64G Fibre Channel strawman

October 2016

Jonathan King, Finisar

T11/16-419v0

Background

- Ethernet (802.3cd) has adopted baseline specs for 53.1 Gb/s
 PAM4 (per fibre) for MMF links
 - 840 to 860 nm VCSEL based link
 - FEC supported: RS(544,528)
 - Target BER for optics: 2.4 x 10⁻⁴
 - Reach: 100 m OM4
- Good starting point for 64G Fibre Channel
 - Expect FEC supported RS(544,528), or similar.
 - Target BER for optics: 2.4 x 10⁻⁴
 - 57.8 Gb/s PAM4 signaling format
- ... but higher symbol rate:
 - increases transmitter and link penalties by about 1 dB
 - and receiver penalties by about 0.5 dB

57.8 Gb/s vs 53.1 Gb/s PAM4

- Spreadsheet modeling of upper PAM4 eye at 57.8Gb/s, using same model parameter values for Ethernet and Fibre Channel
 - same Rx bandwidth and Tx RIN, rise-fall time, OMA and spectral width
 - Receiver loses 0.3 dB sensitivity
 - Transmitter eye closure increases by 0.4 dB
 - Path penalty increases by 0.2 dB
 - RIN penalty increases by 0.7 dB (due to increased eye closure), also increases received eye jitter by 0.07 UI
 - 'consequent penalty' increases by 0.2 dB
 - Overall, a loss of 1.8 dB of link budget, and an estimated
 TDECQ increase of about 1dB

Shows up in 25G vs 28G NRZ data

 Mask margin measurements show ~ 0.5 to 1 dB additional eye closure for 28G operation

Choices for 64GFC

- The higher penalties due to higher bit rate leaves two main options
 - 1) Shorter reach
 - For same optics as Ethernet transceivers, the max reach for Fibre Channel would be 50 m over OM4.
 - TDECQ reference receiver would need to change to reflect higher bandwidth channel.

or

- 1) Higher performance optics
 - Lower yield, higher cost, to keep 100 m target reach.
 - TDECQ reference receiver bandwidth same as IEEE 50GBASE-SR

Option 2, maintaining 100 m OM4 for 64GFC

- A. Keep TDECQ spec at 4 dB, screen for higher performance transmitters
 - e.g. Transmitters may need a combination of
 - 1dB lower RIN
 - 10% faster VCSEL
 - centre wavelength >845 nm at all temperatures
 - ~0.5 dB higher OMA
 - Use same optical specs as IEEE, screen transmitters for TDECQ over temperature, same level of stress for SRS test.
- B. Raise max TDECQ spec to 5 dB, screen for higher performance transmitters
 - Transmitters may need a combination of up to
 - no RIN change
 - 10% faster VCSEL
 - 1.2 dB higher OMA
 - Only change to optical specs is higher TDECQ and SECQ (and consequent specs) screen transmitters for TDECQ over temperature, and use tougher SRS test for receiver (5dB SECQ)

The lesser of two weevils?

Screen transmitters for TDECQ max of 5 dB and use 5 dB SECQ test source for SRS test at 1 dB higher OMA (no new screens for RIN or spectral width at module level)

Strawman 64GFC Transmitter characteristics

Description	Value	Unit
Signaling rate, each lane, (range)	28.9 ± 100ppn	GBd
Modulation format	PAM4	
Center wavelength (range)	840 - 860	nm
RMS spectral width	0.6	nm
Average launch power, each lane (max)	+4	dBm
Average launch power, each lane (min)	-6	dBm
Optical Modulation Amplitude (OMA _{outer}), each lane (max) ^a	+3	dBm
Optical Modulation Amplitude (OMA _{outer}), each lane (min) ^{ab}	-4	dBm
Launch power in OMA _{outer} minus TDECQ (min) ^a	-5 <i>TBC</i>	dBm
Transmitter and dispersion eye closure (TDECQ), each lane (max) ^a	5 TBC	dB
Average launch power of OFF transmitter, each lane (max)	-30	dBm
Extinction ratio (min) ^a	3	dB
Encircled Flux	≥ 86% at 19 μm ≤ 30% at 4.5 μm	

^a OMA_{outer}, and TDECQ are defined in IEEE 802.3bs; the 5 tap T/2 reference is *TBC* for MMF links

^b Even if TDECQ is <1dB, OMA_{outer} must be at least this value

Strawman 64GFC receiver characteristics

Description	Value	Unit
Signaling rate, each lane, (range)	26.5625 ± 100ppm	GBd
Modulation format	PAM4	
Center wavelength (range)	840 - 860	nm
Damage threshold (min)	+5	dBm
Average receive power, each lane (max)	+4	dBm
Average receive power, each lane (min)	-7.9	dBm
Receive power, each lane (OMA _{outer}) (max)	+3	dBm
Receiver reflectance (max)	-12	dB
Stressed receiver sensitivity (OMA _{outer}), each lane (max) ^a	-2 TBC	dBm at 2.4 x 10 ⁻⁴
Receiver sensitivity (OMA _{outer}), each lane (max) ^{ab}	-7 <i>TBC</i>	dBm at 2.4 x 10 ⁻⁴
Conditions of stressed receiver sensitivity test		
Stressed eye closure (SECQ), lane under test ^a	5 TBC	dB
OMA of each aggressor lane	+3 <i>TBC</i>	dBm

^a OMA_{outer}, and SECQ are defined in 802.3bs, the 5 tap T/2 reference is *TBC* for MMF links

^b Receiver sensitivity is informative

Strawman 64GFC illustrative link budget

Parameter	OM3	OM4	Unit
Effective modal bandwidth at 850 nm	2000	4400	MHz.km
Power budget (for max TDECQ)	7.0 <i>TBC</i>		dB
Operating distance	70	100	m
Channel insertion loss	1.8	1.9	dB
Allocation for penalties (for max TDECQ)	5.1 <i>TBC</i>		dB
Additional insertion loss allowed	0.1	0	dB

Concluding notes

- Strawman spec's are just a starting point
- We need to gather data for real components at Fibre Channel rates
 - expect 6 to 12 months of work before the specs start to stabilize
 - driver + VCSEL performance
 - TDECQ measurements and system tests
 - receiver performance

Back up

Ethernet 50Gb/s MMF lanes

- One, two, or four optical lanes per direction for 50GBASE-SR, 100GBASE-SR2, or 200GBASE-SR4
- Each lane @ 26.5625 GBd PAM4 over 100 m OM4 fiber.
 - Exact signaling rate is determined by project's choice of FEC.
- 850 nm sources and receivers
 - Assumes target BER (prior to error correction) around 2.4x10⁻⁴ and random error statistics

IEEE Transmitter characteristics (each lane) at TP2

Description	Value	Unit
Signaling rate, each lane, (range)	26.5625 ± 100ppm	GBd
Modulation format	PAM4	
Center wavelength (range)	840 - 860	nm
RMS spectral width	0.6	nm
Average launch power, each lane (max)	+4	dBm
Average launch power, each lane (min)	-6	dBm
Optical Modulation Amplitude (OMA _{outer}), each lane (max) ^a	+3	dBm
Optical Modulation Amplitude (OMA _{outer}), each lane (min) ^{ab}	-4 <i>TBC</i>	dBm
Launch power in OMA _{outer} minus TDECQ (min) ^a	-5 <i>TBC</i>	dBm
Transmitter and dispersion eye closure (TDECQ), each lane (max) ^a	4 <i>TBC</i>	dB
Average launch power of OFF transmitter, each lane (max)	-30	dBm
Extinction ratio (min) ^a	3	dB
Encircled Flux	≥ 86% at 19 μm ≤ 30% at 4.5 μm	

^a OMA_{outer}, and TDECQ are defined in 802.3bs; the 5 tap T/2 reference is *TBC* for MMF links

^b Even if TDECQ is <1dB, OMA_{outer} must be at least this value

IEEE Receiver characteristics (each lane) at TP3

Description	Value	Unit
Signaling rate, each lane, (range)	26.5625 ± 100ppm	GBd
Modulation format	PAM4	
Center wavelength (range)	840 - 860	nm
Damage threshold (min)	+5	dBm
Average receive power, each lane (max)	+4	dBm
Average receive power, each lane (min)	-7.9	dBm
Receive power, each lane (OMA _{outer}) (max)	+3	dBm
Receiver reflectance (max)	-12	dB
Stressed receiver sensitivity (OMA _{outer}), each lane (max) ^a	-3 <i>TBC</i>	dBm at 2.4 x 10 ⁻⁴
Receiver sensitivity (OMA _{outer}), each lane (max) ^{ab}	-7 <i>TBC</i>	dBm at 2.4 x 10 ⁻⁴
Conditions of stressed receiver sensitivity test		
Stressed eye closure (SECQ), lane under test ^a	4 <i>TBC</i>	dB
OMA of each aggressor lane	+3	dBm

^a OMA_{outer}, and SECQ are defined in 802.3bs, the 5 tap T/2 reference is *TBC* for MMF links

^b Receiver sensitivity is informative

Illustrative link power budget (each lane)

Parameter	OM3	OM4	Unit
Effective modal bandwidth at 850 nm	2000	4400	MHz.km
Power budget (for max TDECQ)	6.0 <i>TBC</i>		dB
Operating distance	70	100	m
Channel insertion loss	1.8	1.9	dB
Allocation for penalties (for max TDECQ)	4.1 <i>TBC</i>		dB
Additional insertion loss allowed	0.1	0	dB