performance Parallel
Interface — Mechanical, Electrical, and Signalling
Protocol Specification (HIPPI-PH)

ANSI X3.210-1992, High-Performance Parallel
interface, Framing Protocol (HIPPI-FP)

ANSI X3.222-1993, High-Performance Parallel
interface, Physical Switch Control (HIPPI-SC)

ISO/IEC 10038/ANSI/IEEE 802.1D-1990, Media
access control (MAC) bridges, (Specifies the oper-
ation of transparent bridges between IEEE 802
conferment networks)

dpANS X3.xxx-199x

IEEE Std 802-1990, IEEE Standards for Local and
Metropolitan Area Networks: Overview and Archi-
tecture

ISO/IEC 8802-2:1989 (ANSI/IEEE Std 802.2-
1989), Information Processing Systems - Local
Area Networks - Part 2: Logical Link control

2.2 References under development

At the time of publication, the following referenced
standards were still under development. For infor-
mation on the current status of the document, or
regarding availability, contact the relevant stan-
dards body or other organization as indicated. For
more information about obtaining copies of this
document or for more information of the current
status of the document, contact National Commit-
tee for Information Technology Standards, 1250
Eye Street, NW, Suite 200, Washington, DC 20005,
202-626-5746.

ANSI X3.xxx-199x, High Performance Parallel
Interface 6400 Mbits/s, Physical Layer (HIPPI-
6400-PH)

3 Definitions and conventions

3.1 Definitions

For the purposes of this standard, the following
definitions apply.

3.1.1 Admin Element address: A 32-bit field
uniquely identifying an Element.

3.1.2 Admin micropacket: A HIPPI-6400 micro-
packet used for configuration and management.

3.1.3 administrator: A station management entity
providing external management control.

3.1.4 alternate pathing: Capability to address a
Message to select from a group of ports based upon
defined criteria.

3.1.5 broadcast: The capability for a Source to
send one Message that arrives at multiple Destina-
tions.

3.1.6 Destination: The receiving end of a physical
link.

3.1.7 Device: Any system level component (e.g.

endpoint or switch) with a HIPPI-6400 port.

3.1.8 Element: Any component of a HIPPI-6400
system that is able to receive, process, and send
Admin micropackets in a manner conforming to this
standard.

3.1.9 endpoint: A device that is capable of acting
as a Final Destination and/or an Originating Source.

3.1.10 fabric: All of the switching equipment and
resulting pathways connected together in a config-
uration.

3.1.11 Final Destination: The end device that re-
ceives, and operates on, the data payload portion of
the micropackets. This is typically a host computer
system, but may also be a translator, bridge, or
router.

3.1.12 HIPPI-PH: High-Performance Parallel Inter-
face - Mechanical, Electrical, and Signalling Proto-
col Specification (HIPPI-PH), ANSI X3.183-1991.
Data is transmitted in parallel over copper twisted-
pair cables at 800 or 1600 Mbits per second.

3.1.13 in-band: Switch control communications ac-
complished over a HIPPI-6400 link, as opposed to
using an alternative (non-HIPPI-6400) communica-
tion channel.

3.1.14 link: A full-duplex connection between HIP-
P1-6400-PH Devices.

3.1.15 link-end: A hardware device that terminates
one end of a link.

3.1.16 log: The act of making a record of an event
for later use.

3.1.17 Message: An ordered sequence of one or
more micropackets which have the same VC, Orig-
inating Source, and Final Destination. Messages
are the basic transfer unit between an Originating
Source and a Final Destination. The first micro-
packet of a Message is a Header micropacket. The
last micropacket, which may also be the first micro-
packet, has the TAIL bit set.

3.1.18 micropacket: The basic transfer unit con-
sisting of 32 data bytes and 64 bits of control infor-
mation.

3.1.19 optional: Characteristics that are not re-
quired by HIPPI-6400-SC. However, if any optional
characteristic is implemented, it shall be implement-
ed as defined in HIPPI-6400-SC.

3.1.20 Originating Source: The end device that
generates the data payload portion of the micro-

packets. This is typically a host computer system,
but may also be a translator, bridge, or router.

3.1.21 Source: The sending end of a physical link.

3.1.22 switch: An equipment that provides connec-
tions between HIPPI-6400 links based on this stan-
dard.

3.1.23 Universal LAN MAC Address (ULA): Alog-
ical address stored in a Source or Destination field
that uniquely identifies an Originating Source or Fi-
nal Destination. The ULA conforms to the 48-bit
MAC address specified by the IEEE 802 Overview
Standard.

3.1.24 Virtual Channel (VC): One of four logical
paths within each direction of a single link.

3.2 Editorial conventions

In this standard, certain terms that are proper
names of signals or similar terms are printed in
uppercase to avoid possible confusion with other
uses of the same words (e.g., FRAME). Any lower-
case uses of these words have the normal techni-
cal English meaning.

A number of conditions, sequence parameters,
events, states, or similar terms are printed with the
first letter of each word in uppercase and the rest
lowercase (e.g., State, Source). Any lowercase
uses of these words have the normal technical
English meaning.

The word shall when used in this American
National standard, states a mandatory rule or
requirement. The word should when used in this
standard, states a recommendation.

3.2.1 Binary notation

Binary notation is used to represent relatively short
fields. For example a two-bit field containing a
binary value of 10 is shown in binary format as
b'10".

3.2.2 Hexadecimal notation

Hexadecimal notation is used to represent some
fields. For example a two-byte field containing a
binary value of b’1100010000000011’ is shown in
hexadecimal format as x'C403'.

dpANS X3.xxx-199x

3.2.3 Bit/Byte naming conventions

As specified in HIPPI-6400-PH:

- In a parameter that uses multiple bytes, the
most-significant byte is the lowest-numbered
byte;

- In a parameter that uses multiple bits, the
most-significant bit is the highest-numbered bit.

3.2.4 Acronyms and other abbreviations

CRC cyclic redundancy check
ECRC end-to-end CRC
HIPPI High-Performance Parallel Interface

IP Internet Protocol

LAN local area network
MAC media access control
PH Physical

SC Switch Control

ULA universal LAN address
VC virtual channel

4 System overview

This paragraph provides an overview of the struc-
ture, concepts, and mechanisms used in HIPPI-
6400-SC. An example system configuration is
shown in figure 1.

4.1 Switch function

A HIPPI-6400 switch fabric provides a method to
send Messages from an Originating Source port to
a Final Destination port. Each Message travels on
one of the four Virtual Channels (VCs) available in
HIPPI-6400-PH (see HIPPI-6400-PH for assign-
ments of Message type to VC). All of the micro-
packets of a Message are transmitted on a single
VC, i.e., the VC number does not change as the
micropackets travel from the Originating Source to
the Final Destination over one or more links.

Different VCs are interleaved on the physical chan-
nel, allowing up to four Messages to proceed to a
Destination or from a Source at any given time.

During transfer of a Message, the VC in use is busy
and is unavailable for use by other Messages
involving the same Source or Destination ports.

dpANS X3.xxx-199x

S & D S | D
HIPPI-6400 HIPPI-6400 HIPPI-6400
Node Switch Node
D <@ — S D @] S
D S
<@— = HIPPI-6400 + *
<« = Other mediatype S D
S | =originating Source Translation
Function
D | =Final Destination
S | =Source
Other Media
Node
D | = Destination

Figure 1 - System overview

4.2 Micropacket

Micropackets are the basic transfer unit for HIPPI-
6400. As described in HIPPI-6400-PH, a micro-
packet is composed of 32 data bytes and 64 bits of
control information.

The 64 bits of control information in each micro-
packet includes parameters for physical (PH) layer
functions and for switch control (SC) functions.
These functions include

- selecting a VC;
- detecting missing micropackets;

- denoting the types of information in the
micropacket;

- marking the last micropacket of a Message;
and

- signalling that the Message was truncated at
its originator, or damaged en-route, and should
be discarded.

Table 1 describes the information that the switch
fabric propagates from a HIPPI-6400-PH Originat-
ing Source to a HIPPI-6400-PH Final Destination.

Table 2 and table 3 describe the information that a
switch fabric uses to determine micropacket rout-

ing.

Table 1 - Data carried through fabric

Description Size
ERROR 1 Bit
TAIL 1 Bit

VC 2 Bits
TYPE 4 Bits
ECRC 16 Bits
Payload Data 32 Bytes

Table 2 - Datato route 1st micropacketin a

Message
Description Size
TAIL 1 Bit
VC 2 Bits
TYPE 4 Bits
Payload Data 32 Bytes

Table 3 - Datato Route subsequent
micropackets in a Message

Description Size
TAIL 1 Bit
VC 2 Bits
TYPE 4 Bits

Table 4 contains information that can be used to
determine whether the micropacket contains errors
and a means to report discovered errors.

Table 4 - Data used for error checking and

reporting
Description Size
ERROR 1 Bit
TYPE 4 Bits
ECRC 16 Bits
Payload Data 32 Bytes

Note that there is information used by the switch
fabric that also is carried through it.

4.3 Message

As shown in figure 2, Messages are an ordered

1 Header information, Bytes 0-7
% 2 Bytes 8-39 of Message data
% g 3 Bytes 40-71 of Message data
S
o .Q
S E
s 2
© ‘
|_
n Last bytes of Message data

Figure 2 - Message format

sequence of micropackets which have the same
VC, Originating Source, and Final Destination. The
first micropacket of a Message, i.e., the Header
micropacket, contains information used to route
through a HIPPI1-6400 fabric (see figure 3) as well
as other information as specified in HIPPI-6400-
PH. The last micropacket of the Message is
marked with the TAIL bit.

dpANS X3.xxx-199x

4.4 Admin micropackets

HIPPI-6400-PH specifies a micropacket with Type
= Admin. HIPPI-6400 switches use Admin micro-
packets for configuration discovery, address
assignment, and broadcast configuration.

4.5 Broadcast

HIPPI-6400 switches provide a method for the
broadcast of Messages either directly or through
an external broadcast server. Broadcast Messages
are propagated along a loop-free spanning tree of
interconnected HIPPI-6400 switches. The span-
ning tree is constructed by using the IEEE 802.1d
Spanning Tree Algorithm and Protocol.

5 Switch processing

5.1 Micropacket data passed through fabric

A HIPPI-6400 switch shall propagate the informa-
tion shown in table 1 through the fabric. Micro-
packet data payload, the TAIL bit, the TYPE field,
the VC field, and the ECRC shall not be modified
while passing through a switch fabric. The ERROR
bit shall be transferred as set if it was received as
set. If the ERROR bit is received as not set, the bit
may be set to indicate a switch detected error as
described in 5.4.

dpANS X3.xxx-199x

5.2 Routing of Header micropacket

Figure 3 shows part of the Header micropacket.
The complete specification is provided in HIPPI-
6400-PH.

Within the Header micropacket, the Destination
ULA specifies the Final Destination where a Mes-
sage is to be sent.

The micropacket TYPE field (TYPE = x’9’) identi-
fies a micropacket as a Header micropacket.

TAIL = 1 on a Header micropacket indicates that
there are no other micropackets for this Message.

The micropacket VC field specifies one of four Vir-
tual Channels that this micropacket will use to
traverse the switch fabric (micropackets traverse a
fabric on a single VC and never cross VCs).

Switches should support independent ULA map-
ping for each input port. This permits mapping the
same ULA value to different output ports (but not
different Final Destinations; see 7.2.3) based upon
which input port received the micropacket. See
Annex A for an explanation of input port specific
switching functionality.

5.2.1 Switch addressing

Switches shall support a mode of operation that
provides in-order delivery of all micropackets on a
VC from an Originating Source to a Final Destina-
tion.

Switches may also provide optional modes of oper-
ation such as alternate pathing. These optional

Destination ULA
DB00-DB05

Source ULA
DB06-DB11

Defined in
HIPPI-6400-PH
DB12-DB31

Figure 3 - Header micropacket addressing

modes of operation are not covered by this stan-
dard and may not guarantee in-order Message
delivery.

5.2.2 Full Destination ULA processing

All 48 bits of the Destination ULA should be used
to determine the routing of Messages. Using the
entire Destination ULA provides transparent
addressing interoperability with other IEEE 802
compatible networks (e.g. Ethernet). Switches that
use 48-bit ULAs are also capable of interoperating
in fabrics that use less than 48 bits of ULA.

5.2.3 Partial Destination ULA processing

Less than the full 48-bit Destination ULA may be
used in a HIPPI-6400 switch where bridging to
other IEEE 802 media is not required.

A minimum of 8 bits of the Destination ULA shall be
used for determining the routing of Messages.
When part of the Destination ULA rather than the
entire Destination ULA is used for determining the
routing of Messages, the portion used shall be the
least significant bits of the Destination ULA (start-
ing with bit O of DB05).

Interoperability between switches that process a
subset of the Destination ULA occurs in the inter-
secting ULA ranges of all switches in a fabric. The
smallest range of ULAs supported by any switch
limits all switches in the same fabric to that limited
ULA range.

Administrators of a fabric processing less than the
entire 48-bit ULA shall manage the assignment of
ULAs to assure that unique addressing is provided
(see Clause 7). Techniques for such management
(e.g. table assignment, vendor specific switch-to-
switch communication) are beyond the scope of
this standard.

Since other IEEE 802 media do not support switch
controlled ULA assignment, the smaller ULA
ranges created by using partial ULA processing
effectively prevent transparent bridging.

5.3 Routing of subsequent micropackets in a
Message

Subsequent micropackets in a Message (identified
by TYPE = x'8’ or TYPEs x'B’ through X’E’) shall be

delivered to the same Final Destination as the
Header micropacket.

The VC field shall be used to distinguish which
Message the micropacket belongs to (of the four
VCs supported).

When a micropacket is received with the TAIL bit =
1, it indicates that the Message ends.

5.4 Error protection

If an uncorrectable error is detected in a micro-
packet that is forwarded, the switch shall set the
ERROR bit for that micropacket.

The ERROR bit may also have been set to indicate
uncorrectable errors detected prior to HIPPI-6400
origination.

Detected errors shall be logged.

5.4.1 Mandatory error checking

The switch fabric shall pass the unchanged ECRC
with each micropacket as specified in HIPPI-6400-
PH.

Before sending any micropacket over a HIPPI-6400
link, the switch shall validate the ECRC and set the
ERROR bit if the ECRC indicates an error as spec-
ified in HIPPI-6400-PH.

5.4.2 Optional error checking

The switch fabric may verify the validity of the
ECRC at any point within the fabric.

The switch may also provide additional error detec-
tion or correction for internal data errors.

5.4.3 Congestion management

Time-out mechanisms defined in HIPPI-6400-PH
will act to prevent switch congestion due to lack of
progress on a HIPPI-6400 link, so long as the
Source end of the link is functional. However, fail-
ures in switch Source ports can prevent this mech-
anism from functioning.

Switches shall protect against this failure mode by
checking Source output ports for continued proper
function and by discarding data destined for all
failed Source output ports.

dpANS X3.xxx-199x

5.5 Data interleaving

There are two separate requirements for switch
fairness to resolve contention for shared resources.
Both micropackets and Messages shall be inter-
leaved as described. These two interleaving pro-
cesses shall be considered independent and
applied without regard to each other.

5.5.1 Micropacket interleaving

Micropacket interleaving between the four VCs
shall be applied on a micropacket count basis.

When a switch port has more than one VC with
data available for output, the switch shall ensure
that micropackets from each VC are afforded an
equal opportunity for progress on a physical link.

The algorithm for choosing a micropacket from the
available VCs shall allow interleaving on a frequent
basis. The recommended algorithm is to interleave
VC streams on a single micropacket basis.

Implementations trying to keep short Messages
intact (to minimize latency) may use algorithms that
interleave on other than a single micropacket
basis. No implementations shall permit more than
69 micropackets from a particular VC to be trans-
ferred before moving on to the next VC. This limit
allows transfer of the maximum permitted VCO
Message (as specified in HIPPI-6400-PH).

Figure 4 shows a simplified switch configuration
with two input ports and one output port. Assuming
that traffic is available to send to port “C” on more
than one VC, a compliant switch alternates
between providing output across all busy VCs on
link “C”, not exceeding the micropacket count limit
before switching from one VC to the next VC.

5.5.2 Message/Admin micropacket interleaving

Message and Admin micropacket interleaving shall
be applied whenever a current Message (or Admin
micropacket) to an output port is completed.

When a switch has more than one input port with
Messages or Admin micropackets ready for trans-
fer to the same output port (on the same VC), the
switch shall ensure that Messages and/or Admin
micropackets from the input ports are afforded an
equal opportunity for progress. All ports with pend-
ing Messages or Admin micropackets shall be ser-
viced prior to any other port being serviced twice.

dpANS X3.xxx-199x

In figure 4, an example would be if both port “A”
and port “B” have multiple Messages available on
their VCO links ready to send to port “C". In this
example, Messages transferred out VCO of port “C”
are required to alternate between Messages from
“A” and “B".

6 Admin micropackets

Admin micropackets are used for support and ini-
tialization of HIPPI-6400 links, Elements, and sys-
tems. Each labeled component in figure 5 could be
an Element.

There are two basic types of Admin micropacket
function:

- Within a HIPPI-6400 endpoint or switch,
Admin micropackets can be used for internal
control of components. This internal usage is
done for vendor convenience and is not
required to support HIPPI-6400 functionality.
Many of the defined Admin micropacket com-

Host
Adapter
Host
System Link-end
Elements
Switch
Port Card
Switch

Figure 5 - Potential HIPPI-6400 Elements

mands will be useful for this control, but the
commands used for ULA assignment will not be
applicable;

- From one HIPPI-6400 Device (e.g. switch or
endpoint) to another, Admin micropackets are
used for topology discovery, ULA assignment,
support of message broadcast, and ULA dis-
covery. The ability to send and then receive an

VCO A

VC1 A
6400 Link Dest

VC2 A

VC3 A

VCO B

B

VC1B

6400 Link Dest

VC2B

Nl

VC3 B

Switch
Core
VCOC
/V' VC1C \ C
~—a Vo G v 6400 Link Source
VC3 C

Figure 4 - HIPPI-6400 Switch

echoed micropacket may also be useful as a
diagnostic feature. Most other Admin micro-
packet commands are not useful in this context.

6.1 Elements

An Element is any component of a HIPPI-6400
system that is able to receive, process, and send
Admin micropackets in a manner conforming to this
standard.

Each end of a HIPPI-6400 link shall operate as an
Element. Other components of switches or adapt-
ers may optionally conform to the Element defini-
tion. These could include adapter cards, integrated
circuits, or software entities.

At a minimum, Elements shall support commands
and responses for the discovery of Element func-
tion, ULA assignment, and ULA discovery. Imple-
mentation of other functions called for by Admin
micropacket commands are optional.

All Elements shall respond to each Admin micro-
packet command (except RESET, for which no
response is ever made) with the specified
response Admin micropacket (see 6.9) or with an
INVALID_COMMAND Admin micropacket. If an
Element does not implement an Admin command,
it shall return status to that effect in the response
micropacket.

6.2 Admin micropacket functions

A small set of commands allow for

- diagnostic “pings” between HIPPI-6400 Ele-
ments, either locally or across a link;

- initial Element address assignment;

- discovery of the function of an Element (e.g.
switch or non-switch);

- HIPPI-6400 Source ULA assignment;

- discovery of Destination ULAs attached to a
local switch;

- registration for broadcast;

- selection/configuration of a broadcast

server; and

- vendor defined register access/functionality.

dpANS X3.xxx-199x

6.3 Admin micropacket format

Table 5 and figure 6 both show the format of an
Admin micropacket. Admin micropackets shall con-
tain the following fields:

- Key: The Key field is used in certain opera-
tions to validate that the originator is authorized
to perform the requested operation. Because
the key is only 8 bits in length and is returned in
response to the SET_ELEMENT_ADDRESS,
the protection provided by the key is minimal
and only protective against accidental changes.
Vendors may also choose to protect their sys-
tem configuration in other unspecified ways. For
example, a vendor may only allow commands
that cause configuration changes to occur
through a specific port;

- Hop Count: If the incoming hop count is
zero, the micropacket shall be processed or dis-
carded without a response. If the destination
Admin Element address is X’FFFFFFFF’, a hop
count of zero shall indicate that the Admin
micropacket is valid for local processing. All
other hop count values in conjunction with a
destination Admin Element address of
X'FFFFFFFF’ indicate that the micropacket shall
continue to be forwarded. The value contained
in the Hop Count field shall be decremented by
one each time an Admin micropacket exits an
Element. If an Admin micropacket is received
without a valid Element address match and it
cannot be forwarded, it shall be discarded with-
out a response. See figure 7 for a diagram
showing how Element addresses are pro-
cessed;

- Destination Admin Register: The Destination
Admin Register field specifies a register within a
HIPPI-6400 Element. There are no specific reg-
isters required in any Element by this standard
and use of any register(s) is optional,

- Destination Admin Element Address: The
Destination Admin Element Address field shall
be used to specify a particular Element of a
HIPPI-6400 system that is the destination of an
Admin micropacket command;

- Admin Command: The Admin Command
field shall contain a value to specify the mean-
ing and interpretation of the Admin micropacket.
Table 7 contains all of the defined values, along
with a description of the functions and parame-
ters associated with each command;

dpANS X3.xxx-

Table 5

199x

- Admin micropacket Format

Byte

Function

0

Key

1

Hop Count

2:3

Destination Admin Register
(designates a local register
within an Element)

4.7

Destination Admin Element
Address (Destination Element
address in a HIPPI-6400
domain)

Admin Command (see table 7)

Status flags (see table 6) /
Return Hop Count

10:12

Source Admin Register (desig-
nates a local register within an
Element)

12:15

Source Admin Element Address
(Source Element address in a
HIPPI-6400 domain)

16:31

Data Register

Byte 0 of micropacket

- Status Flags / Return Hop Count: When the
Admin micropacket is a command, the Return
Hop Count field shall be used to communicate
the proper hop count value for returning status.
The Return Hop Count field may be set to X'FF’
when using Element addressing in lieu of a spe-
cific return distance. When the Admin micro-
packet is a response, the Status Flags field shall
be used to return operation results. Table 6 pro-

Table 6 - Status flags

it Meaning

Undefined Operation

Invalid Key

Parameter Out of Range

reserved

Invalid Register Address

Data Register not Valid

Unimplemented Command

N|ojlo]l bW N]|R]|OT

Command Failed

Byte 3 of micropacket

Key

Hop Count

Destination Admin Element Register

Destination Admin Element Address

Command (table 7)

Status Flags/Return Hop

Source Admin Element Register

Source Admin Element Address

Data Register (Bytes 0:3)

Data Register (Bytes 4:7)

Data Register (Bytes 8:11)

Data Register (Bytes 12:13)

Data Register (Byte 14) | Data Register (Byte 15)

10

Byte 31 of micropacket

Figure 6 - Admin micropacket byte format

Local
Element
Address =
x'FFFFFFFF'?

Destination
Element
Address

matches local

Element
address?

Destination
Element
Address =
X'FFFFFFFF
and Hop
Count=0?

Hop Count =
0 or single
port Element?

Decrement
Hop Count
and forward
micropacket

Process
within the
local Element

Discard
micropacket

Figure 7 - Admin micropacket

addressing

dpANS X3.xxx-199x

vides definitions for each bit. In each case, flag
bit = 1 indicates that the listed exception has
occurred;

- Source Admin Register: The Source Admin
Register field may be used to specify a register
within a HIPPI-6400 Element that can be used
as a “reply-to” Element address for certain oper-
ations. There are no specific registers required
in any Element by this standard;

- Source Admin Element Address: The
Source Admin Element Address field is used to
specify the particular Element of a HIPPI-6400
system that initiated a sequence of Admin pack-
ets. The source Admin Element address shall
be used as a “reply-to” Element address;

- Data Register: The Data Register is a 16-
byte field that shall be used to carry data for any
Admin operation.

Unused fields shall be sent as zeros.

6.4 Admin micropacket commands and
responses

Descriptions are provided for each of the Admin
commands and responses. Some commands are
described completely in the following paragraphs.
Other commands are building blocks for functions
that will be described in later clauses, such as ULA
configuration and the broadcasting of Messages.

Commands may be inappropriate when issued in
some circumstances. For example, requesting that
a host change its switch addressing using the
PORT_REMAP command is inappropriate
because hosts are not switches. Elements shall
respond to inappropriate commands with either the
paired response for the command or the
INVALID_COMMAND response, setting the Unim-
plemented Command flag or the Undefined Opera-
tion flag in the flag byte.

Each response shall set the appropriate status
flags as specified in table 6.

6.4.1 PING

PING may be used to request a response micro-
packet for diagnostic validation. The Data Register
field may be used to send data that will be echoed
in the PING_RESPONSE.

The receiving Element shall return a
PING_RESPONSE.

11

dpANS X3.xxx-199x

Table 7 - Admin commands and responses

Cmnd \% Key Implementation Typically Sent
Value Function C | Req'd? Action Required? By
x'0’ PING 1 | No Asks for a No An Element that
PING_RESPONSE collects status
X1 PING_RESPONSE 2 | No Acknowledges the Yes Any Element
PING command
X2’ SET_ELEMENT _ 1 | Yes, Set Admin Element No An Element that
ADDRESS except address configures and/
first time or controls other
after Elements
reset
X'3’ SET_ELEMENT _ 2 | Yes Acknowledges the No An Element that
ADDRESS SET _ELEMENT _ is configured by
RESPONSE ADDRESS command an external Ele-
ment
x4 RESET 1 | Yes Commands Element to No An Element that
initialize itself configures and/
or controls other
Elements
X'5’ EXCHANGE_ 1 | No Provides and requests Yesforendpoints | Switches and
ELEMENT _ Element Function and switch Ele- endpoints
FUNCTION ments
X'6’ ELEMENT _ 2 | No Response to a Yes All Elements
FUNCTION_ EXCHANGE_
RESPONSE ELEMENT_FUNCTION
command
X7 ULA_REQUEST 1 | No Requests a Source ULA | Yesforendpoints | Switches and
and switch Ele- endpoints
ments, not
required for links
x'8’ ULA_RESPONSE 2 | No Provides a Source ULA | Yes for switch Switches
Elements, not
required for end-
points or links
X9’ READ_REGISTER 1 | Optional | The sender requests a | No An Element that
register value configures and/
or controls other
Elements
XA READ_REGISTER_ 2 | No Returns data from the | No An Element that
RESPONSE requested register is configured
and/or con-
trolled by other
Elements
xX'B’ WRITE_ 1 | Optional | Requests that a register | No An Element that
REGISTER value be updated configures and/
or controls other
Elements
x'C’ WRITE_ 2 | No Status for a No An Element that
REGISTER_ WRITE_REGISTER is configured
RESPONSE and/or con-
trolled by other
Element

12

dpANS X3.xxx-199x

Table 7 - Admin commands and responses

Cmnd \% Key Implementation Typically Sent
Value Function C | Req'd? Action Required? By
x'D’ INVALID_ 2 | No Response to an unrec- Yes Any Element
COMMAND ognized or unimple-
mented command
X'E’ ULA _LIST_ 1 | No Asks for a list of con- No Broadcast server
REQUEST nected ULAs
X'F" ULA_LIST_ 2 | No Provides a list of con- Yes for switches | Switches
RESPONSE nected ULAs
x'10’ PORT_REMAP 1| Yes Changes the ULA to No Broadcast server
port routing for one
input port
X1 REMAP_RESPONSE | 2 | No Status for a Yes for switches | Switches
PORT_REMAP
x'12’ PORT_MAP_ 1 | Optional | Getsthe physical switch | No Broadcast server
REQUEST port used to send to a
given ULA
X'13’ PORT_MAP_ 2 | No Returns the physical Yes for switches | Switches
RESPONSE switch port used to
send to a given ULA
x'14’ - | Reserved N | N/A Not defined No N/A
X7F /
A
x'80’- Vendor defined 1 | Optional | Optional action defined No Vendor unique
X'FF’ / uniquely by vendor
2 (commands must be
senton VC1, responses
must be sent on VC2)

Unigueness of a particular PING_RESPONSE
after a PING time-out can be established by send-
ing different values in the Data Register.

6.4.2 PING_RESPONSE

PING_RESPONSE is the response to the PING
command.

The receiving Element may use this response to
validate that the PING’ed Element is operational.
The Data Register field shall contain a copy of the
data originally sent in the PING command.

6.4.3 SET_ELEMENT_ADDRESS

SET_ELEMENT_ADDRESS may be used to con-
figure an Element with a specific Element address.

The use of Admin micropacket commands for Ele-
ment address assignment is optional. No Element
is required to assign Element addresses.

If this is the first SET_ELEMENT_ADDRESS com-
mand received after a reset, the value in the Key
field shall be ignored. Later uses of the
SET_ELEMENT_ADDRESS command shall vali-
date that the Key field value matches the current
key.

If the above criteria for key value are met, the
receiving Element shall set its Admin Element
address to be equal to the value set in the lower 4
bytes (12:15) of the Data Register field and shall
set its key value to the new key provided in byte 8
of the Data Register. The provided key shall be
retained for subsequent command validity check-
ing. Once the Admin Element address is set, it
shall not be changed without validating the key
value or until the Element is reset.

The receiving Element shall respond with a
SET_ELEMENT_ADDRESS_RESPONSE or an
INVALID_COMMAND.

13

dpANS X3.xxx-199x

The action of this command will override previous
usage of the command. Therefore, the
SET_ELEMENT_ADDRESS may be safely reis-
sued if a previous invocation timed-out without a
response.

6.4.4 SET_ELEMENT_ADDRESS_RESPONSE

SET_ELEMENT_ADDRESS_RESPONSE is a
response to the SET_ELEMENT_ADDRESS com-
mand.

If this response is sent by an Element capable of
setting its Element address, the current valid key
shall be returned in byte 8 of the Data Register
field and the current Element address of this Ele-
ment shall be returned in the lower 4 bytes (12:15)
of the Data Register field. The current Element
address and proper key value shall be returned
regardless of the success or failure of the
SET_ELEMENT_ADDRESS operation.

The use of Admin micropacket commands for Ele-
ment address assignment is optional. An Element
incapable of setting its Element address shall set
the Unimplemented Command flag or the Unde-
fined Operation flag in the flag byte of its response.

6.4.5 RESET

RESET shall cause an Element to initialize itself.
This includes clearing the current Element address
and key. It may also include other vendor unique
functions and may not be the same as the actions
caused by a HIPPI-6400 link reset or initialize.

RESET may be propagated further depending
upon vendor specific implementation and configu-
ration.

There is no response for a RESET. An
INVALID_COMMAND shall not be sent when
receiving a RESET, even if the command is unim-
plemented.

6.4.6 EXCHANGE_ELEMENT_FUNCTION

The sender provides its Element function value and
Element broadcast configuration in byte (15) of the
Data Register. Figure 8 shows the byte format.

The receiver shall respond with an
ELEMENT_FUNCTION_RESPONSE.

14

Broadcast desired
Broadcast server

Broadcast list change

/ Inactive Element

Element
Function

Figure 8 - Element function byte

Element function shall be one of the following in the
lower four bits of byte (15):

- Switch Element (b’0000’): Used for switches;

- Link-end Element (b’0001"): Used when the
Element is a link-end;

- Non-switch Element (b’0010’): Used for an
endpoint Element; and

- Unknown Element (b’0011’): Any element
not included in the other categories.

Unused Element function values are reserved.

The fourth most significant bit in the Element func-
tion byte (labeled in figure 8 as “inactive Element”)
shall be used to indicate an inactive Element.

The upper three bits in the Element function byte
shall be used to communicate broadcast parame-
ters (see 8 and 9 for a description of broadcast
functions). An inactive Element shall set the upper
three bits in the Element function byte to zero.
Active Elements shall set the broadcast configura-
tion as follows:

- The most significant bit, if set to b'1’, shall
indicate that this Element desires to receive
broadcast Messages;

- The second most significant bit, if set to b'1’,
shall indicate that this Element is able and will-
ing to act as a broadcast server for this switch;

- The third most significant bit shall be set to
b’0’ in the EXCHANGE_ELEMENT_FUNCTION
(this bit is used in the
ELEMENT_FUNCTION_RESPONSE).

Elements able and willing to act as a broadcast
server for this switch shall issue this operation at

least once per second and no more than twice per
second.

The receiver of an
EXCHANGE_ELEMENT_FUNCTION with the
inactive Element bit shall

- invalidate any Source ULAs previously nego-
tiated with the inactive Element;

- remove the inactive Element from eligibility
for broadcast server functions; and

- end transmission of all HIPPI-6400 mes-
sages to the inactive Element.

Other bytes in the Data Register are defined as
Vendor Unique and may be used in any way
desired by the equipment provider.

This command may be safely reissued if it has
timed-out without a response. Any response from
the same Destination should provide identical
results.

6.4.7 ELEMENT_FUNCTION_RESPONSE

ELEMENT_FUNCTION_RESPONSE is the
response to the
EXCHANGE_ELEMENT_FUNCTION command.

The sender shall return its Element function value
and Element broadcast configuration in byte (15) of
the Data Register. Figure 8 shows the byte format.

Element functions are specified in the
EXCHANGE_ELEMENT_FUNCTION command.

If the Element function byte of the
EXCHANGE_ELEMENT_FUNCTION specifies an
inactive Element (indicated by setting the fourth
most significant bit as shown in figure 8) the upper
three bits in the Element function byte of the
ELEMENT_FUNCTION_RESPONSE shall be set
to zero.

If the Element function byte of the
EXCHANGE_ELEMENT_FUNCTION does not
specify an inactive Element, bits shall be returned
in the ELEMENT_FUNCTION_RESPONSE as fol-
lows:

- The most significant bit of the Element func-
tion byte shall be echoed as received;

dpANS X3.xxx-199x

- The second most significant bit of the Ele-
ment function byte shall be set to b'l’ if the
switch has selected the receiver of this
response to be the broadcast server for this
switch. The bit will be set to b’0’ if the receiver of
this response has not been selected to be the
broadcast server for this switch;

- All Elements other than switches shall set
the third most significant bit to b’0’. A switch
shall set the third most significant bit to b’0’ to
indicate that there is no change in the list of
ports registered to receive broadcasts. If the list
of ports registered to receive broadcasts has
changed since the first port in the switch (port
one) has been read by the current active broad-
cast server (see ULA _LIST _REQUEST/
ULA_LIST_RESPONSE), the switch shall set
the third most significant bit to b’1’ and maintain
this setting until a ULA_LIST_REQUEST from
the current active broadcast server has been
received for the first switch port.

The receiver of an
ELEMENT_FUNCTION_RESPONSE with the
inactive Element bit set shall

- invalidate any Source ULAs previously nego-
tiated with the inactive Element;

- remove the inactive Element from eligibility
for broadcast server functions; and

- end transmission of all HIPPI-6400 mes-
sages to the inactive Element.

Other bytes in the Data Register are specified as
Vendor Unique and may be used in any way
desired by the equipment provider.

6.4.8 ULA_REQUEST

The sender requests that the receiver return a
HIPPI-6400 ULA.

The receiving Element shall respond with a
ULA_RESPONSE or an INVALID_COMMAND.

The ULA_REQUEST command shall only be sent
to switch Elements. If the request is made by an
endpoint, the sender is requesting a Source ULA
from the receiving switch. If the sender is a switch,
the sender is requesting the ULA of the receiving
switch.

15

dpANS X3.xxx-199x

Endpoint senders shall provide an offered base
ULA in bytes (10:15) of the Data Register.

The most significant bit of byte 6 of the Data Regis-
ter shall indicate that this is an additional request
for an address and that previous addresses
assigned to this port shall be retained as valid in
addition to the address(es) assigned by this
instance of the command. The balance of bytes
(6:7) shall contain a count of desired addresses.

There are no parameters when this command is
issued by a switch.

As specified in 7.2, this command is normally
issued by endpoints or switches.

As long as the most significant bit of byte 6 of the
Data Register is not set, the action of this com-
mand will override previous uses of the command.
In this case, this command may be safely reissued
after a time-out.

If the most significant bit of byte 6 of the Data Reg-
ister is set and the operation times out, re-issuance
of a timed out command could result in duplicate
ULA registrations. When multiple ULAs are being
requested with more than a single operation and a
time-out occurs, the process shall be re-initiated
and start with an operation that has the most signif-
icant bit of byte 6 of the Data Register not set.

6.4.9 ULA_RESPONSE

ULA_RESPONSE is a
ULA REQUEST command.

response to the

If the original ULA_REQUEST was received from a
switch, Bytes (10:15) of the Data Register shall
contain the ULA of the switch sending the
ULA_RESPONSE.

If the ULA_REQUEST was received from an end-
point, Bytes (10:15) of the Data Register shall con-
tain a ULA for the receiver to use as a Source ULA.
This may or may not be the offered Source ULA
passed in the ULA_REQUEST command. For a
receiver needing to add a single Source ULA, this
value shall be directly utilized.

If the most significant bit of byte 6 is set, it indicates
that the Source ULA(s) assigned shall be consid-
ered as additional to those assigned in a previous
ULA_REQUEST/ULA_RESPONSE operation. For
a receiver needing multiple Source ULAs, the bal-

16

ance of bytes (6:7) shall be used as a count of
sequential ULAs that start at the base value con-
tained in bytes (10:15) of the Data Register.

The first ULA registered on a port using the
ULA_REQUEST/ULA_RESPONSE shall be the
only Source ULA used for sending broadcast Mes-
sages from this port.

As specified in 7.2, this response is issued by
switch Elements.

6.4.10 READ_REGISTER

The sender requests a value from the register
specified in the Destination Admin Element Regis-
ter.

The receiving Element shall respond with a
READ_REGISTER_RESPONSE or an
INVALID_COMMAND.

The use of Admin micropackets for register access
is optional. If register access commands are sup-
ported, there are no requirements for particular
functions or modes specified by this standard.

Contents of registers and their meaning are not
specified in this standard.

Register reads should not be destructive (the regis-
ters should retain their values even after being
read). This practice will allow re-reading of regis-
ters in the event of a READ_REGISTER time-out.

6.4.11 READ_REGISTER_RESPONSE

READ_REGISTER_RESPONSE is a response to
the READ_REGISTER command.

The sender shall return the data from the
requested register in the Data Register field.

- Single bytes are sent in byte (15);
- Two-byte words are sent in bytes (14:15);
- Four-byte words are sent in bytes (12:15);

- Eight-byte words are sent in bytes (8:15);
and

- Sixteen-byte words sent in bytes (0:15).

The use of Admin micropackets for register access
is optional. If register access commands are sup-
ported, there are no requirements for particular
functions or modes specified by this standard. Ele-

ments incapable of supporting this operation shall
set the Unimplemented Command flag or the
Undefined Operation flag in the flag byte of their
response.

Contents of registers and their meaning are not
specified in this standard

6.4.12 WRITE_REGISTER

The sender requests that a register value be
updated with the value contained in the Data Reg-
ister.

- Single bytes are sent in byte (15);
- Two-byte words are sent in bytes (14:15);
- Four-byte words are sent in bytes (12:15);

- Eight-byte words are sent in bytes (8:15);
and

- Sixteen-byte words are sent in bytes (0:15).

The receiving Element shall respond with a
WRITE_REGISTER_RESPONSE or an
INVALID_COMMAND.

The use of Admin micropackets for register access
is optional. If register access commands are sup-
ported, there are no requirements for particular
functions or modes specified by this standard. No
Element is required to issue this command.

Contents of registers and their meaning are not
specified in this standard.

Registers should be designed so that the
WRITE_REGISTER command can be verified if
the response times out. This can be accomplished
by making writable registers readable with the
READ_REGISTER command.

6.4.13 WRITE_REGISTER_RESPONSE

WRITE_REGISTER_RESPONSE is a response to
the WRITE_REGISTER command.

The sender shall echo the value written to the
specified Data Register. The contents of the Data
Register shall be sent as zeros if the update was
not successful.

The use of Admin micropackets for register access
is optional. If register access commands are sup-
ported, there are no requirements for particular

dpANS X3.xxx-199x

functions or modes specified by this standard. Ele-
ments incapable of supporting this operation shall
set the Unimplemented Command flag or the
Undefined Operation flag in the flag byte of their
response.

Contents of registers and their meaning are not
specified in this standard.

6.4.14 INVALID_COMMAND

INVALID_COMMAND is a response when an
unrecognized or unimplemented command other
than RESET is received on VC1.

INVALID_COMMAND is a possible response to
- SET_ELEMENT_ADDRESS;
- ULA_REQUEST;
- READ_REGISTER;
- WRITE_REGISTER,;
- ULA_LIST_REQUEST;
- PORT_REMAP; and
- PORT_MAP_REQUEST.

Elements sending an INVALID_COMMAND shall
set the Unimplemented Command flag or the
Undefined Operation flag in the flag byte of their
response.

Byte (15) of the Data Register shall contain the
Admin command value from the micropacket that
was the cause of this response.

6.4.15 ULA_LIST_REQUEST

ULA_LIST_REQUEST may be sent to Switch Ele-
ments to request information on whether attached
HIPPI-6400 endpoints are registered to receive
broadcast Messages and to learn the Source ULA
that will be used for all broadcast Messages origi-
nated from the endpoint. The list also includes
ULAs for communicating with attached switches
and a ULA for the responding switch.

One request may be made to learn the status for
each physical port of the switch or to learn the ULA
of the responding switch.

The receiving Element shall respond with a
ULA_LIST_RESPONSE or an
INVALID_COMMAND.

17

dpANS X3.xxx-199x

The Data Register (byte 2:3) shall contain a num-
ber (O for the switch or 1 thru n, corresponding to
the physical port numbering) to identify which posi-
tion in the list is being requested).

This command may be safely reissued if it has
timed-out without a response. Any response from
the same Destination should provide current
results.

6.4.16 ULA_LIST_RESPONSE

ULA_LIST_RESPONSE is a

ULA LIST_REQUEST.

response to a

Switches shall use this response to provide visibil-
ity into a sequentially organized list.

The list shall contain one entry for the responding
switch (numbered as 0) and one entry for each
physical port of this switch (humbered 1 thru n).

- For the responding switch, the ULA shall be
the unique address assigned for use by the
IEEE 802.1d Spanning Tree Algorithm and Pro-
tocol.

- For attached switches, the port ULA shall be
the unique address assigned to the attached
switch for use by the IEEE 802.1d Spanning
Tree Algorithm and Protocol (learned by the
responding switch through the switch-to-switch
ULA_REQUEST/ULA_RESPONSE).

- For attached endpoints, the port ULA shall
be the first ULA registered using the
ULA_REQUEST/ULA_RESPONSE.

Byte (0) of the ULA_LIST_RESPONSE shall
include the Element Function byte for the port,
including the upper two bits in the Element Func-
tion used to communicate broadcast configuration
parameters. The bit that signifies the broadcast
server shall only be set for the port of the broad-
cast server and shall be zeroed for all other ports.
Ports in the switch that are not configured for oper-
ation (but are within the 1 thru n range) as well as

ports that have not performed both the
EXCHANGE_ELEMENT_FUNCTION/
ELEMENT_FUNCTION_RESPONSE and

ULA_REQUEST/ULA_RESPONSE shall
Byte (0) = b’00000011".

return

Bytes (2:3) of the ULA_LIST_RESPONSE shall
contain the list number copied from the
ULA_LIST_REQUEST.

18

Bytes (10:15) of the Data Register shall contain the
port ULA.

When access is attempted to list values not
included in the list (past the end of the list), the
Parameter Out of Range bit shall be set in the
response. The Operation Failed bit shall not be set
in this case.

Elements incapable of supporting this operation
shall set the Unimplemented Command flag or the
Undefined Operation flag in the flag byte of their
response.

6.4.17 PORT_REMAP

PORT_REMAP may be sent to request a modifica-
tion in the port mapping table used for selection of
an output switch port (from the Destination ULA
contained in a micropacket). The operation
requests a new port mapping for a single ULA on
one input port. Ports are numbered from 1 thru n,
corresponding to the physical port numbering.

The receiving Element shall respond with a
REMAP_RESPONSE or an INVALID_COMMAND.

Bytes (10:15) of the Data Register shall contain the
Destination ULA being remapped.

Bytes (2:3) shall identify the input port being
remapped.

Bytes (6:7) shall indicate the switch output port to
be used when the specified Destination ULA is
received on the specified switch input port. A zero
value in bytes (6:7) shall signify that there is no
valid port mapping for this ULA on the specified
input port (i.e., Messages sent to this ULA on the
specified input port shall be discarded).

The PORT_REMAP operation shall only be
allowed for the port that has been selected as the
broadcast server.

The action of this command will override previous
usage of the command. Thus, this command may
be safely reissued after a time-out.

6.4.18 REMAP_RESPONSE

REMAP_RESPONSE is a
PORT_REMAP command.

response to the

REMAP_RESPONSE shall be sent after the
PORT_REMAP operation has been completed.
This sequence (completing the action prior to
sending the status) allows the PORT_REMAP initi-
ator to determine when he may send a HIPPI-6400
Message and have it transmitted through the
switch to the new desired output port.

All bytes of the Data Register shall echo the data
sent in the PORT_REMAP operation.

If a request is made to remap a port that is physi-
cally not present in the switch, the Parameter Out
of Range bit shall be set in the response and the
command shall not be performed.

PORT_REMAP operations shall be rejected if initi-
ated over any port other than the one that has been
selected to be the broadcast server.

The Operation Failed bit shall be set in any case
where the remapping operation fails or if the opera-
tion is rejected.

Elements incapable of supporting this operation
shall set the Unimplemented Command flag or the
Undefined Operation flag in the flag byte of their
response.

6.4.19 PORT_MAP_REQUEST

PORT_MAP_REQUEST may be used to request
the return of an entry in the port mapping table
used to map a ULA to a physical port. The opera-
tion requests a port mapping for a single ULA on
one input port.

The receiving Element shall respond with a
PORT_MAP_RESPONSE or an
INVALID_COMMAND.

Bytes (10:15) of the Data Register shall contain the
requested Destination ULA mapping.

Bytes (2:3) shall identify the input port.

This command may be safely reissued if it has
timed-out without a response. Any response from
the same Destination should provide equivalent
results.

6.4.20 PORT_MAP_RESPONSE

PORT_MAP_RESPONSE is a response to the
PORT_MAP_REQUEST.

dpANS X3.xxx-199x

Switches shall use this response to return the
physical port mapping that will be used for sending
to a specified Destination ULA on an input port.
Ports are numbered from 1 thru n, corresponding
to the physical port numbering.

Bytes (2:3) of the Data Register shall echo the
input port sent in the PORT_MAP_REQUEST
operation.

Bytes (6:7) of the Data Register shall indicate the
switch output port to be used when the Destination
ULA is received on the specified switch input port.
A zero value shall signify that there is no valid port
mapping for this ULA on this input port (i.e., Mes-
sages sent to this ULA will be discarded).

Bytes (10:15) of the Data Register shall echo the
Destination ULA sent in the
PORT_MAP_REQUEST operation.

If a request is made for a ULA that is not mapped
for the specified input port, the Parameter Out of
Range bit shall be set in the response. The Opera-
tion Failed bit shall not be set in this case.

Elements incapable of supporting this operation
shall set the Unimplemented Command flag or the
Undefined Operation flag in the flag byte of their
response.

6.4.21 Reserved Admin micropacket functions

Reserved Admin micropacket functions shall not
be sent.

Receivers shall perform normal Element address
processing and forwarding of Admin micropackets,
regardless of the Function code.

Micropackets received for local processing with
Reserved Function codes shall be responded to by
an INVALID_COMMAND with the status flag set for
an Unimplemented Command or an Undefined
Operation.

6.5 Sending Admin micropackets

Admin micropackets shall be sent on the following
VC specified for each command and response:

- Admin micropacket commands shall be sent
on VC1;

- Admin micropacket responses shall be sent
on VC2;

19

dpANS X3.xxx-199x

- Admin micropackets shall not be sent on
VCO or VC3.

6.6 Addressing of Admin micropackets

The Admin micropacket format contains a 32-bit
source and destination Admin Element address.
This space is adequate to uniquely identify Ele-

ments in configurations of up to 232 Elements.

There are two possible destination Admin Element
addresses that can result in delivery of an Admin
micropacket to an Element for local processing:

- If the destination Admin Element address =
X'FFFFFFFF and hop count = 0. This technique
allows access to neighbors (who may possibly
have unknown Element addresses) by setting
the hop count to control how far distant an Ele-
ment is in hop count. For example, a hop count
of three would pass through three neighboring
Elements before being decremented to zero
and being processed by the fourth Element;

- When the assigned Element address is not
equal to X FFFFFFFF and the assigned Element
address matches the destination Admin Ele-
ment address. This technique allows use of a
flat logical address space for access to each
Element when all of the Element addresses are
known.

Response Admin micropackets shall use the
source Admin Element address and return hop
count provided in the original Admin micropacket
command as the destination Admin Element
address and hop count.

6.7 Processing Admin micropackets

With Elements that have two ports, a received
Admin micropacket shall either be

- processed locally by the Element;
- discarded; or

- forwarded out the second port.

If a received Admin micropacket contains a valid
Element address pointing to the current local Ele-
ment, it shall be processed locally.

If a received Admin micropacket does not contain
an Element address pointing to the current local
Element, there are two possible results. If the hop
count value is zero, the packet shall be discarded.

20

Otherwise the hop count shall be decremented by
one and the packet shall be forwarded to the Ele-
ment’s other port, i.e., the port that did not deliver
this micropacket to this Element.

Response Admin micropackets shall be sent on the
port that received the original Admin micropacket
command.

Elements that have a single port shall discard
Admin micropackets that are not addressed to be
processed locally. Receivers of Admin micropack-
ets shall only process and/or respond to Admin
micropackets received on the specified proper VC.

- Admin micropackets received on VCO or
VC3 shall be logged as an error and discarded
without a response;

- Admin micropackets received on VC1 shall
be processed as a received command, dis-
carded (due to an expired hop count), or for-
warded (if the Element address does not
match);

- Admin micropackets received on VC2 shall
be processed as a received response, dis-
carded (due to an expired hop count), or for-
warded (if the Element address does not
match). Responses that are received unexpect-
edly shall be logged as an error and discarded
without a response. A response Admin micro-
packet shall never be sent in reply to an Admin
micropacket received on VC2.

Admin micropackets that arrive with either ERROR
=1 or TAIL = 0 shall be logged as an error and dis-
carded without a response.

Selection of the proper port for packet forwarding,
from a set of ports in a multi-port Element, is not
covered by this standard. Multi-port Element sup-
port is optional and may be added in a vendor
unique manner.

6.8 Admin Element address assignment

Each Element in a HIPPI-6400 connected collec-
tion of Elements may be provided an Element
address for operation and control. Element
addresses may be assigned through any suitable
means, including use of the commands,
SET_ELEMENT_ADDRESS and
SET_ELEMENT_ADDRESS_RESPONSE. These
commands allow an intelligent system Element to
assign Element addresses to other Elements
within the configuration. Element addresses shall

be assigned so that Element address duplication in
the connected Element address environment does
not occur.

Regardless of whether an Element address is
assigned, each Element shall always respond to an
Element address of X’ FFFFFFFF’' when hop count
=0.

This standard does not specify how the intelligent
system Element chooses Element addresses for
assignment. The discovery of topologies beyond
two ports and the mechanisms for multi-port Ele-
ment address assignment are not covered by this
standard. Multi-port Element support is optional
and may be added in a vendor unique manner.

6.9 Admin micropacket flow control

Admin micropacket operations (with the exception
of RESET) consist of a command and a paired
response operation. To avoid overrun of receivers,
no more than one operation shall be initiated to a
single destination Element from a single source
Element. Therefore, Elements shall send only a
single command:

- PING;
- SET_ELEMENT_ADDRESS;

- EXCHANGE_ELEMENT_FUNCTION;
- ULA_REQUEST;

- READ_REGISTER;

- WRITE_REGISTER;

- ULA_LIST_REQUEST;

- PORT_REMAP; or

- PORT_MAP_REQUEST;

before receiving the paired response micropacket:
- PING_RESPONSE;
- SET_ELEMENT_ADDRESS_RESPONSE;
- ELEMENT_FUNCTION_RESPONSE;
- ULA_RESPONSE;
- READ_REGISTER_RESPONSE;
- WRITE_REGISTER_RESPONSE;
- ULA_LIST_RESPONSE;

dpANS X3.xxx-199x

- REMAP_RESPONSE;
- PORT_MAP_RESPONSE;

or receiving an:

- INVALID_COMMAND response from the tar-
geted Element;

or until:

- atime-out period of at least one second has
elapsed.

Since RESET has no response, Elements that
have sent a RESET shall wait at least one second
before attempting any other operation to the Ele-
ment that has been reset.

7 ULA configuration

In addition to switching HIPPI-6400 Messages
between ports, HIPPI-6400 ports shall support in-
band communications for switch management
functions.

To support topology discovery and ULA configura-
tion, HIPPI-6400 Destination ports shall be capable
of receiving and processing micropackets with
TYPE = Admin over any connected HIPPI-6400
link.

To support topology discovery and ULA configura-
tion, HIPPI-6400 Source ports shall be capable of
sending micropackets of TYPE = Admin over any
connected HIPPI-6400 link.

7.1 Determination of connectivity

As a step in the procedure to establish a ULA for
self identification (used as the Source ULA field),
endpoints and switches shall identify if they are
connected to another endpoint or to a switch.

Intervening link support hardware and interface
Elements may be present on either side of a
HIPPI-6400 link. These intermediate Elements will
typically not contain information useful for ULA
assignment. The endpoint discovering information
shall identify these intermediate points to discover
the location of an Element capable of exchanging
information about ULA configuration.

21

dpANS X3.xxx-199x

Information about the function of connected Ele-
ments is collected by sending an
EXCHANGE_ELEMENT_FUNCTION Admin
micropacket. The endpoint may directly select a
destination if the appropriate Admin Element
address information is already known, or it may
use hop-count Element addressing to discover
what is connected and how far away (in hops) the
Element of interest is located.

If an Element responds that it is a link-end Element
or an unknown Element, the probing system shall
continue to the next Element. Once a connected
Element is identified as an endpoint or switch,
topology determination is complete.

In figure 9, an example of an endpoint to endpoint

System A

Link-End A

A

HIPPI-6400
Link

Link-End B

System B

Figure 9 - Endpoint to endpoint connect

link is shown. In this example, System A needs to
determine the Element function of System B, for
ULA configuration. System B also needs to deter-
mine the Element function of System A, for the
same reason. The following example traces the
operation of System A.

System A begins by probing each Element that
supports Admin micropackets until it reaches the
endpoint of System B:

a System A sends an
EXCHANGE_ELEMENT_FUNCTION Admin
micropacket to the closest point with an Ele-
ment address of X’ FFFFFFFF’ and a hop-count

22

of 0. This will be received and processed by
Link-End A. Link-End A will respond in the
ELEMENT_FUNCTION_RESPONSE Admin
micropacket that it is a link-end Element. Sys-
tem A must therefore go further to reach
another endpoint or switch;

b System A sends an
EXCHANGE_ELEMENT_FUNCTION Admin
micropacket to the next closest point with an
Element address of xX’FFFFFFFF’ and a hop-
count of 1. This will be received and processed
by Link-End B. Link-End B will respond in the
ELEMENT_FUNCTION_RESPONSE Admin
micropacket that it is a link-end Element. Sys-
tem A must therefore go further to reach
another endpoint or switch;

c System A sends an
EXCHANGE_ELEMENT_FUNCTION Admin
micropacket to the 3rd closest point with an Ele-
ment address of X’ FFFFFFFF' and a hop-count
of 2. This will be received and processed by
System B. System B will respond in the
ELEMENT_FUNCTION_RESPONSE Admin
micropacket that it is an endpoint. System A
now knows where to exchange information
regarding ULAs.

In the above example, System A presumably would
have been aware that the most directly attached
component (Link-End A) is part of its own configu-
ration and that it need not communicate with that
component. It therefore would not have needed to
start with a hop-count of 0 (but was not detrimen-
tally effected by doing so).

System B could determine the type of Element for
System A in two ways:

- System B could duplicate the above steps in
reverse; or

- System B could use the information provided
in the EXCHANGE_ELEMENT_FUNCTION
command that System A sent to System B
when the third step in the above exchange took
place. Endpoints should not wait for the other
end to perform an exchange, but if the
exchange occurs at an appropriate time, they
may take advantage of the occurrence.

7.2 ULA exchange

Once the other end of the link has been identified
as to type (switch or non-switch endpoint), ULAs
are configured.

7.2.1 Endpoints on both ends

If both ends of the link are endpoints, each side
shall use the Source ULA assigned to it using the
procedures specified in the IEEE 802 Overview
Standard.

7.2.2 Switches on both ends

Switch to switch ULA configuration shall occur to
exchange ULAs for the broadcast function. A
ULA_REQUEST shall be sent by each switch to all
directly connected switches. Upon receipt of a
ULA_REQUEST Admin micropacket, the receiving
switch shall respond with a ULA_RESPONSE
Admin micropacket. The ULA_RESPONSE shall
contain a unique ULA assigned to the responding
switch for use by the 802.1d Spanning Tree Algo-
rithm and Protocol.

Switch to switch ULA discovery to learn the full set
of connected ULAs on distant switches is handled
outside of this standard but shall ensure the
uniqueness of ULAs within the fabric. Methods of
switch configuration could include static manual
table entry or automated ULA learning algorithms.

7.2.3 Endpoint to switch

If endpoints discover that they are connected to
switches, they shall advertise their Source ULA
(assigned to the endpoint using the procedures
specified in the IEEE 802 Overview Standard). The
ULA offer shall be made by sending a
ULA_ REQUEST Admin micropacket.

Upon receipt of a ULA_REQUEST Admin micro-
packet, the receiver shall respond with a
ULA RESPONSE Admin micropacket. The
ULA_RESPONSE shall contain a Source ULA
valid for the ULA_RESPONSE recipient. This ULA
may be the same as advertised in the original
ULA_REQUEST offer or it may be different.

This returned Source ULA shall be accepted and
subsequently used in all HIPPI-6400 Messages by
the receiver of the ULA_RESPONSE Admin micro-
packet.

dpANS X3.xxx-199x

Regardless of whether the returned Source ULA is
the same as the Source ULA originally offered by
the endpoint, the switch is the final selector of the
Source ULA that will be used by the endpoint.

A single Source ULA shall not be assigned more
than once in the same fabric.

Switches shall wait for connected endpoints to ini-
tiate ULA exchange.

8 Broadcast/multicast

All switches shall either directly support the broad-
cast/multicast of Messages or shall provide sup-
port for a HIPPI-6400 broadcast server that is
connected to the switch by a HIPPI-6400 link.

8.1 Broadcast/multicast operation

Messages sent to the broadcast address (see
table 8) shall be delivered to all endpoints within a
HIPPI-6400 fabric that have registered their desire
to receive broadcasts and multicasts. Unless sup-
port is provided for multicast groups, messages
sent to multicast addresses listed in table 8 shall
be delivered to all endpoints within a HIPPI-6400
fabric that have registered their desire to receive
broadcasts and multicasts.

This standard does not provide support for multi-
cast groups. Note that unless multicast group sup-
port is otherwise provided, a HIPPI-6400 switch
fabric treats broadcast and multicast in an identical
manner. Thus, multicast Messages are delivered to
all participating systems connected to the HIPPI-
6400 fabric.

8.2 Supported broadcast and multicast ULAs

Table 8 shows the minimum set of broadcast and
multicast ULAs that shall be supported.

These addresses shall be supported in all
switches, regardless of their use of full or partial
ULA processing.

Other addresses may be supported for broadcast
and multicast.

23

dpANS X3.xxx-199x

Table 8 - Supported broadcast and
multicast ULAS

ULA
Hex Format

IEEE Canonical Format

Function

X' FFFFFFFFFFFF’
FF-FF-FF-FF-FF-FF

General broadcast
address

Xx'0180C2000000’ 802.1d bridge
80-01-43-00-00-00 group address
x'0180C2000001’ Reserved for
thru future 802.1d
x'0180C200000F’ standardization
80-01-43-00-00-80

thru

80-01-43-00-00-F0

x'0180C2000010’ All LANSs bridge

80-01-43-00-00-08 management

group address

8.3 Registration for broadcast and multicast

Attached endpoints and switches may register to
receive broadcasts and multicasts. This shall be
done by setting the most significant bit of the Ele-
ment function byte to bl in the
EXCHANGE_ELEMENT_FUNCTION operation.
Attached endpoints and switches may choose not
to receive broadcast/multicast Messages. This
shall be done by setting the most significant bit of
the Element function byte to b0’ in the
EXCHANGE_ELEMENT_FUNCTION operation.

Switches shall maintain a list of ports. This list shall
include one entry with a ULA and an element func-
tion byte for

- each endpoint directly connected to this
switch that has made at Ileast one
ULA_REQUEST; and

- each switch directly connected to this switch
that has provided its unique ULA (via the
ULA REQUEST/ULA_RESPONSE process)
for the IEEE 802.1d Spanning Tree Algorithm
and Protocol.

Endpoints registered to receive broadcasts and
multicasts shall be sent any broadcast/multicast
Message regardless of its point of origin. Directly
connected switches shall be sent broadcast/multi-
cast Messages in accordance with the 802.1d
Spanning Tree Algorithm and Protocol.

24

8.4 Spanning tree operation

Switches shall participate in the IEEE 802.1d
Spanning Tree Algorithm and Protocol, either
directly or through an external broadcast server.
This algorithm constructs a loop-free topology
(called the spanning tree) by placing selected links
in the network in the forwarding state and non-
selected links in the blocking state for the purposes
of broadcast/multicast. To avoid broadcast loops,
switches shall propagate broadcast/multicast Mes-
sages only along those links which are placed in
the forwarding state by the Spanning Tree Algo-
rithm and Protocol.

To construct the spanning tree, switches exchange
IEEE 802.1d configuration Bridge Protocol Data
Units (BPDUs) which contain parameters (e.g. root
ID, path cost, port identifier) for use by the span-
ning tree algorithm. The periodic exchange of
BPDUs both configures the initial spanning tree
and reconstructs the spanning tree in the event of
switch failure(s) and/or the addition of new equip-
ment to the network.

9 Broadcast emulation

Switches not capable of directly supporting broad-
cast shall route broadcast and multicast Messages
to a broadcast server. The endpoint selected as a
broadcast server shall forward received broadcast/
multicast Messages to each attached endpoint port
that has registered to receive them. Additionally,
endpoints selected as broadcast servers shall
implement the IEEE 802.1d Spanning Tree Algo-
rithm and Protocol and shall forward broadcast/
multicast Messages to those directly connected
switches whose links have been placed in the for-
warding state.

When sending Messages to implement the IEEE
802.1d Spanning Tree Algorithm and Protocol, the
broadcast server shall use the Source ULA of the
attached switch (the switch that the endpoint is
supporting as a broadcast server). This ULA shall
be learned by performing the
ULA _LIST_REQUEST with a port number of zero.

9.1 Selection of broadcast server

Non-broadcast capable switches shall select a
broadcast server from attached hosts who have
indicated their ability and willingness to perform the
broadcast server function.

The indication of qualified broadcast servers is pro-
vided by an EXCHANGE_ELEMENT_FUNCTION
operation with the second most significant bit of the
Element function byte set to b’'1’.

One server shall be selected per non-broadcast
capable switch. The server shall be notified by
returning the second most significant bit of the Ele-
ment function byte set to b'l’ in the
ELEMENT_FUNCTION_RESPONSE.

The EXCHANGE_ELEMENT_FUNCTION and
ELEMENT_FUNCTION_RESPONSE shall be
exchanged at a rate of one to two per second. This
continued exchange allows selection of a broad-
cast server as needed to deal with equipment fail-
ures and to accommodate added or removed
systems. If a broadcast server fails to provide a
EXCHANGE_ELEMENT_FUNCTION within 5 sec-
onds, the switch shall select a new broadcast
server.

9.2 Broadcast server configuration

Switches shall make available a list of broadcast
information through the ULA_LIST_REQUEST and
ULA_LIST_RESPONSE operations. Hosts
selected to be broadcast servers shall request this
list and use it to determine which ports should
receive broadcast Messages and to learn the
required Source ULA for IEEE 802.1d Spanning
Tree Algorithm and Protocol Messages.

The ELEMENT_FUNCTION_RESPONSE
received from the switch indicates when broadcast
information available via the ULA_LIST_REQUEST

message has changed. The
ELEMENT_FUNCTION_RESPONSE notification
of a list change is cleared after a

ULA LIST_REQUEST (see 6.4.15) has been
made for the first port of the switch. Each time the
ELEMENT_FUNCTION_RESPONSE indicates the
list has changed, the broadcast server shall update
its list of broadcast/multicast ports by requesting
the entire list in sequential order starting with port
one.

dpANS X3.xxx-199x

The broadcast server shall configure the switch
ULA mapping using PORT_REMAP Admin micro-
packets. All Messages with the broadcast and mul-
ticast ULAs, unless being sent by the broadcast
server, shall be delivered to the broadcast server.
This requires mapping each broadcast address, on
each input port, to point to the broadcast server’'s
own physical port. The broadcast server shall also
configure the switch mapping to deliver Messages
with the Destination ULA of the switch to itself in
support of the IEEE 802.1d Spanning Tree Algo-
rithm and Protocol.

Broadcast server configuration shall be performed
once each time a broadcast server is selected and
as needed whenever the broadcast configuration
information is changed.

9.3 Sending broadcast Messages

The broadcast server shall send broadcast Mes-
sages sequentially. For each destination, the
broadcast server shall configure its own port map-
ping so that the particular broadcast address ULA
points to the desired physical port. The process is:

a send a PORT_REMAP admin micropacket;

b wait for a PORT_REMAP_RESPONSE micro-
packet;

¢ send the broadcast Message.

The process shall be repeated for each endpoint
physical port registered to receive broadcasts or for
each directly connected switch needing to receive
the Message as required by the 802.1d Spanning
Tree Algorithm and Protocol.

10 Configuration sequence

Configuration shall be performed prior to sending
any HIPPI-6400 messages when local configura-
tion information is unknown and/or the link has
transitioned from a non-operating state.

Configuration information should be invalidated
when a link has failed.

There are several initialization and/or configuration
processes specified in this standard. These include

- Element configuration;

25

dpANS X3.xxx-199x

- Source ULA assignment;
- broadcast registration; and

- broadcast server selection and configura-
tion.

Typically, Element configuration is performed first in
the configuration sequence. However, Element
configuration is a vendor unique function and could
occur at a different point or be omitted from the
configuration sequence.

Once any needed Element configuration is com-
plete, Source ULAs are established, broadcast reg-
istration is performed, and, if needed, broadcast
server selection is performed. The first step in the
Source ULA process (exchanging the
EXCHANGE_ELEMENT_TYPE and the
ELEMENT_TYPE_RESPONSE operations) s
also the mechanism for broadcast registration and
broadcast server selection. Thus, broadcast regis-
tration and broadcast server selection can be com-
pleted concurrently with establishing a Source
ULA.

Broadcast registration and broadcast server selec-
tion can be modified by subsequent
EXCHANGE_ELEMENT_TYPE/
ELEMENT_TYPE_RESPONSE sequences. This
ability to modify earlier operations allows separat-
ing ULA establishment from broadcast registration
and broadcast server selection if it is desired.

Source ULA configuration may also be modified.
Additional Source ULAs may be requested, either
adding to or replacing the current Source ULA(S).

Further, all configuration information between two
Elements shall be undone by a new
EXCHANGE_ELEMENT_TYPE/
ELEMENT_TYPE_RESPONSE sequence with
the inactive Element bit set (see figure 8). This
action shall invalidate any active Source ULAs,
reset broadcast registration, and remove broadcast
server registration configured on the link. One
example of when the reset of configuration infor-
mation may be desired is when host shuts down
due to operational needs or because of system fail-
ure.

26

dpANS X3.xxx-199x

Annex A
(informative)

Switching

A.1 General

HIPPI-6400 switching of Messages is accom-
plished by processing the Destination ULA field of
the HIPPI-6400-PH MAC header. This may be
done based on the complete contents of the Desti-
nation ULA (48 bits) or on a subset of the field.

If a subset of the Destination ULA is used for
switching, switches must ensure that Source ULAs
are unigue in the portion of the ULA operated on by
the switch. Clause 7 describes the process of ULA
configuration that gives switches final authority in
configuration of Source ULAs.

When connections are made to other networks, the
address range of the two (or more) networks is lim-
ited by the smaller of the connected address
ranges.

For example, HIPPI-PH can be switched to com-
municate with HIPPI-6400 so long as all of the
communicating systems restrict their addresses to
12 bits. The total number of addresses is therefore
limited to 4096 (minus reserved addresses).

The Destination ULA field in the Header micro-
packet is used to control HIPPI-6400 physical layer
switches, supporting the interconnection of many
Devices. Figure 10 shows an example configura-
tion that will be used to describe how HIPPI-6400
switches function. Three hosts and two switches
are shown, actual configurations may be smaller or
larger.

Although there is only a single mode of operation
(ULA addressing) specified for HIPPI-6400, users
can achieve a form of source routing (as described
in HIPPI-SC) by their selection of port configura-
tion.

A.2 Logical addressing

With logical addressing, ULAs specify where a
Message is to be delivered, not the path to take to
get there. Originating Sources use the same ULA
to reach a Final Destination, no matter where the
Originating Source is located.

1 2
W /
Al
A2
Switch A

Switch B

Physical port

B2 4

3 w— | ogical Address

!
v

Figure 10 - Hosts and switch
configuration

In figure 10, Host X, Host Y, and even Host Z can
use ULA “3” to specify that a Message should be
sent to Host Z.

With ULAs, the intermediate switches are responsi-
ble for selecting an appropriate path.

It is envisioned that switches can be built to use
look-up tables at each input port to map ULAs to
Destinations. A look-up table can be indexed using
the Destination ULA field. The look-up table would
be used to hold a possible path(s) for a Destina-
tion.

A major advantage of using ULAs is that only the
switches need to know the fabric interconnection
topology and the hosts only need to know the
ULAs. Hence if a link or port fails, switches can
address around it without the hosts having to know
about it or do anything special.

27

dpANS X3.xxx-199x

A.3 Input specific logical addressing

Because each input port is specified to contain a
unique ULA look-up capability, it is possible to use
logical switch addressing for limited source routing.
Note that only the input portion of a port is involved
in addressing. When a Message exits on a particu-
lar output port, it crosses that link without further
addressing until received at the next input.

This capability means that it is possible to create
addressing that could result in infinite looping of a
micropacket. This will rarely be desirable and
should be avoided.

One possible use of input port specific routing is to
provide a test capability for monitoring the perfor-
mance of specific links. In figure 10, if Host Y
wants to monitor the state of the link between
switch A and switch B, he can send a Message to
switch A and then to switch B. Port B1's ULA table
(at switch B) can direct the Message back to B1,
then switch A, and back to Host Y. To do this, the
same ULA must be handled differently by individ-
ual ports. Table 9 shows a simplified look-up table
that would work in this example.

Table 9 - Port look-up table

ULA Port Number | Destination
A2 A3
B1 B1
A3 A2

Because there are many available ULAs, normal
flat addressing can be used for host communica-
tions with other ULAs used to support input specific
logical routing for test and monitoring purposes.

28

