128G FC Strawman Architecture

David R. Stauffer
IBM High Speed Serdes & Memory I/F Development
Essex Junction, VT
Goals

- **Motivation for 128G FC is to match port speed capability of 802.3bj.**
 - Auto-negotiation of speed with prior generation FC h/w is viewed as an advantage over Ethernet in the data center.

- **128G FC provides some challenges not previously addressed in FC:**
 - This is the first 4 lane variant using 64b/66b encoding in FC. Alignment across multiple lanes presents a problem not addressed by single lane variants. The scheme defined by 10G FC XAUI is based on 8b/10b codes and cannot be applied to 128G FC.
 - This is the first attempt in FC to speed negotiate between a 4 lane variant and single lane variants. This speed negotiation must be compatible with existing 16G FC port h/w.

- **Extend 32G FC approach to 4 lane i/f:**
 - Keep as much in common with 32G FC datapath as possible.
 - Minimizes extent to which parallel datapaths are needed.
 - Minimizes amount of new specification text in FC-FS-4.
 - Simplified alignment mechanism to avoid complexity of 802.3ba/bj PCS (which is not equivalent to the current FC-FS-3 definition).

- **This contribution:**
 - High level proposal for 128G FC / 32G FC datapath.
 - Simplified high level approach for lane alignment.
 - High level speed negotiation proposal (addressing non-EA variants).
IEEE 802.3bj 100G Stack

- **CGMII interface:**
 - CGMII i/f is wider than XGMII; assumes 20 logical lanes.
 - CGMII redefines 64b66b code. Changes present compatibility issues for FC-FS-3:
 - No back-to-back ordered sets allowed.
 - Frames aligned to 8 byte (not 4 byte) boundaries.

- **CAUI PCS (Clause 82):**
 - Maps 20 logical lanes into 4 physical lanes.
 - Inserts alignment markers; aligns lanes at receiver.

- **RS-FEC (Clause 91):**
 - Striped across lanes.
 - Transcodes 64b66b code words into FEC blocks.
 - Alignment markers are used by FEC at both ends to determine FEC block start/end.

- **PMA (Clause 82):**
 - Adapts datapath width (usually implemented as inherent part of FEC).

- **Tx Training (Clause 92,93 PMD Layer):**
 - Similar to FC-FS-3 definition; PRBS pattern definition has changed.
Proposed 32G FC Stack

32G FC Stack based on proposal in LSI 12-488v0

- **XGMII interface:**
 - Basis for FC-FS-3 Sect. 5.3 coding definition and bit ordering.
 - Using CGMII is *not* preferred due to compatibility issues with FC-FS-3 (see previous chart).

- **FC-FS-3 PCS definition (see next chart):**
 - Assumes serial physical lane.
 - Additional functionality needed to generate alignment markers for RS-FEC to use to find FEC block boundaries.
 - Expansion to multiple lanes requires additional functionality to deskew lanes at the receiver using the alignment markers.

- **RS-FEC based on IEEE 802.3bj clause 91:**
 - Striping across lanes is different; serial for 32G FC, four or ten lanes for 802.3bj (would assume four lanes for 128G FC).
 - The RS-FEC is not the same as the optional FEC in 16G FC.

- **FC-FS-3 Tx Training:**
 - Applies to 16G FC EA variants only. Tx Training defined in IEEE 802.3bj clauses 92-93 is similar (some difference in PRBS pattern).
 - Propose that Tx Training support be mandatory for 32G FC.
Proposed 128G/32G/16G PCS

32G FC PCS based on FC-FS-3 with extended function from IEEE 802.3bj clause 82.

- XGMII interface: Same as FC-FS-3.
- 64b66b ENCODE / DECODE: Same as FC-FS-3.
- SCRAMBLE / DESCRAMBLE: Same as FC-FS-3.

- **ALIGNMENT INSERTION:**
 - Similar to IEEE 802.3bj clause 82 definition, but could be simplified for Fibre Channel.
 - Needed for 32G and 128G to support FEC determination of FEC block boundaries. (Disabled for 16GFC.)
 - Needed for 128G to support Lane Deskew.

- **ALIGN LOCK / LANE DESKEW:**
 - Similar to IEEE 802.3bj clause 82 definition, but could be simplified for Fibre Channel.
 - Only needed for 128G FC.

- **GEARBOX:**
 - Same as FC-FS-3 for serial variants.
 - Four lane output for 128G FC.

- **BLOCK SYNC:** Same as FC-FS-3.
Proposed 128G FC Stack

- **128G/32G PCS Sublayer**
 - 128G/32G FC PCS defined on previous chart.
 - One instance of full 128G/32G PCS supports 128G, 32G, 16G FC speeds.
 - Three additional instances of 32G PCS that support 32G, 16G FC speeds.

- **RS-FEC**
 - IEEE 802.3bj Clause 91 coding
 - Individual FECs needed for each lane when running 32G FC.
 - Options for 128G FC FEC:
 - Stripe FEC across lanes.
 - FEC operates independently on each lane. (Maybe less complex given need to support 32G FC?)

- **Tx Training**
 - Mandatory for 128G/32G FC
 - Use Tx Training to negotiate 128G/32G.
 - EA variants require Tx Training on all lanes. Non-EA variants only need to support on lane 0.
Speed Negotiation

- FC Speed Negotiation Signaling
 - 16G FC (non-EA variants) and lower speeds send primitives as defined in FC-FS-3.
 - 16G FC EA variants, 32G FC, and 128G FC send Tx Training signal.
 - Assign one of the reserved bits in the Training Frame Control field to signal a desire to negotiate 128G. (Bit 14 is proposed.)
 - Lane 0 negotiation determines if 128G FC is selected for all four lanes on port.
 - If port only supports 128G FC, then it only needs to participate in speed negotiation on port 0.

- Compatibility with Algorithm timing requirements:
 - Rx stabilization time < 20 ms (from FC-PI-5 Sect 5.4)
 - It was determined for 16G FC that Tx Training signal can lock within this constraint. Should be faster at 32G FC.
Affect on FC-FS-4, FC-PI-6

- **FC-FS-4 content needed:**
 - RS-FEC definition (needed for both 32G and 128G)
 - PCS Alignment Marker definition (needed for both 32G and 128G)
 - Define bit in Training Frame Control field to support 128G negotiation and associated state machine negotiation actions.

- **FC-PI-6 content needed:**
 - Require support for Tx Training signal
 - Require alignment markers
 - 128G FC definition (or defer this to FC-PI-7?)