
This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

i

Fibre Channel

Framing and Signaling - 4

(FC-FS-4)

Rev 1.40

INCITS working draft proposed
American National Standard
for Information Technology

T11/15-253v2

Secretariat: Information Technology Industry Council

NOTE: This is a working draft American National Standard of Accredited Standards Committee INCITS. As
such this is not a completed standard. The T11 Technical Committee may modify this document as a result
of comments received anytime, or during a future public review and its eventual approval as a Standard.
Use of the information contained herein is at your own risk.

Permission is granted to members of INCITS, its technical committees, and their associated task groups to
reproduce this document for the purposes of INCITS standardization activities without further permission,
provided this notice is included. All other rights are reserved. Any duplication of this document for
commercial or for-profit use is strictly prohibited.

POINTS OF CONTACT:

Steven L. Wilson (T11 Chair) Claudio DeSanti (T11 Vice Chair)
Brocade Cisco Systems
1745 Technology Drive 170 W. Tasman Drive
San Jose, CA 95131 San Jose, CA 95134
Voice: 408-333-8128 Voice: 408-853-9172
swilson@brocade.com cds@cisco.com

Craig W. Carlson (T11.3 Chair) David Peterson (FC-FS-4 Chair) Craig W. Carlson (FC-FS-4
Editor)

QLogic Corporation Brocade QLogic Corporation
12701 Whitewater Drive 6000 Nathan Lane North 12701 Whitewater Drive
Minnetonka, MN 55343 Plymouth, MN 55442 Minnetonka, MN 55343
Voice: 952-687-2431 Voice: 612-802-3299 Voice: 952-687-2431
craig.carlson@qlogic.com david.peterson@brocade.com craig.carlson@qlogic.com

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

ii

Revision History

Rev 1.40 - 7 October 2015

a) Incorporates T11 Letter Ballot comment resolutions (see T11/15-054v6).

Rev 1.30 - 7 September 2015

a) Incorporates T11 Letter Ballot comment resolutions (see T11/15-054v5).

Rev 1.20 - 21 July 2015

a) First draft incorporating T11 Letter Ballot comment resolutions (see T11/15-054v4).

Rev 1.10 - 5 August 2014

a) Changes discussed during 8/5/14 FC-FS-4 working group meeting.

Rev 1.00 - 21 July 2014

a) Incorporated T11/14-192v1.

b) Fixed incorporation errors with 10-430v1.

c) Incorporated T11/14-196v0.

d) Incorporated T11/14-219v0.

Rev 0.50 - 16 May 2014

a) Incorporated T11/13-445v0 except for last two comments

b) Incorporated T11/14-003v1.

c) Incorporated T11/14-097v1.

d) Incorporated approved comments from 14-058v2. See 14-058v3 for remaining open comments.

Rev 0.40 - 29 January 2014

a) Incorporated T11/13-369v1 “128GFC Architecture Text” (approved by work group on 4 December
2013)

Rev 0.30 - 29 October 2013

a) Incorporated T11/13-115v4 “FC-FS-4 modifications for incorporating 256B/257B transcoding”
(approved by work group on 7 October 2013)

b) Cleaned up change tracking markups from previous revisions.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

iii

Rev 0.20 - 14 March 2013

a) Incorporated T11/13-011v1 “Energy Efficient FIbre Channel” (approved by work group on 4
February 2013)

Rev 0.10 - 17 April 2012

a) Based on ANSI INCITS 470-2011 FC-FS-3 revision 1.11

b) Incorporated T11/11-206v1 “CS_CTL and Proirity clarifications for FC-FS-4” (approved by work
group on 6 June 2011)

c) Incorporated T11/10-430v1 “Changes for Sequence ID uniqueness” (approved by work group on 1
August 2011)

d) Incorporated T11/11-385v2 “ABTS enhancement text” (approved by work group on 5 December
2011)

e) Incorporated T11/11-511v0 “SB-5 Abort Codes” (approved by work group on 5 December 2011)

f) Incorporated T11/12-106v0 with Option 2 “Corrections to FC-FS-4 for Dr. Alexandrov” (approved
by work group 16 April 2012)

g) Incorporated T11/12-047v1 “Corrections to FC-FS-4 for T11/10-427” (approved by work group 16
April 2012)

h) Removed double spaces throughout document

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

iv

draft proposed American National Standard

for Information Technology

Fibre Channel –

Fibre Channel Framing and Signaling - 4 (FC-FS-4)

Secretariat

Information Technology Industry Council

Approved dd mmmmm, 200x

American National Standards Institute, Inc.

Abstract

This standard describes the framing and signaling requirements for Fibre Channel links. The Physical
Interface requirements are described in Fibre Channel-Physical Interfaces (FC-PI-x). The Link Services
requirements are described in Fibre Channel-Link Services (FC-LS-3). This standard is recommended for
new implementations but does not obsolete the existing Fibre Channel standards.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

v

American National Standard

Approval of an American National Standard requires review by ANSI that the requirements for due
process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgement of the ANSI Board of Standards Review, substantial
agreement has been reached by directly and materially affected interests. Substantial agreement means
much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and
objections be considered, and that a concerted effort be made towards their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect
preclude anyone, whether he has approved the standards or not, from manufacturing, marketing,
purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give
an interpretation of any American National Standard. Moreover, no person shall have the right or authority
to issue an interpretation of an American National Standard in the name of the American National
Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose
name appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The
procedures of the American National Standards Institute require that action be taken periodically to
reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive
current information on all standards by calling or writing the American National Standards Institute.

PATENT
STATEMENT

The developers of this standard have requested that holders of patents that may be required for the
implementation of the standard disclose such patents to the publisher. However, neither the developers nor
the publisher have undertaken a patent search in order to identify which, if any, patents may apply to this
standard. As of the date of publication of this standard, following calls for the identification of patents that
may be required for the implementation of the standard, notice of one or more such claims has been
received. By publication of this standard, no position is taken with respect to the validity of this claim or of
any rights in connection therewith. The known patent holder(s) has (have), however, filed a statement of
willingness to grant a license under these rights on reasonable and nondiscriminatory terms and conditions
to applicants desiring to obtain such a license. Details may be obtained from the publisher. No further
patent search is conducted by the developer or publisher in respect to any standard it processes. No
representation is made or implied that this is the only license that may be required to avoid infringement in
the use of this standard.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

vi

Published by

American National Standards Institute, Inc.
11 West 42nd Street, New York, NY 10036

Copyright © 2012 by Information Technology Industry Council (ITI)
All rights reserved.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise,
without prior written permission of ITI, 1250 Eye Street NW, Washington, DC 20005.

Printed in the United States of America

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

vii

Table of Contents

Contents Page

1 Scope - 1

2 References - 2
2.1 Qualification and availability of references - 2
2.2 Approved references - 2
2.3 References under development - 4
2.4 Other references - 4

3 Definitions, abbreviations, conventions and keywords - 6
3.1 Definitions - 6
3.2 Editorial conventions - 17
3.3 State machines - 18
3.3.1 Overview - 18
3.3.2 States - 19
3.3.3 State variables - 19
3.3.4 State timers - 19
3.3.5 State transitions - 19
3.3.6 State diagram conventions - 19
3.4 Abbreviations, acronyms, and symbols - 20
3.4.1 Acronyms and other abbreviations - 20
3.4.2 Symbols - 23
3.5 Keywords - 23

4 Structure and Concepts - 25
4.1 Introduction - 25
4.2 Functional levels - 25
4.2.1 Overview - 25
4.2.2 FC-0 general description - 26
4.2.3 FC-1 general description - 26
4.2.4 FC-2 general description - 27
4.2.5 FC-3 general description - 27
4.2.6 FC-4 general description - 27
4.3 Architectural components of nodes - 28
4.4 Physical model - 29
4.5 Communication models - 31
4.6 Topology - 31
4.6.1 Types - 31
4.6.2 Point-to-point topology - 31
4.6.3 Fabric topology - 32
4.6.4 Arbitrated Loop topology - 33
4.7 Classes of service - 34
4.7.1 General - 34
4.7.2 Class 2 service - multiplex - 34
4.7.3 Class 3 service - datagram - 34
4.7.4 Class F service - Fabric - 34
4.8 General Fabric model - 34
4.8.1 General - 34
4.8.2 Fabric Ports (Fx_Ports) - 37
4.8.3 Frame delivery service - 37
4.9 Generic Services - 37
4.10 Building Blocks - 37
4.10.1 Building block hierarchy - 37

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

viii

4.10.2 Frame - 38
4.10.3 Sequence - 39
4.10.3.1 Introduction - 39
4.10.3.2 Sequence_Identifier (SEQ_ID) - 39
4.10.3.3 Sequence Status Blocks - 39
4.10.4 Exchange - 39
4.10.4.1 Introduction - 39
4.10.4.2 Exchange_Identifiers (OX_ID and RX_ID) - 40
4.10.4.3 Exchange Status Blocks - 40
4.10.5 Protocols - 40
4.10.5.1 Primitive Sequence protocols - 40
4.10.5.2 Fabric Login protocol - 40
4.10.5.3 Additional N_Port_ID protocol - 41
4.10.5.4 N_Port Login protocol - 41
4.10.5.5 Data transfer protocol - 41
4.10.5.6 Nx_Port Logout protocol - 41
4.10.5.7 Fabric Logout protocol - 41
4.11 Segmentation and reassembly of application data - 41
4.12 Error detection and recovery - 41

5 FC-1 transmission codes - 43
5.1 Overview - 43
5.2 8B/10B transmission code - 43
5.2.1 Overview - 43
5.2.2 Notation conventions - 44
5.2.3 Valid 8B/10B Transmission Characters - 45
5.2.4 Running disparity - 50
5.2.5 Generating Transmission Characters - 51
5.2.6 Validity of received Transmission Characters - 51
5.2.7 8B/10B Ordered Sets - 52
5.2.7.1 General - 52
5.2.7.2 8B/10B Frame delimiters - 53
5.2.7.3 8B/10B Primitive Signals - 55
5.2.7.4 Idle - 56
5.2.7.5 8B/10B Primitive Sequences - 56
5.3 64B/66B transmission code - 57
5.3.1 Overview - 57
5.3.2 64B/66B Transmission Word format - 57
5.3.3 64B/66B scrambling - 58
5.3.4 Invalid Synchronization Header - 59
5.3.5 Data Transmission Words - 59
5.3.6 Control Transmission Words - 60
5.3.6.1 Idle or LPI followed by Idle or LPI - 62
5.3.6.2 Idle followed by SOF - 62
5.3.6.3 EOF followed by Idle or LPI - 63
5.3.6.4 Idle / other Special Function - 64
5.3.6.5 Other Special Function / Idle - 65
5.3.6.6 Other Special Function / other Special Function - 67
5.3.6.7 Other Special Function / SOF - 67
5.3.6.8 SOF / data - 68
5.3.6.9 Data / EOF - 69
5.3.6.10 Receiver error reporting - 70
5.3.7 64B/66B representation of Special Functions - 71
5.3.7.1 64B/66B frame delimiters - 71

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

ix

5.3.7.2 64B/66B Primitive Signals - 72
5.3.7.3 64B/66B Primitive Sequences - 73
5.4 256B/257B transmission code - 73
5.4.1 Overview - 73
5.4.2 64B/66B to 256B/257B Transcoding - 74
5.4.3 Reed-Solomon encoder - 77
5.4.4 Scrambler - 77
5.4.5 Descrambler - 78
5.4.6 Reed-Solomon decoder - 78
5.4.7 256B/257B to 64B/66B transcoder - 78
5.4.8 Transmit Bit Ordering - 79
5.4.9 Receive Bit Ordering - 80
5.5 Transmitter Training Signal - 82
5.5.1 Overview - 82
5.5.2 Training Frame - 82
5.5.3 Training Pattern - 87
5.6 FEC for 128GFC - 87
5.6.1 Overview - 87
5.6.2 Functional block diagram - 88
5.6.2.1 64B/66B to 256B/257B Transcoder - 88
5.6.2.2 Alignment marker mapping and insertion - 89
5.6.2.3 Reed-Solomon encoder - 89
5.6.2.4 Symbol distribution - 89
5.6.2.5 Transmit bit ordering - 89
5.6.2.6 Alignment lock and deskew - 90
5.6.2.7 Lane reorder - 90
5.6.2.8 Reed-Solomon decoder - 90
5.6.2.9 Alignment marker removal - 90
5.6.2.10 256B/257B to 64B/66B transcoder - 90
5.6.2.11 Receive bit ordering - 90

6 FC-1 Transmission Word Synchronization - 93
6.1 Scope - 93
6.2 Introduction - 93
6.3 8B/10B Transmission Word Synchronization - 93
6.3.1 State Diagram Overview - 93
6.3.2 Operational and not operational conditions - 95
6.3.3 Transmission Word Synchronization Procedure - 96
6.3.3.1 Bit Synchronization - 96
6.3.3.2 Transmission Word Synchronization detection - 96
6.3.3.2.1 Introduction - 96
6.3.3.2.2 Achieving Transmission Word Synchronization - 96
6.3.3.2.3 8B/10B Transmission Word Synchronization for speed negotiation - - - - - - - - - - - - - - 96
6.3.3.2.4 Transmission Word alignment methods - 97
6.3.3.2.4.1 Continuous-mode alignment - 97
6.3.3.2.4.2 Explicit-mode alignment - 97
6.3.4 Loss of Transmission Word Synchronization - 97
6.3.4.1 Introduction - 97
6.3.4.2 Detection of an invalid Transmission Word - 97
6.3.5 State transitions - 97
6.3.5.1 Default State - 97
6.3.5.2 Loss of Synchronization state - 98
6.3.5.3 Word Synchronization Acquired states - 98
6.3.5.3.1 Loss-of-Synchronization procedure - 98

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

x

6.3.5.3.2 No Invalid Transmission Word Detected state - 98
6.3.5.3.3 First Invalid Transmission Word Detected state - 99
6.3.5.3.4 Second Invalid Transmission Word Detected state - 99
6.3.5.3.5 Third Invalid Transmission Word Detection state - 99
6.3.5.4 Reset state - 99
6.4 64B/66B Transmission Word Synchronization -100
6.4.1 Overview -100
6.4.2 64B/66B Transmission Word Synchronization for speed negotiation - - - - - - - - - - - - - - - -100
6.4.3 Detection of an invalid 64B/66B Transmission Word -100
6.5 Transmitter Training Signal Transmission Word Synchronization - - - - - - - - - - - - - - - - - - -101
6.5.1 Introduction -101
6.5.2 Transmitter Training Transmission Word Synchronization for speed negotiation - - - - - - -102
6.6 256B/257B Transmission Word Synchronization -102
6.6.1 Overview -102
6.6.2 RS-FEC rapid code Word Synchronization process -102

7 FC_Port state machine -104
7.1 Scope -104
7.2 Introduction -104
7.3 Normal operation states -105
7.4 Active State (AC) -107
7.5 Link Recovery -108
7.5.1 Link Recovery hierarchy -108
7.5.2 LR Transmit State (LR1) -108
7.5.3 LR Receive State (LR2) -108
7.5.4 LRR Receive State (LR3) -108
7.6 Link Failure -109
7.6.1 NOS Receive State (LF1) -109
7.6.2 NOS Transmit State (LF2) -109
7.7 Offline -109
7.7.1 General -109
7.7.2 OLS Transmit State (OL1) -109
7.7.3 OLS Receive State (OL2) -110
7.7.4 Wait for OLS State (OL3) -110
7.8 Primitive Sequence Protocols -110
7.8.1 Functions -110
7.8.2 Link Initialization Protocol -110
7.8.3 Link Reset Protocol -110
7.8.4 Link Failure Protocol -111
7.8.5 Online-to-offline Protocol -111

8 Link speed negotiation -112
8.1 Scope -112
8.2 Speed negotiation overview -112
8.3 Link physical architecture and requirements -112
8.4 Speed negotiation requirements on L_Ports -114
8.5 Primitives -114
8.5.1 Overview -114
8.5.2 32GFC speed negotiation -114
8.5.3 128GFC speed negotiation -115
8.6 Speed negotiation algorithm -116
8.6.1 Algorithm overview -116
8.6.2 Speed Negotiation stage specification conventions -118
8.6.2.1 Diagramming conventions -118
8.6.2.2 Terminology -120

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xi

8.6.3 Stage 1 - Wait_for_signal -122
8.6.4 Stage 2 - Negotiate_master and Watchdog timer -123
8.6.5 Stage 3 - Negotiate_follow -126
8.6.6 Optional Stage 5 - Slow_wait -127
8.6.7 Timing requirements -129

9 Transmitter training -132
9.1 Scope -132
9.2 Overview -132
9.3 Transmitter training state machines -133
9.3.1 Overview -133
9.3.2 Timers -135
9.3.3 Variables -135
9.3.4 Training_Sequencer state machine -136
9.3.4.1 Overview -136
9.3.4.2 States -137
9.3.4.2.1 Train_Init -137
9.3.4.2.2 Train_Lock -139
9.3.4.2.3 Train_Local -139
9.3.4.2.4 Train_Remote -139
9.3.4.2.5 Link_Ready -140
9.3.5 Cn_Controller state machines -140
9.3.5.1 Overview -140
9.3.5.2 States -141
9.3.5.2.1 Tx_Ready -141
9.3.5.2.2 Command -142
9.3.5.2.3 Clear -143
9.3.5.2.4 GlobalCommand -143
9.3.5.2.5 GlobalClear -144
9.3.6 Cn_Responder state machines -144
9.3.6.1 Overview -144
9.3.6.2 States -145
9.3.6.2.1 Rx_Ready -145
9.3.6.2.2 Update -146
9.3.6.2.3 Acknowledge -147
9.3.7 Link_Qual_Check state machine -148
9.3.7.1 Overview -148
9.3.7.2 States -148
9.3.7.2.1 Link_Test -148

10 Energy Efficient Fibre Channel -149
10.1 Overview -149
10.2 Energy Efficient Negotiation -149
10.3 Energy Efficient Fibre Channel and FEC -149
10.4 Alert Signal -150
10.5 Transmitter Turn Off -150
10.6 LPI Mode -150
10.6.1 Overview -150
10.6.2 LPI Mode Entry -150
10.6.3 LPI Mode Timing Parameters -151
10.6.4 Energy Efficient Fibre Channel State Diagrams -152
10.6.4.1 Energy Efficient State Variables -152
10.6.4.2 LPI Mode Transmitter State Diagram -153
10.6.4.3 LPI Mode Receiver State Diagram -154

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xii

11 Frame Transmission and Reception -157
11.1 Scope -157
11.2 General frame format -157
11.3 Frame transmission and reception -157
11.3.1 Overview -157
11.3.2 Fill Words -157
11.3.3 Frame Transmission -158
11.3.4 Frame byte order -158
11.3.5 Emission Lowering Protocol -160
11.3.6 Frame Scrambling -160
11.3.7 Start-of-Frame (SOF) delimiter -161
11.3.7.1 Introduction -161
11.3.7.2 SOF Initiate (SOFix) -161
11.3.7.2.1 Applicability -161
11.3.7.2.2 SOF Initiate Class 2 (SOFi2) -161
11.3.7.2.3 SOF Initiate Class 3 (SOFi3) -161
11.3.7.3 SOF Normal (SOFnx) -161
11.3.7.3.1 Applicability -161
11.3.7.3.2 SOF Normal Class 2 (SOFn2) -162
11.3.7.3.3 SOF Normal Class 3 (SOFn3) -162
11.3.7.4 SOF Fabric (SOFf) -162
11.3.8 End-of-Frame (EOF) delimiter -162
11.3.8.1 Introduction -162
11.3.8.2 Valid frame content -163
11.3.8.2.1 EOF Normal (EOFn) -163
11.3.8.2.2 EOF Terminate (EOFt) -163
11.3.8.3 Invalid frame content -163
11.3.8.3.1 General -163
11.3.8.3.2 End of Frame Abort (EOFa) -163
11.3.8.3.3 EOF Invalid (EOFni) -163
11.3.9 Frame reception -164
11.3.9.1 Rules -164
11.3.9.2 Frame validity -164
11.3.9.3 Invalid frame processing -164
11.4 Frame Content -165
11.4.1 Scope -165
11.4.2 Extended_Headers -165
11.4.3 Frame_Header -165
11.4.4 Data_Field -165
11.4.5 CRC -165

12 Frame_Header -169
12.1 Scope -169
12.2 Introduction -169
12.3 Routing Control (R_CTL) -169
12.3.1 Introduction -169
12.3.2 ROUTING Field -170
12.3.3 INFORMATION Field -170
12.4 Address identifiers (D_ID, S_ID) -172
12.4.1 General -172
12.4.2 Reserved address identifiers -172
12.4.3 Destination_ID (D_ID) -172
12.4.4 Source_ID (S_ID) -172
12.5 Class Specific Control (CS_CTL)/Priority -173

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xiii

12.5.1 Introduction -173
12.5.1.1 CS_CTL -173
12.5.2 Priority -174
12.6 Data structure type (TYPE) -174
12.7 Frame Control (F_CTL) -177
12.7.1 Introduction -177
12.7.2 Exchange Context -179
12.7.3 Sequence Context -179
12.7.4 First_Sequence -179
12.7.5 Last_Sequence -180
12.7.6 End_Sequence -180
12.7.7 CS_CTL/Priority Enable -180
12.7.8 Sequence Initiative -180
12.7.9 ACK_Form -180
12.7.10 Abort Sequence Condition -181
12.7.11 Relative offset present -182
12.7.12 Exchange reassembly -182
12.7.13 Fill Bytes -182
12.7.14 F_CTL bits on Data frames -183
12.7.15 F_CTL bits on Link_Control frames -183
12.8 Sequence_ID (SEQ_ID) -184
12.9 Data Field Control (DF_CTL) -185
12.10 Sequence count (SEQ_CNT) -186
12.11 Originator Exchange_ID (OX_ID) -186
12.12 Responder Exchange_ID (RX_ID) -187
12.13 Parameter -187

13 Extended_Headers -188
13.1 Scope -188
13.2 Introduction -188
13.3 VFT_Header and Virtual Fabrics -189
13.3.1 Overview -189
13.3.2 VFT Tagging PN_Port Logical Model -190
13.3.3 Tagging Process -191
13.3.4 VFT_Header Format -192
13.4 Inter-Fabric Routing Extended Header (IFR_Header) -193
13.4.1 Overview -193
13.4.2 IFR_Header format -193
13.5 Encapsulation Extended Header (Enc_Header) -194

14 Optional headers -196
14.1 Scope -196
14.2 Introduction -196
14.3 ESP_Header -200
14.3.1 Overview -200
14.3.2 Application of End-to-end ESP_Header processing -200
14.3.3 Application of Link-by-link ESP_Header processing to a frame with an Enc_Header - - -202
14.3.4 Application of Link-by-link ESP_Header processing to a frame with a VFT_Header - - - -205
14.4 Network_Header -207
14.5 Device_Header -207

15 Data frames and responses -208
15.1 Scope -208
15.2 Data frames -208
15.2.1 Introduction -208

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xiv

15.2.2 Frame Delimiters -208
15.2.3 Addressing -208
15.2.4 Data_Field -209
15.2.5 Payload size -209
15.2.6 Responses -209
15.2.6.1 Introduction -209
15.2.6.2 ACK frames - successful Data frame delivery -209
15.2.6.3 Link_Response frames - Unsuccessful Data frame delivery -210
15.3 Link_Control Frames -210
15.3.1 Introduction -210
15.3.2 Link_Continue function -211
15.3.2.1 Introduction -211
15.3.2.2 Acknowledge (ACK) -211
15.3.2.2.1 General -211
15.3.2.2.2 ACK_1 -212
15.3.2.2.3 ACK_0 -213
15.3.2.2.4 Header definition for all ACK forms -213
15.3.2.2.4.1 Addressing -213
15.3.2.2.4.2 F_CTL -213
15.3.2.2.4.3 SEQ_ID -213
15.3.2.2.4.4 SEQ_CNT -213
15.3.2.2.4.5 Parameter field -213
15.3.2.2.5 Responses -214
15.3.3 Link_Response -214
15.3.3.1 Introduction -214
15.3.3.2 Fabric Busy (F_BSY) -214
15.3.3.2.1 Description -214
15.3.3.2.2 Responses -215
15.3.3.3 N_Port Busy (P_BSY) -215
15.3.3.3.1 Description -215
15.3.3.3.2 Responses -217
15.3.3.4 Reject (P_RJT, F_RJT) -217
15.3.3.4.1 Introduction -217
15.3.3.4.2 Parameter field -218
15.3.3.4.2.1 Reject Code format -218
15.3.3.4.2.2 Invalid D_ID -221
15.3.3.4.2.3 Invalid S_ID -221
15.3.3.4.2.4 Nx_Port not available, temporary -221
15.3.3.4.2.5 Nx_Port not available, permanent -222
15.3.3.4.2.6 Class not supported -222
15.3.3.4.2.7 Delimiter usage error -222
15.3.3.4.2.8 TYPE not supported -222
15.3.3.4.2.9 Invalid Link_Control -222
15.3.3.4.2.10 Invalid R_CTL field -222
15.3.3.4.2.11 Invalid F_CTL field -222
15.3.3.4.2.12 Invalid OX_ID -222
15.3.3.4.2.13 Invalid RX_ID -222
15.3.3.4.2.14 Invalid SEQ_ID -222
15.3.3.4.2.15 Invalid DF_CTL -222
15.3.3.4.2.16 Invalid SEQ_CNT -223
15.3.3.4.2.17 Invalid Parameter field -223
15.3.3.4.2.18 Exchange Error -223
15.3.3.4.2.19 Protocol Error -223
15.3.3.4.2.20 Incorrect length -223

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xv

15.3.3.4.2.21 Unexpected ACK -223
15.3.3.4.2.22 Class of service not supported by entity at FF FF FEh -223
15.3.3.4.2.23 Login Required -223
15.3.3.4.2.24 Excessive Sequences attempted -223
15.3.3.4.2.25 Unable to Establish Exchange -224
15.3.3.4.2.26 Fabric path not available -224
15.3.3.4.2.27 Invalid CS_CTL Field -224
15.3.3.4.2.28 Invalid class of service -224
15.3.3.4.2.29 Invalid Attachment -224
15.3.3.4.2.30 Vendor Specific Reject -224
15.3.3.4.3 Responses -224
15.3.4 Link_Control commands -224
15.3.4.1 Introduction -224
15.3.4.2 Link Credit Reset (LCR) -224
15.3.4.2.1 Description -224
15.3.4.2.2 Protocol -225
15.3.4.2.3 Request Sequence -225
15.3.4.2.4 Responses -225
15.4 ACK generation assistance -225
15.4.1 Introduction -225
15.4.2 Capability Indication -225
15.4.3 Applicability -226
15.4.4 F_CTL bits -226
15.4.5 Login rules -226
15.4.6 ACK_Form errors -226

16 Basic Link Services -227
16.1 Scope -227
16.2 Introduction -227
16.3 Basic Link Service commands -227
16.3.1 Introduction -227
16.3.2 Abort Sequence (ABTS) -228
16.3.2.1 Overview -228
16.3.2.2 Aborting Sequences using ABTS -230
16.3.2.2.1 Introduction -230
16.3.2.2.2 ABTS Initiator -230
16.3.2.2.3 ABTS Recipient -231
16.3.2.2.4 Recovery Qualifier -231
16.3.2.2.5 Protocol -232
16.3.2.2.6 Request Sequence -232
16.3.2.2.7 Reply Sequence -232
16.3.2.3 Aborting Exchanges using ABTS -233
16.3.2.3.1 Introduction -233
16.3.2.3.2 ABTS sent by the last Sequence Initiator in an open Sequence - - - - - - - - - - - - - - -234
16.3.2.3.3 ABTS sent by the last Sequence Initiator in a new Sequence - - - - - - - - - - - - - - - - -234
16.3.2.3.4 ABTS sent in an open or new Sequence -234
16.3.2.3.5 ABTS by the last Sequence Recipient -234
16.3.2.3.6 Request Sequence -234
16.3.2.3.7 Reply Sequence -235
16.3.3 Basic Accept (BA_ACC) -236
16.3.3.1 Description -236
16.3.3.2 Protocol -236
16.3.3.3 Request Sequence -236
16.3.3.4 Reply Sequence -236

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xvi

16.3.4 Basic Reject (BA_RJT) -237
16.3.4.1 Description -237
16.3.4.2 Protocol -237
16.3.4.3 Request Sequence -237
16.3.4.4 Reply Sequence -237
16.3.5 No Operation (NOP) -238
16.3.5.1 Description -238
16.3.5.2 Protocol -239
16.3.5.3 Request Sequence -239
16.3.5.4 Reply Sequence -239

17 Classes of service -240
17.1 Scope -240
17.2 Introduction -240
17.3 Class 2 - Multiplex -240
17.3.1 Function -240
17.3.2 Rules -241
17.3.3 Delimiters -242
17.3.4 Data_Field size -242
17.3.5 Flow control -242
17.4 Class 3 - Datagram -242
17.4.1 Function -242
17.4.2 Rules -242
17.4.3 Delimiters -243
17.4.4 Data_Field size -244
17.4.5 Flow control -244
17.4.6 Sequence integrity -244

18 Name_Identifier Formats -245
18.1 Scope -245
18.2 Introduction -245
18.3 IEEE 48-bit Address -245
18.4 IEEE Extended -246
18.5 Locally Assigned -247
18.6 IEEE Registered -247
18.7 IEEE Registered Extended -248
18.8 EUI-64 Mapped -248
18.8.1 General -248
18.8.2 EUI-64 to WWN Mapping Rules -249
18.8.3 Encapsulated MAC-48 and EUI-48 translation -249

19 Exchange, Sequence, and sequence count management -251
19.1 Scope -251
19.2 Introduction -251
19.2.1 Data frame transfer -251
19.2.2 Frame identification -251
19.2.3 Sequence -251
19.2.4 Streamed Sequences -251
19.2.5 SEQ_CNT -251
19.2.6 Exchange -252
19.2.7 Sequence Initiative -254
19.3 Applicability -254
19.4 Exchange rules -254
19.4.1 Exchange management -254
19.4.2 Exchange origination -255

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xvii

19.4.3 Sequence delimiters -255
19.4.4 Sequence initiation -256
19.4.5 Sequence management -256
19.4.6 SEQ_CNT -257
19.4.7 Normal ACK processing -257
19.4.8 Normal Sequence completion -258
19.4.9 Detection of missing frames -259
19.4.10 Sequence errors - Class 2 -260
19.4.10.1 Rules common to all discard policies -260
19.4.10.2 Discard multiple Sequences Error Policy -261
19.4.10.3 Discard a single Sequence Error Policy -261
19.4.10.4 Process with infinite buffers Error Policy -261
19.4.11 Sequence errors - Class 3 -262
19.4.11.1 Rules common to all discard policies -262
19.4.11.2 Process with infinite buffers Error Policy -262
19.4.12 Sequence Status Rules -262
19.4.13 Exchange termination -263
19.4.14 Exchange Status Rules -263
19.5 Exchange management -264
19.6 Exchange origination -264
19.6.1 Introduction -264
19.6.2 Exchange Originator -265
19.6.3 Exchange Responder -266
19.6.4 X_ID assignment -266
19.6.5 X_ID interlock -266
19.7 Sequence management -267
19.7.1 Sequence identification -267
19.7.2 Open and active Sequences -267
19.7.3 Sequence_Qualifier management -267
19.7.4 Sequence Initiative and termination -267
19.7.5 Transfer of Sequence Initiative -267
19.7.6 Sequence Termination -268
19.7.6.1 Introduction -268
19.7.6.2 Class 2 -268
19.7.6.3 Class 3 -268
19.7.6.4 End_Sequence -269
19.8 Exchange termination -269
19.8.1 Normal termination -269
19.8.2 Abnormal termination -269
19.9 Status blocks -269
19.9.1 Exchange Status Block -269
19.9.2 Sequence Status Block -271

20 Flow control management -273
20.1 Scope -273
20.2 Introduction -273
20.2.1 Point-to-point topology -273
20.2.2 End-to-end and Buffer-to-buffer flow control -273
20.2.3 Flow control dependencies on class of service -273
20.2.4 Credit and Credit_Count -274
20.3 End-to-end flow control -275
20.3.1 End-to-end management rules -275
20.3.2 Sequence Initiator -276
20.3.3 Sequence Recipient -277

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xviii

20.3.3.1 General -277
20.3.3.2 ACK_0 -277
20.3.3.3 ACK_1 -277
20.3.3.4 Last ACK timeout -278
20.3.3.5 Streamed Sequences -278
20.3.4 EE_Credit -278
20.3.5 EE_Credit_CNT -278
20.3.6 EE_Credit management -278
20.3.7 End-to-end flow control model -279
20.3.8 EE_Credit recovery -280
20.3.9 Procedure to estimate end-to-end Credit -280
20.3.9.1 Introduction -280
20.3.9.2 Procedure steps -281
20.3.9.2.1 General -281
20.3.9.2.2 Establish Streaming Sequence -282
20.3.9.2.3 Estimate Credit Sequence -283
20.3.9.2.4 Advise Credit Sequence -283
20.4 Buffer-to-buffer flow control -284
20.4.1 Introduction -284
20.4.2 Buffer-to-buffer management rules -285
20.4.3 BB_Credit -285
20.4.4 BB_Credit_CNT -285
20.4.5 BB_Credit management -286
20.4.6 Buffer-to-buffer flow control model -286
20.4.7 Class dependent frame flow -287
20.4.8 R_RDY -289
20.4.9 BB_Credit Recovery -289
20.4.10 Alternate buffer-to-buffer Credit management -291
20.5 Combined flow control considerations -291
20.5.1 BSY / RJT in flow control -291
20.5.2 LCR in flow control -292
20.5.3 Integrated Class 2 flow control -295

21 Segmentation and reassembly -297
21.1 Scope -297
21.2 Introduction -297
21.3 Identifying and classifying IUs -297
21.4 Multiplexing IUs within a Sequence -297
21.5 Relative offset of Data_Frames in an IU -298
21.6 Transporting portions of an IU out of relative offset order -298
21.7 Login -299
21.8 Segmentation rules -299
21.9 Reassembly rules -300

22 Error detection/recovery -302
22.1 Scope -302
22.2 Introduction -302
22.3 Timeout periods -302
22.3.1 Scope -302
22.3.2 General -302
22.3.3 R_T_TOV -302
22.3.4 E_D_TOV -302
22.3.5 R_A_TOV -303
22.4 Link errors -304
22.4.1 Scope -304

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xix

22.4.2 Link Failure timeouts -304
22.4.3 Link Failure -304
22.4.4 Code violations -304
22.4.5 Primitive Sequence protocol error -304
22.4.6 Link Error Recovery -304
22.4.7 Link Recovery - secondary effects -305
22.4.7.1 Class 2 -305
22.4.7.2 Class 3 -305
22.4.8 Link Error Status Block -306
22.4.9 FEC Status Block -306
22.4.10 Bit-Error-Rate Thresholding -307
22.4.10.1 Introduction -307
22.4.10.2 Types of Link Errors Caused by Bit Errors -307
22.4.10.3 Error Intervals -307
22.4.10.4 Bit-Error-Rate-Thresholding Measurement -307
22.5 Exchange and Sequence errors -308
22.5.1 Scope -308
22.5.2 Link timeout -308
22.5.3 Sequence timeout -308
22.5.3.1 Introduction -308
22.5.3.2 Class 2 -308
22.5.3.3 Class 3 -309
22.5.3.4 End-to-end Class 2 Credit loss -309
22.5.4 Exchange Integrity -309
22.5.4.1 Applicability -309
22.5.4.2 Exchange management -309
22.5.4.3 Exchange Error Policies -310
22.5.4.3.1 Introduction -310
22.5.4.3.2 Discard multiple Sequences -310
22.5.4.3.3 Discard a single Sequence -310
22.5.4.3.4 Process with infinite buffering -310
22.5.4.4 Sequence integrity -310
22.5.4.5 Sequence error detection -311
22.5.4.6 X_ID processing -311
22.5.5 Sequence recovery -311
22.5.5.1 Introduction -311
22.5.5.2 Abnormal Sequence termination -311
22.5.5.2.1 Introduction -311
22.5.5.2.2 Abort Sequence Protocol -312
22.5.5.2.2.1 General Case -312
22.5.5.2.2.2 Special case - new Exchange -313
22.5.5.2.3 Recipient abnormal termination -313
22.5.5.2.4 End_Sequence -313
22.5.5.3 Stop Sequence Protocol -313
22.5.5.4 End-to-end Credit loss -314
22.6 Integrated error detection / actions -314
22.6.1 Errors detected -314
22.6.2 Actions by Initiator or Recipient -317
22.6.2.1 Discard frame -317
22.6.2.2 Transmit P_RJT frame -317
22.6.2.3 Process Reject -317
22.6.2.4 Transmit P_BSY frame -317
22.6.2.5 Process Busy -317
22.6.2.6 Perform Link Reset Protocol -318

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xx

22.6.2.7 Set Abort Sequence Bits -318
22.6.2.8 Perform Abort Sequence Protocol -318
22.6.2.9 Abnormally terminate Sequence -318
22.6.2.10 Retry Sequence -318
22.6.2.11 Update LESB -318
22.6.2.12 Perform Link Failure Protocol -318
22.6.2.13 Error Policy processing -319

23 Broadcast -320
23.1 Scope -320
23.2 Applicability -320
23.3 Broadcast operation -320
23.4 Other -320

24 Clock synchronization service -321
24.1 Scope -321
24.2 Introduction -321
24.2.1 References -321
24.2.2 Applicability -321
24.2.3 Function -321
24.2.4 Assumptions -321
24.2.5 Clock Synchronization Quality of Service -322
24.3 ELS Command Service -322
24.3.1 Scope -322
24.3.2 ELS Commands -322
24.3.3 Fabric Topology -322
24.3.3.1 Model -322
24.3.3.2 Clock Synchronization Server Rules -322
24.3.3.3 Fabric Rules -323
24.3.3.4 Fabric Options -323
24.3.3.5 Client Rules -323
24.3.3.6 Client Options -323
24.3.4 Loop Topology -324
24.3.4.1 Model -324
24.3.4.2 L_Port Server Rules -324
24.3.4.3 L_Port Server Options -324
24.3.4.4 L_Port Client Rules -325
24.3.4.5 Client Options -325
24.4 Primitive Signal Service -325
24.4.1 Scope -325
24.4.2 Introduction -325
24.4.3 Communication Model -325
24.4.4 Requirements -326
24.4.4.1 Introduction -326
24.4.4.2 Clock Synchronization Server Rules -328
24.4.4.3 Fabric Rules -328
24.4.4.4 Client Rules -329

 Annex A CRC generation and checking -330
A.1 Extract from FDDI -330
A.2 Frame check sequence (FCS) -330
A.3 Definitions -330
A.3.1 Basic terms -330
A.3.2 FCS generation equations -331
A.3.3 FCS checking -331

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xxi

A.4 CRC generation example for ACK_1 frame -331

 Annex B Frame Scrambling -334
B.1 Serial Frame Scrambling and Descrambling Implementations -334
B.2 Parallel Frame Scrambling and Descrambling Implementations -335
B.3 Scrambler and Descrambler Implementations in C -339
B.4 Scrambler and Descrambler Implementation with XORs -343
B.5 Scrambled Data Example -344

 Annex C Data transfer protocols and examples -345
C.1 Frame level protocol -345
C.1.1 Class 2 frame level protocol -345
C.1.2 Class 3 Frame Level Protocol -347
C.2 Sequence level protocol example -348
C.3 Class 2 frame level protocol example -352
C.4 Class 3 frame level protocol example -353

 Annex D Out of order characteristics -354
D.1 Introduction -354
D.2 Out of order Data frame delivery -354
D.3 Out of order ACK transmission -355

 Annex E Link Error Status Block -356
E.1 Introduction -356
E.2 Link Failure Counters -356
E.3 Invalid Transmission Word -356
E.4 Invalid CRC Count -356
E.5 Link Failure Counter Triggers -356

 Annex F Clock Synchronization -358
F.1 Introduction -358
F.2 Discussion -358
F.2.1 Introduction -358
F.2.2 A Model of an NL_Port -358
F.2.3 Hardware-Assisted Clock Synchronization -359
F.2.4 A Point-to-Point System -360
F.2.4.1 Introduction -360
F.2.4.2 Discussion of Errors -362
F.2.4.2.1 Introduction -362
F.2.4.2.2 Client Oscillator Frequency Error -363
F.2.4.2.3 Link Propagation Delay Error -364
F.2.4.2.4 Unload Error -365
F.2.4.2.5 Load Error -367
F.2.4.2.6 R/T Clock Domain Error -368
F.2.4.2.7 Server Oscillator Error -369
F.2.4.3 Techniques for Reducing Deterministic Errors -369
F.2.4.3.1 A Fix for Differences in Oscillator Frequencies -369
F.2.4.3.2 A Fix for Link Propagation Delay Error -371
F.2.4.3.3 A Fix for Load Error -371
F.2.4.3.4 A Fix for Unload Error -372
F.2.4.4 Dealing With Non-Deterministic Error -373
F.2.4.5 Dealing With Non-Monotonicity -373
F.2.5 Fabric Considerations -374
F.2.5.1 Introduction -374
F.2.5.2 Discussion of Errors -375
F.2.5.2.1 Client Oscillator Frequency Error -375

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xxii

F.2.5.2.2 Link Propagation Delay Error -377
F.2.5.2.3 Unload Error -377
F.2.5.2.4 Load Error -377
F.2.5.2.5 R/T Clock Domain Error -378
F.2.5.2.6 Server Oscillator Error -378
F.2.5.3 Fixes for Fabric Errors -378
F.2.6 Loop Considerations -378
F.2.6.1 Introduction -378
F.2.6.2 Discussion of Errors -379
F.2.6.3 Introduction -379
F.2.6.3.1 Node Delay -379
F.2.6.3.2 Client Oscillator Frequency Error -380
F.2.6.3.3 Link Propagation Delay Error -380
F.2.6.3.4 Unload Error -380
F.2.6.3.5 Load Error -380
F.2.6.3.6 R/T Clock Domain Error -380
F.2.6.3.7 Server Oscillator Error -380
F.2.6.4 Fixes for Loop Errors -381
F.3 An Example -381

 Annex G Speed negotiation details -384
G.1 Scope -384
G.2 Basic assumptions -384
G.3 Supported configuration -385
G.4 Derivation of timing requirements and characteristics -385
G.4.1 Introduction and diagram conventions -386
G.4.2 Receiver cycle time, t_rxcycl -386
G.4.3 Master transmitter cycle time, t_txcycl -386
G.4.4 Speed stability time, t_stbl -387
G.4.5 Watchdog timer threshold, t_fail -387
G.4.6 Watchdog Timer test delay, t_wddly -388
G.4.7 Speed recording time, t_ncycl -388
G.4.8 Speed recording time initial value, t_ncinit -389
G.4.9 Parameters relating to the optional slow_wait stage -390
G.4.9.1 Low processing load sleep time, t_sleep -390
G.4.9.2 Slow_wait cycle transmit cycle delay, t_txdly -390
G.4.9.3 Periodic sync search wake time, t_wake -391
G.4.10 Duration of disruption to single loops caused by connecting speed negotiating ports to hubs
392
G.4.10.1 Introduction -392
G.4.10.2 Maximum single disruption in Wait_for_signal stage -393
G.4.10.3 Maximum single disruption in Slow_wait stage -393
G.4.10.4 Maximum single disruption in Negotiate_master stage -394
G.4.10.5 Maximum single disruption in Negotiate_follow stage -396
G.4.10.6 Maximum disruption group - Wait_for_signal -396
G.4.10.7 Maximum disruption group - Slow_wait -396
G.4.10.8 Maximum disruption group - Negotiate_master -397
G.4.10.9 Maximum disruption group - Negotiate_follow -398
G.4.10.10 Maximum single disruption overall -398
G.4.10.11 Maximum disruption group overall -399
G.4.10.12 Summary of loop disruption -400
G.4.11 Algorithm convergence time -400
G.5 Ports using separate PMD components -400
G.6 Implementation notes -402

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xxiii

 Annex H IEEE company_ID -403
H.1 Overview -403
H.2 Uses of IEEE registered Company_ID other than Name_Identifiers - - - - - - - - - - - - - - - - -403
H.3 IEEE tutorial on Fibre Channel uses of company_ID -403
24.5 Guidelines for Fibre Channel Use of the Company_ID -404
24.5.1 Overview -404
24.5.2 OUI-based IEEE formats used by Fibre Channel -404
24.5.3 Name_Identifier formats -405
24.5.4 References -408

 Annex I WWN-to-EUI-64 Mapping -409
I.1 Background -409
I.2 Solution -409
I.3 Case Study -410

 Annex J Fibre Channel LAN Protocols Support -412
J.1 Overview -412
J.2 LAN Capable Nx_Ports -412
J.3 LAN Encapsulation -412
J.3.1 LAN Packet Formats -412
J.3.2 FC Sequence Format for LAN Packets -413
J.3.3 LLC/SNAP Header -414
J.3.4 LLC Header -414
J.3.5 Frame_Header Code Points -415
J.4 Multicast and Broadcast Mapping -415
J.5 Sequence Management -415
J.6 Exchange Management -415

 Annex K RS-FEC Code Word Examples -417
K.1 32GFC - Idle Pattern with 64B/66B Scrambler Bypass Disabled (scr_bypass=0) - - - - - - - -417
K.1.1 Overview -417
K.1.2 Input to the 64B/66B to 256B/257B transcoder -418
K.1.3 Output of the 64B/66B to 256B/257B transcoder -419
K.1.4 Output of the RS(528,514) encoder -420
K.1.5 Output of the PN-5280 scrambler -421
K.2 32GFC - Idle and LPI Patterns with 64B/66B Scrambler Bypass Enabled (scr_bypass=1) - -421
K.2.1 Overview -422
K.2.2 Input to the 64B/66B to 256B/257B transcoder -422
K.2.3 Output of the 64B/66B to 256B/257B transcoder -424
K.2.4 Output of the RS(528,514) encoder -426
K.2.5 Output of the PN-5280 scrambler -428
K.3 128GFC -429

 Annex L Bibliography -430

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xxii

List of Figures

Figures Page
Figure 1 State diagram notation example - 20
Figure 2 Fibre Channel structure - 26
Figure 3 Node components and functional levels model - 29
Figure 4 Physical model - 30
Figure 5 Point-to-point topology - 32
Figure 6 Fabric topology - 32
Figure 7 Examples of the Arbitrated Loop topology - 33
Figure 8 Informative general Fabric model - 36
Figure 9 FC-2 building block hierarchy - 38
Figure 10 64B/66B Transmission Word composition - 58
Figure 11 64B/66B data Transmission Word body - 59
Figure 12 64B/66B control Transmission Word body: Idle or LPI followed by Idle or LPI - - - - - - - - 62
Figure 13 64B/66B control Transmission Word body: Idle followed by SOF - - - - - - - - - - - - - - - - 63
Figure 14 64B/66B control Transmission Word body: EOF followed by Idle or LPI - - - - - - - - - - - - 64
Figure 15 64B/66B control Transmission Word body: Idle / other Special Function - - - - - - - - - - - 65
Figure 16 64B/66B control Transmission Word body: other Special Function / Idle - - - - - - - - - - - 66
Figure 17 64B/66B control Transmission Word body: two other Special Functions - - - - - - - - - - - 67
Figure 18 64B/66B control Transmission Word body: other Special Function / SOF - - - - - - - - - - - 68
Figure 19 64B/66B data Transmission Word body: SOF / data - 69
Figure 20 64B/66B data Transmission Word body: Data / EOF - 70
Figure 21 64B/66B control Transmission Word body: receiver detected error - - - - - - - - - - - - - - - 71
Figure 22 256B/257B encoding of four data words - 74
Figure 23 256B/257B encoding of three data words followed by one control word - - - - - - - - - - - - 75
Figure 24 256B/257B encoding of one control word followed by three data words - - - - - - - - - - - - 75
Figure 25 256B/257B encoding of four control words - 76
Figure 26 256B/257B encoding of one data word, followed by one control word, followed by two data
words - 76
Figure 27 PN-5280 as a linear feedback shift register - 77
Figure 28 256B/257B transmit bit ordering - 79
Figure 29 256B/257B receive bit ordering - 81
Figure 30 Transmitter Training Signal - 82
Figure 31 Training Frame format - 83
Figure 32 Differential Manchester coding - 83
Figure 33 Frame marker signal - 84
Figure 34 32GFC frame marker signal - 84
Figure 35 PRBS-11 as a linear feedback shift register - 87
Figure 36 128GFC RS-FEC sub layer functional block diagram - 88
Figure 37 Transmit bit ordering - 91
Figure 38 Receive bit ordering - 92
Figure 39 Receiver state diagram - 95
Figure 40 FC_Port partial state machine transitions -105
Figure 41 Physical architecture of the speed negotiating link -113
Figure 42 128GFC speed negotiation state machine -115
Figure 43 Overview of the speed negotiation algorithm stages -117
Figure 44 Stage diagram symbols -119
Figure 45 Delay / test operations -120
Figure 46 Wait_for_signal flowchart -122
Figure 47 Negotiate_master and watchdog timer flowchart -124
Figure 48 Negotiate_follow flowchart -126
Figure 49 Slow_wait flowchart -128
Figure 50 Transmitter training flow -134

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xxiii

Figure 51 Diagram of Training_Sequencer state machine flow -137
Figure 52 Diagram of Cn_Controller state machine flow -141
Figure 53 Diagram of Cn_Responder state machine flow -145
Figure 54 Overview of LPI Mode operation -151
Figure 55 LPI Mode transmitter state diagram -153
Figure 56 LPI Mode receiver state diagram -155
Figure 57 FC-2 frame format -157
Figure 58 Informative diagram of mapping CRC scope to FCS input -167
Figure 59 Informative diagram of mapping FCS coefficients to CRC field - - - - - - - - - - - - - - - - - -168
Figure 60 VFT Tagging PN_Ports -189
Figure 61 Logical model of a VFT Tagging PN_Port -190
Figure 62 The tagging process -191
Figure 63 Frame structure when ESP_Header is not used -197
Figure 64 Frame structure with End-to-end ESP_Header and ESP_Trailer - - - - - - - - - - - - - - - - -198
Figure 65 Frame structure with Link-by-link ESP_Header and ESP_Trailer - - - - - - - - - - - - - - - - -199
Figure 66 Exchange - Sequence relationship -253
Figure 67 Exchange origination -265
Figure 68 Physical flow control model for Class 2 and Class 3 -274
Figure 69 End-to-end flow control model -280
Figure 70 Procedure to estimate end-to-end Credit -282
Figure 71 Buffer-to-buffer flow control model -286
Figure 72 Buffer-to-buffer - Class 2 frame flow with delivery or non-delivery to a Fabric - - - - - - - -287
Figure 73 Buffer-to-buffer - Class 2 frame flow with delivery or non-delivery to a PN_Port - - - - - -288
Figure 74 Buffer-to-buffer - Class 3 frame flow -289
Figure 75 LCR frame flow and possible responses -293
Figure 76 LCR flow control model -294
Figure 77 Integrated Class 2 flow control -295
Figure 78 Link Recovery hierarchy -305
Figure 79 ELS Clock Sync model – Fabric -322
Figure 80 ELS Clock Sync model – loop -324
Figure 81 Clock Synchronization data distribution -326
Figure 82 Synchronization primitive substitution for Idle srimitives in inter-frame interval - - - - - - -326

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xxiv

List of Tables

Tables Page
Table 1 Comparison of numbering conventions - 18
Table 2 Bit designations - 44
Table 3 Conversion Example - 45
Table 4 Valid Data Characters - 46
Table 5 Valid Special Characters - 50
Table 6 Delayed Code Violation example - 52
Table 7 8B/10B Frame Delimiters - 54
Table 8 8B/10B Primitive Signals - 55
Table 9 8B/10B Primitive Sequences - 56
Table 10 Valid 64B/66B Transmission Word type values - 60
Table 11 Valid control code values - 61
Table 12 Valid order code values - 61
Table 13 64B/66B representation of frame delimiter Special Functions - 72
Table 14 64B/66B representation of Primitive Signal Special Functions - - - - - - - - - - - - - - - - - - - 72
Table 15 64B/66B representation of Primitive Sequence Special Functions - - - - - - - - - - - - - - - - 73
Table 16 Training Frame Control field - 85
Table 17 Training Frame Status field - 86
Table 18 128GFC FEC Alignment Marker - 89
Table 19 FC_Port states -106
Table 20 Transitions from the Active State -108
Table 21 Timing parameters with a range -131
Table 22 Constant timing parameters -131
Table 23 Transmitter LPI Mode timing parameters -151
Table 24 Receiver LPI Mode timing parameters -152
Table 25 Frame byte order -159
Table 26 Frame_Header -169
Table 27 R_CTL - Type Code Summary -170
Table 28 Device_Data Information Categories -170
Table 29 Data Descriptor Payload -171
Table 30 FC-4 Link_Data Information Categories -171
Table 31 Video_Data Information Categories -171
Table 32 Extended Routing Information Categories -171
Table 33 Domain Controller and Well-known address identifiers -173
Table 34 CS_CTL field -173
Table 35 Priority field -174
Table 36 TYPE codes - Link Service -175
Table 37 TYPE codes - Video_Data -175
Table 38 TYPE codes - FC-4 (Device_Data and Link_Data) -176
Table 39 Exchange/Sequence Control (F_CTL) -178
Table 40 Abort Sequence Condition Bits Definition by Sequence Initiator - - - - - - - - - - - - - - - - - -181
Table 41 Abort Sequence Condition Bits Definition by Sequence Recipient - - - - - - - - - - - - - - - -182
Table 42 F_CTL bit interactions on Data frames -183
Table 43 F_CTL bit interactions on ACK, BSY or RJT -184
Table 44 DF_CTL bit definition -185
Table 45 Extended_Headers General Structure -188
Table 46 Extended_Headers Types -188
Table 47 VFT_Header Format -192
Table 48 VF_ID Values -193
Table 49 IFR_Header format -193
Table 50 exp_timestamp field -194
Table 51 Enc_Header format -195

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xxv

Table 52 End-to-end ESP_Header and ESP_Trailer -202
Table 53 Link-by-link ESP_Header and ESP_Trailer in a frame with an Enc_Header - - - - - - - - - -204
Table 54 Link-by-link ESP_Header and ESP_Trailer in a frame with a VFT_Header - - - - - - - - - -206
Table 55 Network_Header -207
Table 56 Allowable Data frame delimiters -208
Table 57 ACK Frames by Class -209
Table 58 Link_Response Frames by Class -210
Table 59 Link_Control Information Categories -210
Table 60 Link_Control frame delimiters -211
Table 61 ACK precedence -212
Table 62 F_BSY Reason Codes -215
Table 63 P_BSY code format -216
Table 64 P_BSY action codes -217
Table 65 P_BSY Reason Codes -217
Table 66 Reject Code format -219
Table 67 Reject Action Codes -219
Table 68 Reject Reason Codes -220
Table 69 Basic Link Service Information Categories -228
Table 70 ABTS Parameter field -229
Table 71 ABTS abort reason codes -229
Table 72 BA_ACC Payload -235
Table 73 BA_RJT Payload Format -237
Table 74 BA_RJT reason codes -238
Table 75 BA_RJT Reason Code Explanation -238
Table 76 NAA identifiers -245
Table 77 NAA IEEE 48-bit Address Name_Identifier format -246
Table 78 NAA IEEE Extended Name_Identifier format -246
Table 79 NAA Locally Assigned Name_Identifier format -247
Table 80 NAA IEEE Registered Name_Identifier format -247
Table 81 NAA IEEE Registered Extended Name_Identifier format -248
Table 82 NAA EUI-64 Mapped Name_Identifier Format -249
Table 83 Bit Position Map -250
Table 84 Exchange Status Block -270
Table 85 E_STAT item in the Exchange Status Block -270
Table 86 Sequence Status Block -271
Table 87 S_STAT item of the Sequence Status Block -272
Table 88 Flow control applicability -273
Table 89 End-to-end flow control management -276
Table 90 Buffer-to-buffer flow control management -285
Table 91 Integrated Class 2 flow control management -296
Table 92 Segmentation and reassembly rules summary -301
Table 93 Link Error Status Block format for RLS command -306
Table 94 FEC Status Block -306
Table 95 Detailed errors and actions -314
Table 96 Neutral Disparity Character Values -327

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xxvii

FOREWORD

(This Foreword is not part of INCITS.xxx-200x)

Technical Committee T11 of Accredited Standards Committee INCITS developed this standard during
2011-201X. The standards approval process started in 20XX. This document includes annexes that are
informative, and are not considered part of the standard.

Requests for interpretation, suggestions for improvement or addenda, or defect reports are welcome. They
should be sent to the InterNational Committee for Information Technology (INCITS), 1250 Eye Street, NW,
Suite 200, Washington, DC 20005.

This standard was processed and approved for submittal to ANSI by INCITS. Committee approval of the
standard does not necessarily imply that all committee members voted for approval. At the time it
approved this standard, INCITS had the following members:

(to be filled in by INCITS)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xxviii

INCITS Technical Committee T11 on Fibre Channel Interfaces, which reviewed this standard, had the
following voting members:

Steven L. Wilson, Chair
Claudio DeSanti, Vice-Chair
Richard Johnson, Secretary

Amphenol P Gregory McSorley
Amphenol A Michael Wingard
Amphenol A Alex Persaud
Amphenol A Chris Lyon
Avago P Randy Clark
Avago A David Cunningham
Avago A Gautam Shiroor
Avago A Adam Healey
Avago A John Lohmeyer
Avago A Evan Beauprez
Avago A John Petrilla
Avago A David Baldwin
BROADCOM P Pat Thaler
BROADCOM A Vivek Venkatraman
Brocade P Steven L. Wilson
Brocade A David Peterson
Brocade A Scott Kipp
Brocade A John Crandall
Cisco P Claudio DeSanti
Cisco A Landon Noll
Cisco A Fabio Maino
Cisco A Joe Pelissier
Commscope P Richard Baca
Commscope A Yang Xu
Commscope A Paul Kolesar
Commscope A Joe Livingston
Commscope A Richard Case
Corning P Doug Coleman
Corning A Steven E. Swanson
DCS P Kevin Ehringer
DCS A Todd Wheeler
Dell P Joseph White
Dell A Gaurav Chawla
Dell A Jeff Young
EMC P Gary S. Robinson
EMC A David Black
EMC A Erik Smith
EMC A Louis Ricci
Finisar P Chris Yien
Finisar A Richard Johnson
Fujitsu P Sandy Wilson
Fujitsu A Eugene Owens
Fujitsu A Kun Katsumata
Fujitsu A Osamu Kimura

Organization Represented Name of Representative
Company ..Principal

Alternate (Alt.)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xxix

Fujitsu A Mark Malcolm
HP P Barry Maskas
HP A Krishna Babu Puttagunta
HP A Rupin Mohan
HP A Siamack Ayandeh
IBM P Roger Hathorn
IBM A Patty Driever
Keysight P Joachim Vobis
Keysight A Stephen Didde
Keysight A Steve Sekel
Lumentum P Dave Lewis
Luxtera P Tom Palkert
Molex P Jay Neer
Molex A Mark Bugg
NetApp P Frederick Knight
OCZ P Tom Friend
OFS P Roman Shubochkin
Oracle P Roger Dickerson
Oracle A Matt Gaffney
Oracle A Michael Roy
Panduit P Robert Elliot
Panduit A Jose Castro
Panduit A Steve Skiest
Panduit A Robert Reid
QLogic P Craig W. Carlson
QLogic A Dean Wallace
QLogic A Alan Spalding
TE P Nathan Tracy
TE A Jeff Mason
TE A Melissa Knox
UNH-IOL P Tim Sheehan
Viavi P Jason Rusch

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xxx

INCITS Task Group T11.3 on Fibre Channel Interconnection Schemes, which developed and reviewed this
standard, had the following members:

Craig Carlson, Chair
Louis Ricci, Vice-Chair
Patty Driever, Secretary

Avago P Gautam Shiroor
Avago A David Baldwin
Avago A James Smart
Broadcom P Pat Thaler
Brocade P David Peterson
Brocade A Steven L. Wilson
Brocade A John Crandall
Cisco Systems P Claudio DeSanti
Cisco Systems A Landon Noll
Cisco Systems A Fabio Maino
Cisco Systems A Joe Pelissier
Dell P Joseph White
Dell A Gaurav Chawla
Dell A Jeff Young
EMC P Gary S. Robinson
EMC A David Black
EMC A Erik Smith
EMC A Louis Ricci
Futurewei P Hao Chen
Futurewei A Wei Song
Futurewei A Alan Yoder
HPE P Barry Maskas
HPE A Krishna Babu Puttagunta
HPE A Rupin Mohan
HPE A Siamack Ayandeh
IBM P Roger Hathorn
IBM A Patty Driever
NetApp P Frederick Knight
OCZ P Tom Friend
Oracle P Roger Dickerson
Oracle A Matt Gaffney
Oracle A Ajoy Siddabathuni
Oracle A Hyon Kim
Oracle A Michael Roy
Oracle A Doug Meyers
QLogic P Craig W. Carlson
QLogic A Dean Wallace
QLogic A Alan Spalding
Viavi P Jason Rusch

Organization Represented Name of Representative
Company ..Principal

Alternate (Alt.)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

xxxi

Acknowledgements

The members of Task Group T11.3 on Fibre Channel Interconnection Schemes, invite the readers of this
standard to recognize the contribution of the editors of the standards on which FC-FS-4 is based:

Joe Mathis Editor FC-PH
K. C. Chennappan Editor, FC-PH-2
Bryan Cook Editor PH-3
John Scheible Editor FC-FS

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

Draft Proposed American National Standard
for Information Technology –

Fibre Channel –
Framing and Signaling - 4 (FC-FS-4)

1

1 Scope

This standard describes the framing and signaling interface of a high performance serial link for support of
FC-4s associated with upper level protocols (e.g., SCSI, IP, SBCCS, VI).

This standard is based on FC-FS-3 (ANSI INCITS 470-2011) with subsequent modifications approved by
the member body that originally authored and approved FC-FS-3.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

2

2 References

2.1 Qualification and availability of references

The references listed in this clause contain provisions that, through reference in this text, constitute
provisions of this document. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on this standard are encouraged to investigate the
possibility of applying the most recent editions of the standards listed in this clause.

Orders for ISO Standards and ISO publications should normally be addressed to the ISO member in your
country. If that is impractical, ISO Standards and ISO publications may be ordered from ISO Central
Secretariat (ISO/CS):

Phone +41 22 749 01 11
Fax +41 22 749 09 47
E-mail sales@iso.org
Post ISO, 1, ch. de la Voie-Creuse, CH-1211

Geneva 20, Switzerland

In order to avoid delivery errors, it is important that you accurately quote the standard's reference number
given in the ISO catalogue. For standards published in several parts, you should specify the number(s) of
the required part(s). If not, all parts of the standard will be provided.

Copies of the following documents may be obtained from ANSI, an ISO member organization:

Approved ANSI standards;
approved international and regional standards (ISO and IEC); and
approved foreign standards (including JIS and DIN).

For further information, contact the ANSI Customer Service Department:

Phone +1 212-642-4980
Fax: +1 212-302-1286
Web: http://www.ansi.org
E-mail: info@ansi.org

or the InterNational Committee for Information Technology Standards (INCITS):

Phone 202-626-5738
Web: http://www.incits.org
E-mail: incits@itic.org

IETF Request for Comments (RFCs) may be obtained directly from the IETF web site at http://
www.ietf.org/rfc.html.

2.2 Approved references

10GFC: ISO/IEC 14165-116:2005, Information technology -- Fibre Channel -- Part 116: 10 Gigabit
(10GFC) [ANSI INCITS 364-2003]

FC-AE-1553: ISO/IEC TR 14165-312:2009, Information technology -- Fibre Channel Avionics
Environment - Upper Layer Protocol and Profile based on MIL-STD-1553B Notice 2 [INCITS TR-42-2007]

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

3

FC-AE-ASM: INCITS/TR-41:2006, Information technology -- Fibre Channel Avionics Environment -
Anonymous Subscriber Messaging (ASM)

FC-AL-2: ISO/IEC 14165-122:2005, Information technology -- Fibre Channel -- Part 122: Arbitrated
Loop-2 [ANSI INCITS 332-1999 (R2004) with ANSI INCITS 332-1999/AM1-2003]

FC-AL-2 AM1: ISO/IEC 14165-122:2005/Amd 1:2008, Information technology -- Fibre Channel -- Part
122: Arbitrated Loop-2 [ANSI INCITS 332-1999/AM2-2006]

FC-AV: ISO/IEC 14165-321:2009, Information technology -- Fibre Channel -- Part 321: Audio-Visual
(FC-AV) [ANSI INCITS 356-2001]

FC-BaseT: ANSI INCITS 435-2007, Information technology -- Fibre Channel -- Part 151: Physical
Interfaces -- 2 (FC-BaseT)

FC-BB-6: ANSI INCITS 509-2014, Fibre Channel – Backbone – 6 (FC-BB-6)

FC-FS-3: ANSI INCITS 470-2011: Framing and Signaling – 3 (FC-FS-3)

FC-GS-6: ANSI INCITS 463-2010, Fibre Channel – Generic Services – 6 (FC-GS-6)

FC-IFR: ANSI INCITS 475-2011, Fibre Channel – Interfabric Routing (FC-IFR)

FC-LS-2: ANSI INCITS 477-2011, Fibre Channel – Link Services -- 2 (FC-LS-2)

FC-PI-2: ANSI INCITS 404-2006, Information technology -- Fibre Channel -- Part 142: Physical
Interfaces -- 2 (FC-PI-2)

FC-PI-3: ANSI INCITS 460-2011, Fibre Channel – Physical Interfaces -- 3 (FC-PI-3)

FC-PI-4: ANSI INCITS 450 -2009, Information technology -- Fibre Channel -- Part 142: Physical
Interfaces -- 4 (FC-PI-4)

FC-PI-5: ANSI INCITS 479-2011, Fibre Channel – Physical Interfaces – 5 (FC-PI-5)

FC-PI-6: ANSI INCITS 512-2015, Fibre Channel – Physical Interfaces – 6 (FC-PI-6)

FC-SATA: ANSI INCITS 437:2008, Fibre Channel – SATA Tunnelling Protocol (FC-SATA)

FC-SB-5: IANSI INCITS 485-2014, Fibre Channel – Single Byte Command Set -- 5 (FC-SB-5)

\FC-SP-2: ANSI INCITS 496-2012, Fibre Channel – Security Protocols – 2 (FC-SP-2)

FC-SP-2/AM1:ANSI INCITS 496-2012/AM1-2015, Fibre Channel – Security Protocols – 2 (FC-SP-2/AM1)

FC-SW-5: ANSI INCITS 461-2010, Information technology -- Fibre Channel -- Part : Switch Fabric - 4
(FC-SW-4)

FC-VI: ISO/IEC 14165-331:2007, Information technology -- Fibre Channel -- Part 331: Virtual
Interface Architecture Mapping (FC-VI) [ANSI INCITS 357-2001]

FCP-4: ANSI INCITS 481-2011, Small Computer System Interface (SCSI) Fibre Channel Protocol for
SCSI – 4 (FCP-4)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

4

FDDI-MAC: ISO/IEC 9314-2:1989, Information processing systems -- Fibre Distributed Data Interface
(FDDI) -- Part 2: Token Ring Media Access Control (MAC) [ANSI INCITS 139-1987]

IEEE 802: ISO/IEC TR 8802-1:2001, Information technology -- Telecommunications and information
exchange between systems -- Local and metropolitan area networks -- Specific requirements -- Part 1:
Overview of Local Area Network Standards [ANSI IEEE standard 802-2001]

IEEE 802.1D:ISO/IEC 15802-3:1998, Information technology -- Telecommunications and information
exchange between systems -- Local and metropolitan area networks -- Common specifications -- Part 3:
Media Access Control (MAC) Bridges [ANSI IEEE Standard 802.1D-1998]

IEEE 802.3-2012: IEEE 802.3-2012, Information technology -- Telecommunications and information
exchange between systems -- Local and metropolitan area networks -- Specific requirements -- Part 3:
Carrier Sense Multiple Access with Collision Detection (CSMA/CD) access method and physical layer
specifications.

IEEE 802.3bj-2014: IEEE 802.3bj-2014, IEEE Standard for Ethernet Amendment 2: Physical Layer
Specifications and Management Parameters for 100 Gb/s Operation Over Backplanes and Copper
CablesIEEE-LLC

ISO/IEC TR 8802-2:1998, Information technology -- Telecommunications and information exchange
between systems -- Local and metropolitan area networks -- Specific requirements -- Part 2: Logical link
control [IEEE Standard 802-2:1998]

SAM-4: ISO/IEC 14776-414:2009, Information technology -- Small Computer System Interface (SCSI)
-- Part 413: SCSI Architecture Model -4 (SAM-4) [ANSI INCITS 447:2008]

2.3 References under development

FC-GS-7: INCITS 510, Fibre Channel – Generic Services – 7 (FC-GS-7)

FC-LS-3: INCITS 487, Fibre Channel – Link Services – 3 (FC-LS-3)

FC-NVMe: INCITS 540, Fibre Channel - NVM Express over Fibre Channel (FC-NVMe)

FC-PI-6P: INCITS 533, Fibre Channel – Physical Interfaces – 6P 128GFC Four Lane Parallel (FC-PI-6P)

FC-SB-6: INCITS 544, Fibre Channel – Single Byte Command Set – 6 (FC-SB-6)

FC-SW-6: INCITS 511, Fibre Channel – Switch Fabric – 6 (FC-SW-6)

SAM-5: INCITS 515, Small Computer System Interface (SCSI) SCSI Architecture Model – 5 (SAM-5)

2.4 Other references

ETHER TYPES:IEEE ETHER TYPES registry, maintained at URL http://standards.ieee.org/regauth/
ethertype/eth.txt.

IETF Request for Comments (RFCs) may be obtained directly from the IETF web site (http://www.ietf.org/
rfc.html).

RFC 791: IETF RFC 791, Internet Protocol

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

5

RFC 2030: IETF RFC 2030, Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI

RFC 2373: IETF RFC 2373, IP Version 6 Addressing Architecture

RFC 2460: IETF RFC 2460, Internet Protocol, Version 6 (IPv6) Specification

RFC 2597: IETF RFC 2597, Assured Forwarding PHB Group

RFC 2598: IETF RFC 2598, An Expedited Forwarding PHB

RFC 2625: IETF RFC 2625, IP and ARP over Fibre Channel

RFC 3831: IETF RFC 3831, Transmission of IPv6 Packets over Fibre Channel

RFC 4303: IETF RFC 4303, IP Encapsulating Security Payload (ESP)

RFC 4338: IETF RFC 4338, Transmission of IPv6, IPv4 and ARP Packets over Fibre Channel

ARINC 818 Avionics Digital Video Bus, High Data Rate Standard may be obtained from ARINC, 2551 Riva
Road, Annapolis, Maryland 21401 USA, www.arinc.com or www.arinc.com/cf/store.

ARINC 818: ARINC 818, Avionics Digital Video Bus, High data Rate

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

6

3 Definitions, abbreviations, conventions and keywords

3.1 Definitions

3.1.1 128GFC
encoding of four parallel lanes of 32GFC in each direction (see FC-PI-6P)

3.1.2 16GFC
Fibre Channel speed (see FC-PI-5)

3.1.3 256B/257B
transformation of four consecutive 64B/66B Transmission Words into 256B/257B Transmission Words and
from 256B/257B Transmission Words into four consecutive 64B/66B Transmission Words used in Fibre
Channel to decrease the probability of undetected errors and improve the electrical balance of signals on a
link (see 5.4)

3.1.4 32GFC
Fibre Channel speed (see FC-PI-6)

3.1.5 64B/66B
transformation of pairs of words and/or Special Functions into Transmission Words and from Transmission
Words into pairs of words and/or Special Functions used in Fibre Channel to decrease the probability of
undetected errors and improve the electrical balance of signals on a link (see 5.3)

3.1.6 8B/10B
transformation of words or Special Functions into Transmission Words and from Transmission Words into
words and Special Functions used in Fibre Channel to decrease the probability of undetected errors and
improve the electrical balance of signals on a link (see 5.2)

3.1.7 acknowledged class of service
class of service that acknowledges a transfer (i.e., Class 2 service (see 4.7.2 and 17.3) and Class F
service (see FC-SW-6))

3.1.8 address identifier
address value used to identify source (S_ID) or destination (D_ID) of a frame (see 12.4)

3.1.9 Arbitrated Loop topology
Fibre Channel topology where L_Ports use arbitration to gain access to the loop (see FC-AL-2)

3.1.10 buffer-to-buffer Credit (BB_Credit)
limiting value for BB_Credit_CNT in the buffer-to-buffer flow control model (see 20.2.4)

3.1.11 buffer-to-buffer Credit_Count (BB_Credit_CNT)
counter used in the buffer-to-buffer flow control model (see 20.2.4)

3.1.12 B_Port
Fabric inter-element port used to connect bridge devices with E_Ports on a Switch (see FC-SW-6)

3.1.13 bridge
device that encapsulates/de-encapsulates Fibre Channel frames within another protocol (e.g., Fibre
Channel encapsulated within IP)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

7

3.1.14 buffer
logical construct that holds a single frame

3.1.15 character
encoding of a data byte or control value within an 8B/10B Transmission Word transmitted and interpreted
by the FC-1 level of Fibre Channel (see 5.2)

3.1.16 circuit
bi-directional path within the Fabric

3.1.17 class of service
type of frame delivery service used by the communicating Nx_Ports that may also be supported through a
Fabric (see 4.7 and 17)

3.1.18 Class 2 service
class of service that multiplexes frames at frame boundaries to or from one or more Nx_Ports with
acknowledgement provided (see 4.7.2 and 17.3)

3.1.19 Class 3 service
class of service that multiplexes frames at frame boundaries to or from one or more Nx_Ports without
acknowledgement (see 4.7.3 and 17.4)

3.1.20 Class F service
class of service (see FC-SW-6) that multiplexes frames at frame boundaries with acknowledgement
provided

3.1.21 code violation
error condition that occurs when a received Transmission Word is not able to be decoded using the validity
checking rules specified by the transmission code (see 5)

3.1.22 comma
seven-bit sequence 0011111b or 1100000b in an 8B/10B encoded stream (see 5.2.7.1)

3.1.23 continuously increasing relative offset
condition of operation that requires frames ordered by SEQ_CNT within a Sequence to have a larger
relative offset value in each frame (see 21)

3.1.24 Core N_Port_Name
N_Port_Name associated with a VFT Tagging PN_Port, and not with any other PN_Port or FC_Port within
the scope of its Name_Identifier format (see 13.3.2)

3.1.25 Credit
maximum number of buffers available at a recipient to receive frames from a transmitting FC_Port (see
20.2.4)

3.1.26 current running disparity
running disparity present at a transmitter when 8B/10B encoding of a data byte or special code is initiated,
or at a receiver when 8B/10B decoding of a Transmission Character is initiated (see 5.2.4)

3.1.27 data byte
string of eight contiguous unencoded bits within FC-1 that represents a value in the range 0 to 255,
inclusive

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

8

3.1.28 data character
8B/10B Transmission Character associated by the transmission code with a data byte (see 5.2.3)

3.1.29 Data frame
Device_Data frame, a Video_Data frame, or an FC-4 Link_Data frame (see 12.3.2)

3.1.30 decoding
validity checking of received Transmission Words and generation of words and Special Functions from
those Transmission Words (see 5)

3.1.31 delimiter
Ordered Set used to indicate a frame boundary (see 5.2.7.2, 5.3.7.1, 11.3.7, and 11.3.8)

3.1.32 descrambling
reversal of the mathematical transformation of the bits within data that is accomplished by Frame
Scrambling (see 11.3.6) or 64B/66B decoding (see 5.3)

3.1.33 Destination_Identifier (D_ID)
address identifier used to indicate the targeted destination Nx_Port of the transmitted frame (see 12.4)

3.1.34 destination Nx_Port
Nx_Port to where a frame is targeted

3.1.35 discard policy
error handling policy where a Sequence Recipient is able to discard Data frames received following
detection of a missing frame in a Sequence (see 22.5.4.3)

3.1.36 disparity
difference between the number of ones and zeros in an 8B/10B Transmission Character (see 5.2.4)

3.1.37 Domain Controller
entity that controls activity within a given domain

3.1.38 Domain_ID
highest or most significant hierarchical level in the three-level addressing hierarchy (i.e., the most
significant byte of the address identifier) (see 12.4.2 and see FC-SW-6)

3.1.39 Emission Lowering Protocol
option in the 8B/10B transmission code that uses the ARBff Primitive Signal, in place of the Idle Primitive
Signal, as a Fill Word for maintaining link synchronization in the absence of other Transmission Words (see
11.3.5)

3.1.40 encoding
generation of Transmission Words from words and Special Functions (see 5)

3.1.41 end-to-end Credit (EE_Credit)
limiting value for EE_Credit_CNT in the end-to-end flow control model (see 20.2.4)

3.1.42 end-to-end Credit_Count (EE_Credit_CNT)
counter used in the end-to-end flow control model (see 20.2.4)

3.1.43 End-to-end ESP_Header
ESP_Header processing applied by a Sequence Initiator and removed by the Sequence Recipient on a
frame-by-frame basis (see 14.3.2)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

9

3.1.44 E_Port
Fabric expansion port that connects to another E_Port or B_Port to create an Inter-Switch Link (see
FC-SW-6)

3.1.45 Exchange
unit of protocol activity that transfers information between a specific Originator Nx_Port and specific
Responder Nx_Port using one or more related non-concurrent Sequences that may flow in the same or
opposite directions

3.1.46 Exchange_Identifier (X_ID)
collective reference to OX_ID (see 12.11) and RX_ID (see 12.12)

3.1.47 Exchange Status Block
logical construct that contains the status of an Exchange

3.1.48 Extended_Header
sequence of words that may be present in a frame between the SOF delimiter and the Frame_Header to
support frame handling functions not provided by the Frame_Header (see 13)

3.1.49 F_Port
FC_Port within the Fabric that attaches to a PN_Port through a link

Note 1 to entry: An F_Port is addressable by Nx_Ports communicating through the PN_Port attached to
the F_Port by the F_Port Controller well-known address identifier (i.e., FF FF FEh) (see FC-SW-6).

3.1.50 Fabric
entity that interconnects Nx_Ports attached to it and is capable of routing frames by using the D_ID
information in a FC-2 Frame_Header (see 4.6.3)

3.1.51 Fabric_Name
Name_Identifier associated with a Fabric (see 18 and FC-LS-3)

3.1.52 FC-0 level
level in the Fibre Channel architecture and standards set that defines transmission media, transmitters,
and receivers and their interfaces (see FC-PI-x)

3.1.53 FC-1 level
level in the Fibre Channel architecture and standards set that defines the transmission protocol that
includes the serial encoding, decoding, and error control (see 4.2.3)

3.1.54 FC-2 level
level in the Fibre Channel architecture and standards set that defines the rules and provides mechanisms
needed to transfer blocks of data end-to-end (see 4.2.4)

3.1.55 FC-2 Multiplexer sublevel
sublevel (see 4.2.4) in the Fibre Channel architecture and standards set that routes frames between one or
more FC-2V instances (e.g., VN_Ports) and one or more LCFs, based on the D_ID in the Frame_Header
(see 12.4) and the VF_ID in the VFT_Header if there is a VFT_Header (see 13.3.4)

3.1.56 FC-2 Physical sublevel
sublevel in the Fibre Channel architecture and standards set that defines the rules and provides
mechanisms that shall be used to transfer frames via a specific FC-1 level (see 4.2.4)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

10

3.1.57 FC-2 Virtual sublevel
sublevel in the Fibre Channel architecture and standards set that defines functions and facilities that a
VN_Port may provide for use by an FC-4 level, regardless of the FC-1 that is used (see 4.2.4)

3.1.58 FC-3 level
level in the Fibre Channel architecture and standards set that defines a set of services that are common
across multiple Nx_Ports of a node

3.1.59 FC-4 level
level in the Fibre Channel architecture and standards set that defines the mapping between the lower
levels of the Fibre Channel and an Upper Level Protocol

Note 1 to entry: FC-4s are not specified by this standard.

3.1.60 FC_Port
port that is capable of transmitting and receiving Fibre Channel frames according to the FC-0, FC-1,
FC-2P, FC-2M, FC-2V, and FC-3 levels of the Fibre Channel standards

Note 1 to entry: An FC_Port contains at least one LCF and at least one VN_Port, and may contain other
types of FC-2V instances (e.g., an F_Port Controller) (see FC-SW-6).

3.1.61 FL_Port
F_Port that contains Arbitrated Loop functions associated with Arbitrated Loop topology (see FC-AL-2)

3.1.62 F_Port_Name
Name_Identifier associated with an F_Port (see 18 and FC-LS-3)

3.1.63 fibre
unidirectional data communication medium used in a manner compliant with FC-PI-x or FC-AL-2

3.1.64 Fibre Channel interaction space
set of Fibre Channel ports, devices, and Fabrics that are connected by Fibre Channel links or are
accessible by a common instance of an administrative tool or tools

3.1.65 Fibre Channel Protocol (FCP)
standard SCSI device interface using Fibre Channel communication (see FCP-4)

3.1.66 Fill Word
special function transmitted when no frames or other Special Functions are being transmitted (see 11.3.2)

3.1.67 Forward Error Correction (FEC)
encoding of a stream of 64B/66B Transmission Words to allow transparent correction of some bit errors
(see 5.3.1)

3.1.68 frame
indivisible unit of information used by FC-2 (see 11.2)

3.1.69 frame content
information contained in a frame between its SOF and EOF delimiters, excluding the delimiters (see 11.4)

3.1.70 Frame_Header
sequence of words that follows the SOF delimiter and any Extended_Headers in a frame to control link
operations and device protocol transfers as well as detect missing or out of order frames (see 12)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

11

3.1.71 Frame Scrambling
modifying data to minimize repetitive character patterns (see 11.3.6)

3.1.72 Fx_Port
switch port capable of operating as an F_Port or FL_Port (see FC-AL-2)

3.1.73 gateway
device that converts an FC-4 protocol to another protocol (e.g., FCP to iSCSI)

3.1.74 Host
computer system that provides end users services such as computation and storage access

3.1.75 hub
device that interconnects L_Ports but does not provide FL_Port capabilities

3.1.76 Idle
Ordered Set that is normally transmitted between frames (see 5.2.7.3 and 5.2.7.2)

3.1.77 Infinite buffer
amount of buffer available at the Sequence Recipient is unlimited at the FC-2V sublevel

3.1.78 Information Category
category to which the frame payload belongs (e.g., Solicited Data, Unsolicited Data, Solicited Control, and
Unsolicited Control) (see 12.3.3)

3.1.79 Information Unit
organized collection of data specified by an upper level to be transferred as a single Sequence by FC-2V

3.1.80 initial relative offset
relative offset value specified at the sending end by an upper level for a given Information Unit and used by
the sending FC-2V in the first frame of that Information Unit (see 21)

3.1.81 Internet Protocol
protocol for communicating data packets between identified endpoints on a multipoint network (see RFC
791, RFC 2373, RFC 2460)

3.1.82 IP address
identifier of an endpoint in Internet Protocol

3.1.83 lane
pair of unidirectional transmission media (e.g., fibre, copper) transmitting in opposite directions and their
associated transmitters and receivers in a link of two or more pairs

3.1.84 link
one or more pairs of unidirectional fibres transmitting in opposite directions and their associated
transmitters and receivers

3.1.85 Link-by-link ESP_Header
ESP_Header processing applied to a frame at the transmitting end of a link and removed at the receiving
end of the link (see 14.3.3 and 14.3.4)

3.1.86 Link Control Facility (LCF)
hardware facility that attaches to an end of a link and manages transmission and reception of data (see
4.4)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

12

3.1.87 local Fx_Port
Fx_Port to which an Nx_Port is directly attached by a link or an Arbitrated Loop (see 4.4)

3.1.88 Low Power Idle (LPI)

primitive signal sent in place of Idle which indicates that the transmitter is operating in, or wishes to operate
in Low Power mode (see 10)

3.1.89 LPI Mode

link state in which the link is operating or wishing to operate in lower power mode by sending LPI (see
10.6)

3.1.90 L_Port
FC_Port that contains Arbitrated Loop functions associated with Arbitrated Loop topology (see FC-AL-2)

3.1.91 Multiplexer
entity that provides the functions of the FC-2M sublevel

3.1.92 Name_Identifier
value used to identify a Fibre Channel entity (see 18)

3.1.93 Network_Address_Authority (NAA)
organization (e.g., IEEE) that administers network addresses (see 18)

3.1.94 Network_Address_Authority (NAA) identifier
four-bit identifier defined to indicate a Network_Address_Authority (NAA) (see 18)

3.1.95 NL_Port
Nx_Port communicating through a PN_Port that is operating a Loop Port State Machine (see FC-AL-2)

Note 1 to entry: Without the qualifier "Public" or "Private," an NL_Port is assumed to be a Public NL_Port.

3.1.96 node
collection of one or more Nx_Ports controlled by a level above FC-2 (see 4.3)

3.1.97 Node_Name
Name_Identifier associated with a node (see 18 and FC-LS-3)

3.1.98 N_Port
Nx_Port communicating through a PN_Port that is not operating a Loop Port State Machine (see FC-AL-2)

Note 1 to entry: Services operating at well-known addresses are considered to be N_Ports (see 12.4.2).

3.1.99 N_Port_ID
address identifier of an Nx_Port

3.1.100 N_Port_ID Virtualization (NPIV)
ability of an F_Port or a PN_Port to support more than one VN_Port (see 4.3)

3.1.101 N_Port_Name
Name_Identifier associated with an Nx_Port (see 18 and FC-LS-3)

3.1.102 Nx_Port
end point for Fibre Channel frame communication, having a distinct address identifier and Name_Identifier,
providing an independent set of FC-2V functions to higher levels, and having the ability to act as an

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

13

Originator, a Responder, or both

3.1.103 open
period of time starting when a Sequence or an Exchange is initiated until that Sequence or Exchange is
normally or abnormally terminated (see 19.7.2)

3.1.104 Ordered Set
pattern in encoded data sent or received by an FC_Port that, when decoded, communicates a Special
Function rather than a word (see 5)

3.1.105 Originator
logical function associated with an Nx_Port responsible for originating an Exchange

3.1.106 Originator Exchange_ID (OX_ID)
identifier assigned by an Originator to identify an Exchange (see 4.10.4.2)

3.1.107 payload
contents of the Data_Field of a frame, excluding Optional Headers and fill bytes, if present (see table 25,
and 11, 14, and 15.2)

3.1.108 PE_Port
LCF within the Fabric that attaches to another PE_Port or to a B_Port through a link (see FC-SW-6)

3.1.109 PF_Port
LCF within a Fabric that attaches to a PN_Port through a link (see FC-SW-6)

3.1.110 Platform
container for one or more nodes and one or more LCFs

Note 1 to entry: Any additional characteristics of a Platform are outside the scope of this standard (e.g.,
see FC-GS-7).

3.1.111 PN_Port
LCF that supports only Nx_Ports (see 4.3)

3.1.112 Policy
rule used to determine how frames not received are handled during error recovery (see 22.5.4.3)

3.1.113 Port VF_ID
configurable VF_ID that is associated with any untagged frame received by a VF capable PN_Port or
F_Port (see 13.3.2)

3.1.114 Primitive Sequence
Ordered Set transmitted repeatedly and continuously until a specified response is received (see 5.2.7.5
and 5.3.7.3)

3.1.115 Primitive Signal
Special Function for which each instance has meaning independent of neighboring Special Functions (e.g.,
an Idle or R_RDY) (see 5.2.7.3 and 5.3.7.2)

3.1.116 Private NL_Port
NL_Port that does not attempt a Fabric Login and does not transmit OPN(00,x) (see FC-AL-2)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

14

3.1.117 Public NL_Port
NL_Port that attempts a Fabric Login (see FC-AL-2)

3.1.118 Quality of Service (QoS)
set of frame delivery characteristics (e.g., bandwidth and latency) and/or policies (e.g., priority for
resources) that a Fabric may attempt or guarantee for an identified set of frames

3.1.119 random relative offset
relationship specified between relative offset values contained in frame (n) and frame (n+1) of an
Information Category within a single Sequence

Note 1 to entry: For a given Information Category I within a single Sequence, initial relative offset (ROI)

value for a frame (n+1) is unrelated to that of the previous frame (n) (see 21).

3.1.120 receiver
portion of a LCF dedicated to receiving an encoded bit stream from a fibre, converting this bit stream into
Transmission Words, and decoding these Transmission Words using the rules specified by this standard
(see 5)

3.1.121 Recovery_Qualifier
composite of S_ID, D_ID, OX_ID and RX_ID in combination with a range of SEQ_CNT values (low and
high) that identifies frames to be discarded in certain recovery processes (see 16.3.2.2.4)

3.1.122 relative offset
displacement, expressed in bytes, of the first byte of a payload related to an upper level defined origin for a
given Information Category (see 21)

3.1.123 relative offset space
virtual address space defined by the sending upper level for a set of information carried in one or more
information units

3.1.124 remote Fx_Port
with regards to an Nx_Port that is communicating through a Fabric to a remote Nx_Port, the Fx_Port to
which the remote Nx_Port is directly attached (see 4.4)

3.1.125 Responder
logical function in an Nx_Port responsible for supporting the Exchange initiated by the Originator in
another Nx_Port

3.1.126 Responder Exchange_ID (RX_ID)
identifier assigned by a Responder to identify an Exchange and meaningful only to the Responder

3.1.127 run length
number of consecutive identical bits in the transmitted signal (e.g., the pattern 0011111010b has a
maximum run length of five and a minimum run length of one) (see 5.2.3)

3.1.128 running disparity
binary value indicating the cumulative encoded signal unbalance between the one and zero signal state of
all Transmission Characters since Transmission Word Synchronization was achieved using 8B/10B
encoding (see 5.2.4)

3.1.129 scrambling
mathematical transformation of the bits within data by application of Frame Scrambling (see 11.3.6) or
64B/66B encoding (see 5.3)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

15

3.1.130 Sequence
set of one or more Data frames with a common Sequence_ID (SEQ_ID), transmitted unidirectionally from
one Nx_Port to another Nx_Port with a corresponding response, if applicable, transmitted in response to
each Data frame (see 19)

3.1.131 Sequence_ID (SEQ_ID)
identifier used to identify a Sequence (see 19)

3.1.132 Sequence Initiator
Nx_Port that initiates a Sequence and transmits Data frames to the destination Nx_Port (see 19)

3.1.133 Sequence_Qualifier
composite of S_ID, D_ID, OX_ID, RX_ID, and SEQ_ID, used to uniquely identify open Sequences (see
19.7.1)

3.1.134 Sequence Recipient
Nx_Port that receives Data frames from the Sequence Initiator and, if applicable, transmits responses (i.e.,
Link_Control frames) to the Sequence Initiator (see 19)

3.1.135 Sequence Status Block
logical construct that tracks the status of a Sequence

3.1.136 Signal Failure
condition in which an FC_Port capable of the speed negotiation procedure shall initiate that procedure
(see 8.2)

3.1.137 Small Computer System Interface (SCSI)
standard interface to storage devices, comprising an architecture, multiple device command sets, and
multiple transport protocols (see SAM-5)

3.1.138 Source_Identifier (S_ID)
address identifier used to indicate the source Nx_Port of the transmitted frame (see 12.4.4)

3.1.139 source Nx_Port
Nx_Port where a frame is originated

3.1.140 special character
8B/10B Transmission Character (see 5.2) considered valid by the transmission code but not equated to a
data byte

3.1.141 special code
code that, when encoded using the rules specified by the 8B/10B transmission code, results in a special
character

Note 1 to entry: Special codes are typically associated with control signals related to protocol management
(e.g., K28.5) (see 5.2.2).

3.1.142 Special Function
link control operation supporting a function (e.g., link initialization, frame delimiting, and interframe fill) (see
5) that is communicated by Ordered Sets rather than by frame content

3.1.143 streamed Sequence
new sequence initiated by a Sequence Initiator in any class of service for an Exchange while it already has
Sequences Open for that Exchange (see 19)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

16

3.1.144 storage device
device that is capable of non-volatile data storage (e.g., disk device, tape device, disk array device, tape
array device)

3.1.145 Switch
Fabric element conforming to the Fibre Channel Switch Fabric standard (see FC-SW-6)

3.1.146 synchronization
receiver identification of a Transmission Word boundary (see 6)

3.1.147 topology
communication infrastructure that provides Fibre Channel communication among a set of PN_Ports (e.g.,
a Fabric, an Arbitrated Loop, or a combination of the two)

3.1.148 Training Frame
element of a Transmitter Training Signal that communicates training information from the recipient of a
Transmitter Training Signal to the sender of a Transmitter Training Signal (see 5.5.2)

3.1.149 Training Pattern
element of a Transmitter Training Signal that allows a receiver to evaluate the ability to achieve reliable
Fibre Channel communication across the link on which the Training Pattern is sent (see 5.5.3)

3.1.150 Transmission Character
valid or invalid 8B/10B encoded character transmitted across a physical interface specified by FC-0

3.1.151 transmission code
means of encoding data and Special Functions to enhance their transmission characteristics (see 5)

3.1.152 Transmission Word
smallest unit of encoded information produced by a transmission code (see 5)

3.1.153 transmitter
portion of a LCF dedicated to converting words and Special Functions into Transmission Words using the
rules specified by the transmission code, converting these Transmission Words into a bit stream, and
transmitting this bit stream onto the transmission medium (optical or electrical)

3.1.154 Transmitter Training Signal
transmission code that enables active feedback from a receiver to a transmitter to assist in adapting the
transmitter to the characteristics of the link that connects them (see 5.5)

3.1.155 Training Unit Interval (TUI)
nominal duration of a single transmission bit (see Unit Interval in FC-PI-x)

3.1.156 Unrecognized Ordered Set
Ordered Set (see 5.2.7.1) that is not defined to have meaning by this standard, but that may be defined by
other standards (e.g., FC-AL-2)

3.1.157 upper level
level above FC-2

3.1.158 Upper Level Protocol (ULP)
protocol user of FC-4 (see 4)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

17

3.1.159 valid frame
frame received with a valid SOF, a valid EOF, valid data characters, and proper CRC of the Frame_Header
and Data_Field (see 11)

3.1.160 VFT_Header
Extended_Header that identifies the Virtual Fabric to which a frame belongs (see 13.3)

3.1.161 VFT Tagging PF_Port
PF_Port operating with a Multiplexer that has enabled processing of Virtual Fabric Tagging Headers (see
13.3)

3.1.162 VFT Tagging PN_Port
PN_Port operating with a Multiplexer that has enabled processing of Virtual Fabric Tagging Headers (see
13.3)

3.1.163 Virtual Fabric (VF)
Fabric composed of partitions of Switches and N_Ports having a single Fabric management domain, a
single set of Generic Services, and independence from all other Virtual Fabrics (e.g., independent address
space) (see FC-SW-6)

3.1.164 Virtual Fabric Identifier (VF_ID)
value that uniquely identifies a Virtual Fabric among all the Virtual Fabrics that share a set of Switches and
N_Ports (see FC-SW-6)

3.1.165 Virtual Fabric Tagging Header (VFT_Header)
Extended_Header that contains information to associate a frame to a specific Virtual Fabric (see 13.3)

3.1.166 VN_Port
instance of the FC-2V sublevel

Note 1 to entry: Synonymous with N_Port.

Note 2 to entry: VN_Port is used when it is desired to emphasize support for multiple Nx_Ports on a single
Multiplexer (e.g., via a single PN_Port).

3.1.167 vnode
synonymous with node

3.1.168 well-known addresses
set of address identifiers defined in this standard to access Fabric and other functions (e.g., a name
server) (see 12.4)

3.1.169 word
string of four contiguous bytes within an unencoded frame occurring on boundaries that are zero modulo 4
from a specified reference

3.1.170 Worldwide_Name
Name_Identifier that is worldwide unique (see 18)

3.2 Editorial conventions

In this standard, a number of conditions, mechanisms, sequences, parameters, events, states, or similar
terms are printed with the first letter of each word in upper-case and the rest lower-case (e.g., Exchange,
Sequence). Any lower case uses of these words have the normal technical English meanings.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

18

An alphabetic list (e.g., a, b, c) of items indicate the items in the list are unordered. A numeric list (e.g., 1,
2, 3) of items indicate the items in the list are ordered (i.e., item 1 shall occur or complete before item 2).

In case of any conflict between figures, tables, and text, the text takes precedence. Exceptions to this
convention are indicated in the appropriate sections.

In all of the figures, tables, and text of this document, the most significant bit of a binary quantity is shown
on the left side. Exceptions to this convention are indicated in the appropriate sections.

In the various ladder diagrams that show a sequence of events, the vertical axis (i.e., up and down the
page) shows time from top to bottom.

The ISO/British convention of decimal number representation is used in this standard. Numbers may be
separated by single spaces into groups of three digits counting from the decimal position, and a period is
used as the decimal marker. A comparison of the ISO/British, ISO/French, and American conventions is
shown in table 1.

Numbers that are not immediately followed by lower-case b or h are decimal values (e.g., 25).

A sequence of digits 0 or 1 immediately followed by lower-case b (e.g., 0101b) is a binary value. Spaces
may be included in binary values to delineate byte or field boundaries (e.g., 01011 010b).

A sequence of digits and/or upper case letters A through F (i.e., a sequence of hexadecimal digits)
immediately followed by lower-case h (e.g., FA23h) is a hexadecimal value. Spaces may be included in
hexadecimal values to delineate byte or field boundaries (e.g., FD 8C FA 23h). When X or Y is used in a
hexadecimal notation, it represents a single hexadecimal digit.

3.3 State machines

3.3.1 Overview

The operation of a protocol or a function may be described by a state machine. The models presented by
state machines are intended as the primary specifications of functional behavior to be provided. However,
it is important to distinguish between a model and a real implementation. The models are optimized for
simplicity and clarity of presentation, while any realistic implementation may place heavier emphasis on
efficiency and suitability to a particular implementation technology. It is functional behavior that is specified
by this standard, not internal structure. The internal details of a state machine model are useful only to the
extent that they specify the external behavior clearly and precisely.

The specification of a state machine includes the conditions under which it is started, and may include
conditions under which it completes.

Multiple instances of the same state machine may operate concurrently.

Table 1 - Comparison of numbering conventions

ISO/British ISO/French American

0.6 0,6 0.6

3.14159265 3,141 592 65 3.14159265

1 000 1 000 1,000

1 323 462.9 1 323 462,9 1,323,462.9

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

19

3.3.2 States

Each state machine consists of a group of mutually exclusive states, each of which:

1) performs a set of actions on entry;

2) performs a set of ongoing actions continually while in the state; and

3) upon specified conditions, transitions to another state.

Only one state of a state machine is active at any given time.

The actions on entry to states are immediate and atomic (i.e., uninterruptible). When a state has performed
all its specified entry actions one time, the state then continuously performs its ongoing actions,
concurrently evaluating its exit conditions When the conditions for any of its exits is satisfied, control
passes through a transition to the next state. No actions are taken outside of any state.

3.3.3 State variables

State variables carry information among the states within their scope. A variable may be within the scope
of the states of a machine or of a set of related machines. Variables have no default values. Their values
are explicitly set before they are first used, and retain their values until explicitly set again, or until their
scope is completed.

3.3.4 State timers

State timers may limit the amount of time in a state or set of states within their scope. A timer may be within
the scope of the states of a machine or of a set of related machines. An expiration value range is specified
for each timer. A timer is reset and starts monitoring elapsed time upon entering a state that includes an
action to start the timer. A timer expires at some elapsed time greater than the minimum value of its
expiration range and less than the maximum value of its expiration range. A timer that has expired remains
expired until the timer is reset or its scope completes. A timer is reset and stops counting upon entering a
state that includes an action to stop the timer or when the scope of the timer completes.

3.3.5 State transitions

The action performed in a state machine may change by transitions from one state to another. Transitions
may be unconditional, or may not occur until one or more conditions are present. A transition takes place
immediately upon its conditions, if any, becoming true. The following terms are examples of transition
conditions:

a) a boolean expression on variables is true;

b) expiration of a timer; or

c) an external event is detected (e.g., reception of a message).

3.3.6 State diagram conventions

 A state machine may be described by a state diagram (see figure 1). When apparent conflicts between
normative text and state diagrams arise, the normative text shall take precedence. However, if an explicit
description in the state diagram has no parallel in the normative text, the description in the state diagram is
normative.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

20

Each state that the state machine is able to assume is represented by a rectangle. These are divided into
two parts by a horizontal line. In the upper part the state is identified by a state name. The lower part
contains the actions conducted by the state while it is active. Actions are described by short phrases.

All permissible transitions between the states of a function are represented graphically by arrows between
them. Labels on transitions are conditions that shall be fulfilled before the transition is taken. A transition
may also be labeled as unconditional. Conditions are described by short phrases.

Any arrow with no source block represents a global transition. Global transitions are evaluated
continuously whenever any state is evaluating its exit conditions. When a global transition becomes true, it
supersedes all other transitions, including unconditional transitions, returning control to the block to which
the global transition arrow points.

3.4 Abbreviations, acronyms, and symbols

3.4.1 Acronyms and other abbreviations

64B/66B A transmission code used in Fibre Channel (see 5.3)
8B/10B A transmission code used in Fibre Channel (see 5.2)
ABTS Abort Sequence
ABTS-LS ABTS Basic Link Service with the Parameter field bit 0 set to zero (see 16.3.2.1)
ACK Acknowledgement
ADVC Advise Credit
AL_PA Arbitrated Loop Physical Address
BA_ACC Basic Accept
BB_Credit buffer-to-buffer Credit
BB_Credit_CNT buffer-to-buffer Credit_Count
BB_SCs buffer-to-buffer State Change (SOF)
BB_SCr buffer-to-buffer State Change (R_RDY)
BB_SC_N buffer-to-buffer State Change Number
BSY busy
Credit_CNT Credit_Count
CRC Cyclic Redundancy Check (see 11.4.5)
DF_CTL Data_Field Control
D_ID Destination_Identifier

Figure 1 - State diagram notation example

<Actions on entry>
Continuing actions

State_Name

entry
transition
conditions

exit 1
transition
conditions

exit 2
transition
conditions

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

21

DSCP Differentiated Services Code Point
E_D_TOV Error_Detect_Timeout value
EE_Credit End-to-end Credit
EE_Credit_CNT End-to-end Credit_Count
ELS Extended Link Service
EOF End-of-Frame
ESB Exchange Status Block
ESTC Estimate Credit
ESTS Establish Streaming
F_BSY Fabric_Port_Busy
F_BSY(DF) F_BSY response to a Data frame
F_BSY(LC) F_BSY response to any Link_Control except P_BSY
FC Fibre Channel
FC-0 FC-0 level
FC-1 FC-1 level
FC-2 FC-2 level
FC-2M FC-2 Multiplexer sublevel
FC-2P FC-2 Physical sublevel
FC-2V FC-2 Virtual sublevel
FC-3 FC-3 level
FC-4 FC-4 level
FCP Fibre Channel Protocol
FC-PI-x Fibre Channel Physical Layer standards

(see FC-PI-2, FC-PI-3, FC-PI-3, FC-PI-5, and 10GFC)
FCS Frame Check Sequence
F_CTL Frame Control
FEC Forward Error Correction
FLOGI Fabric Login
F_RJT Fabric Reject
HBA Host Bus Adapter
hex hexadecimal notation
IEEE Institute of Electrical and Electronics Engineers
IP Internet Protocol
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
LCF Link Control Facility
LCR Link Credit Reset
LESB Link Error Status Block (see 22.4.8)
LF1 NOS Receive State
LF2 NOS Transmit State
LILP Loop Initialization Loop Position
LISA Loop Initialization Soft Assigned
LOGO Logout
LPI Low Power Idle
LR Link Reset Primitive Sequence
LR1 LR Transmit State
LR2 LR Receive State
LR3 LRR Receive State
LRR Link Reset Response Primitive Sequence
LS_ACC Link Service Accept
LS_Command Link Service Command
m Metre
MB MegaByte
ms Millisecond

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

22

µs Microsecond
N/A Not applicable
NAA Network_Address_Authority
NOP No Operation
NOS Not_operational Primitive Sequence
NPIV N_Port_ID Virtualization
ns Nanosecond
OL1 OLS Transmit State
OL2 OLS Receive State
OL3 Wait for OLS State
OLS Offline Primitive Sequence
OX_ID Originator Exchange_ID
P_BSY N_Port_Busy
PDISC Discover N_Port Service Parameters
PLOGI N_Port Login
PPM Parts per Million
P_RJT N_Port_Reject
PRLI Process Login
PRLO Process Logout
QoS Quality of Service
R_A_TOV Resource_Allocation_Timeout value
R_CTL Routing Control
RJT Reject
RLIR Registered Link Incident Report
RLS Read Link Error Status Block
RNC Report node Capability
RO Relative offset
R_RDY Receiver_Ready
R_T_TOV Receiver_Transmitter_Timeout value
RTV Read Timeout Value
Rx Receiver
RX_ID Responder Exchange_ID
s Second
SBCCS Single Byte Command Code Sets
SCR State Change Registration
SCSI Small Computer System Interface
SEQ_CNT Sequence Count
SEQ_ID Sequence_ID
S_ID Source_Identifier
SOF Start-of-Frame
SSB Sequence Status Block
Tx Transmitter
TYPE Data structure type
ULP Upper Level Protocol
TUI Training Unit Interval (see 5.5)
VC_RDY Virtual Circuit Ready
VF Virtual Fabric
VF_ID Virtual Fabric Identifier
VFT_Header Virtual Fabric Tagging Header
WWN Worldwide_Name
X_ID Exchange_Identifier
XOR Mathematical modulo 2 addition applied bit by bit to the corresponding bits of two

or more equal-length bit streams

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

23

3.4.2 Symbols

Unless indicated otherwise, the following symbols have the listed meaning.

• Multiplication
••• Ellipsis, aligned horizontally or vertically (i.e., items similar to those adjacent are

omitted)
 Mathematical modulo 2 addition applied bit by bit to the corresponding bits of two

or more equal-length bit streams
|| Concatenation
 Micro (e.g., m = micrometer)
L >> Received from Link
 Plus or minus
 Not Equal
 Greater than or equal
 Less than or equal
| In a state diagram, logical exclusive or of two operands
& In a state diagram, logical and of two operands

3.5 Keywords

3.5.1 expected: Used to describe the behavior of the hardware or software in the design models
assumed by this standard. Other hardware and software design models may also be implemented.

3.5.2 invalid: Used to describe an illegal or unsupported bit, byte, word, field or code value. Receipt
of an invalid bit, byte, word, field or code value shall be reported as error.

3.5.3 ignored: Used to describe a bit, byte, word, field or code value that shall not be examined by
the receiving port. The bit, byte, word, field or code value has no meaning in the specified context.

3.5.4 mandatory: A keyword indicating an item that is required to be implemented as defined in this
standard.

3.5.5 may: A keyword that indicates flexibility of choice with no implied preference (equivalent to
“may or may not”).

3.5.6 may not: A keyword that indicates flexibility of choice with no implied preference (equivalent
to “may or may not”).

3.5.7 meaningful: A control field or bit that shall be applicable and that shall be interpreted by the
receiver.

3.5.8 not meaningful: A control field or bit that shall be ignored by the receiver.

3.5.9 obsolete: A keyword indicating that an item was defined in a prior Fibre Channel standard but
has been removed from this standard.

3.5.10 optional: A keyword that describes features that are not required to be implemented by this
standard. However, if an optional feature defined by this standard is implemented, then it shall be
implemented as defined in this standard.

3.5.11 reserved: A keyword referring to bits, bytes, words, fields and code values that are set aside
for future standardization. A reserved bit, byte, word or field shall be set to zero, or in accordance with a

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

24

future extension to this standard. Recipients should not check reserved bits, bytes, words or fields for zero
values. Receipt of reserved code values in defined fields shall be reported as an error.

3.5.12 restricted: A keyword referring to bits, bytes, words, and fields that are set aside for use in
other standards. A restricted bit, byte, word, or field shall be treated as a reserved bit, byte, word or field for
the purposes of the requirements defined in this standard.

3.5.13 shall: A keyword indicating a mandatory requirement. Designers are required to implement all
such mandatory requirements to ensure interoperability with other products that conform to this standard.
This standard prescribes no specific response by a component if it receives information that violates a
mandatory behavior.

3.5.14 should: A keyword indicating flexibility of choice with a strongly preferred alternative;
equivalent to the phrase “it is strongly recommended”.

3.5.15 should not: A keyword indicating flexibility of choice with a strongly preferred alternative;
equivalent to the phrase “it is strongly recommended not to”.

3.5.16 vendor specific: Functions, code values, and bits not defined by this standard and set aside
for private usage between parties using this standard.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

25

4 Structure and Concepts

4.1 Introduction

This clause provides an overview of the structure, concepts and mechanisms used in this standard. The
following concepts are defined and described:

a) Functional levels (see 4.2);

b) Architectural components (see 4.3);

c) Physical model (see 4.4);

d) Communication models (see 4.5);

e) Interconnect topologies based on the presence or absence of a Fabric (see 4.6);

f) Classes of service provided by the Fabric and Nx_Ports (see 4.7);

g) General Fabric model (see 4.8);

h) Generic Services (see 4.9);

i) Building Blocks and their hierarchy (see 4.10);

j) Segmentation and reassembly (see 4.11); and

k) Error detection and recovery (see 4.12).

Fibre Channel (FC) is logically a bi-directional, point-to-point, serial data channel, structured for high
performance capability. Fibre Channel may be implemented using any combination of the following three
topologies:

a) a point-to-point link between two PN_Ports;

b) a set of PN_Ports interconnected by a switching network called a Fabric; and

c) a set of L_Ports interconnected with a loop topology as defined in FC-AL-2.

This standard provides a general transport vehicle for Upper Level Protocols (ULPs) (e.g., Small Computer
System Interface (SCSI) command sets, Internet Protocol (IP), and others). Other ULPs may also use and
share Fibre Channel, but such use is not defined as part of this standard.

The Fibre Channel protocol provides a range of implementation possibilities extending from minimum cost
to maximum performance. The transmission medium is isolated from the control protocol so that each
implementation may use a technology best suited to the environment of use.

Effective transfer rate achieved by a Fibre Channel configuration is a function of physical variants, the
communication model, Payload size, fibre speed, class of service and overhead specified by this standard.

4.2 Functional levels

4.2.1 Overview

Fibre Channel is structured as a set of hierarchical functions as illustrated in figure 2. This standard
specifies related functions FC-1, FC-2, and FC-3. Each of these functions is described as a level. FC-2 is
further subdivided into sublevels FC-2P, FC-2M, and FC-2V. This standard does not restrict
implementations to specific interfaces between these levels.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

26

FC-2V and FC-3 are specified by this standard. FC-1, FC-2P, and FC-2M as specified by this standard
may be used in any Fibre Channel standard, but shall be used for FC-0 levels specified in FC-PI-x and
FC-BaseT. Extended Link Services are defined in FC-LS-3.

4.2.2 FC-0 general description

The physical interface (FC-0) consists of transmission media, transmitters, and receivers and their
interfaces. A variety of physical media, and associated drivers and receivers capable of operating at
various speeds are specified by other standards (e.g., FC-PI-x, FC-BaseT) to address variations in cable
plants.

4.2.3 FC-1 general description

FC-1 (see clause 5, clause 6, clause 7, clause 8, and clause 9) defines the transmission protocol that shall
be used for FC-0 levels specified in FC-PI-x and FC-BaseT. It includes the serial encoding, decoding, and
error control. Other standards that specify FC-0 levels may also specify an appropriate FC-1 level.

The Fibre Channel transmits information using either a 64B/66B transmission code or an adaptive 8B/10B
transmission code. The encoding process results in the generation of Transmission Words.

Figure 2 - Fibre Channel structure

ULPs VIA SCSI
IPv4,
IPv6 SBCCS others

FC-4
Mapping FC-VI SAM-5

RFC
4338

FC-SB-
5

others

Transmission Protocol

Transmitters and Receivers

Media

Common ServicesFC-3

FC-PI-x

FC-2
Protocol

FC-1
Coding

FC-0
Physical

This
standard

Extended Link Ser-
vices (See FC-LS-3)

Signaling Protocol - Virtual

Signaling Protocol - Multiplexer

Signaling Protocol - Physical

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

27

Certain encoded bit patterns, referred to as Ordered Sets, are designated by this standard to have special
meaning. Ordered Sets are used by the FC-2P sublevel specified by this standard to identify frame
boundaries, transmit primitive function requests, and by the FC-1 level specified by this standard to
maintain proper link transmission characteristics during periods of inactivity.

Transmitter and receiver behavior is specified via a set of states and their interrelationships. These states
are divided into operational and not operational classes. Error monitoring capabilities and special
operational modes are also defined for operational receivers and transmitters.

4.2.4 FC-2 general description

The FC-2 level serves as the transport mechanism of the Fibre Channel. The transported data is
transparent to FC-2 and visible to FC-3 and above. FC-2 contains three sublevels: FC-2P (i.e., the FC-2
Physical sublevel), FC-2M (i.e., the FC-2 Multiplexer sublevel), and FC-2V (i.e., the FC-2 Virtual sublevel).

FC-2P specifies the rules and provides mechanisms that shall be used to transfer frames via a specific
FC-1 level. This standard specifies an FC-2P (see 11.3, 20.4, and 24.4) that shall be used to transfer
frames via the FC-1 that is specified by this standard. FC-2P functions specified in this standard include
frame transmission and reception, buffer-to-buffer flow control, and clock synchronization by use of
Primitive Signals.

FC-2M (see 11.4, 12.4, clause 13, and clause 23) specifies the addressing and functions used to route
frames between a Link Control Facility and a VN_Port.

FC-2V (see 11.4, clause 12, clause 13, clause 14, clause 15, clause 17, clause 18, clause 19, 20.3, clause
21, and 24.3) defines functions and facilities that an Nx_Port may provide for use by an FC-4 level,
regardless of the FC-1 that is used. FC-2V functions include several classes of service, frame content
construction and analysis, Sequence disassembly and reassembly, Exchange management, and
Name_Identifiers.

4.2.5 FC-3 general description

FC-3 provides a set of services that are common across multiple Nx_Ports of a node. FC-3 includes
protocols for Basic Link Services (see clause 16), and Extended Link Services (see FC-LS-3). The Link
Services represent a mandatory function required by FC-2.

4.2.6 FC-4 general description

FC-4 is the highest level in the Fibre Channel standards set. An FC-4 defines the mapping between the
lower levels of the Fibre Channel and an Upper Level Protocol (e.g., the SCSI and SBCCS command sets,
IP, and other Upper Level Protocols (ULPs)). Fibre Channel provides a method for supporting a number of
Upper Level Protocols (ULPs).

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

28

4.3 Architectural components of nodes

A node is an administratively defined group of ULPs and Nx_Ports within a physical entity (i.e., a Platform).
The equivalent term vnode may replace the term node in order to emphasize the possibility that multiple
nodes may coexist within the same Platform. Each node has a Name_Identifier that enables it to be
referenced by certain functions of a Fibre Channel environment (e.g., Name Server requests, see
FC-GS-7). The architectural components associated with a node are:

a) a Platform, that contains one or more vnodes;

b) one or more vnodes, each of which identifies a collection of one or more ULPs and their FC-4
mappings, an FC-3 level, and one or more VN_Ports;

c) one or more ULPs, which are application protocols carried over Fibre Channel;

d) an FC-4 mapping for each ULP onto the FC-3 functions offered by the vnode and the FC-2
functions offered by each VN_Port;

e) one or more VN_Ports, each of which is an independent end point for Fibre Channel
communication;

f) one or more Multiplexers, each of which routes frames between a set of VN_Ports and a set of
PN_Ports; and

g) one or more PN_Ports, each of which is an LCF that operates a Fibre Channel link.

The relations among the architectural components and functional levels in a Fibre Channel node is
illustrated in figure 3. Although figure 3 shows only vnodes and VN_Ports, the term vnode is
interchangeable with the term node, and the term VN_Port is interchangeable with the terms:

a) Nx_Port;

b) in Fabric topologies, N_Port; and

c) in loop topologies, NL_Port.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

29

4.4 Physical model

Figure 4 depicts the physical model presumed by this standard and illustrates the physical structure and
components of the model. The Fibre Channel (FC) physically consists of a minimum of two PN_Ports,
each associated with a Platform, interconnected by a pair of fibres - one outbound and the other inbound at
each PN_Port. This pair of unidirectional fibres transmitting in opposite directions with their associated
transmitters and receivers is referred to as a link. The link is used by the interconnected PN_Ports to
perform data communication.

Figure 3 - Node components and functional levels model

vnode

FC-3

• • •

vnode

VN_Port

FC-4FC-4

FC-1

FC-0

FC-2P

PN_Port

FC-2V

FC-1

FC-0

FC-2P

PN_Port

VN_Port
FC-2V

VN_Port
FC-2V

VN_Port
FC-2V•••

•••

• • • ULPULP

FC-3

FC-4

ULP

Platform

FC-1

FC-0

FC-2P

PN_Port

• • •

Multiplexer

FC-2M

Multiplexer

FC-2M

FC-1

FC-0

FC-2P

PN_Port

VN_Port
FC-2V

Multiplexer

FC-2M

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

30

Physical equipment (e.g., a processor, controller, or terminal) should be interconnected to other physical
equipment through these links. Attached physical equipment comprises one or more Platforms and each
Platform contains one or more PN_Ports, with each PN_Port being an LCF containing a transmitter and a
receiver.

The physical model shown in Figure 4 is inherently capable of simultaneous bi-directional flow. A Fabric
may be present between the PN_Ports and some Fabrics may not support this type of flow. From the
perspective of a given PN_Port, for instance A(1) or B(1), its transmitter sends Data frames on the
outbound fibre and its receiver receives the responses on the inbound fibre.

This structure provides flexible mechanisms for attached equipment to perform simultaneous data
transfers in parallel.

Figure 4 - Physical model

Legend:
T: Transmitter
R: Receiver
fibre: Any medium supported by Fibre Channel

Link

Inbound fibre

Outbound fibre

Platform A

Fabric

Fabric
Controller

PF_Port
(i.e., LCF)

R

T

Platform B

Link

Outbound fibre

Inbound fibre

Link

Outbound fibre

Inbound fibre

Link

Inbound fibre

Outbound fibre

T

R

PN_Port
(i.e., LCF)

 A(1)

T

R

PN_Port
(i.e., LCF)

 A(2)

R

T

PN_Port
(i.e., LCF)

 B(1)

R

T

PN_Port
(i.e., LCF)

 B(2)

PF_Port
(i.e., LCF)

T

R

PF_Port
(i.e., LCF)

T

R

PF_Port
(i.e., LCF)

R

T

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

31

The Link Control facility (LCF) is a hardware facility that attaches to each end of a link and manages
transmission and reception of data. In a node, an LCF is a PN_Port. In a Fabric, an LCF attached to a
PN_Port is a PF_Port.

4.5 Communication models

A PN_Port transmits Data frames as a result of transfer requests made by an upper level at its end and
receives the Link_Control responses for those Data frames. A PN_Port receives Data frames from other
PN_Ports and transmits the appropriate Link_Control responses for those frames to the proper PN_Ports.

A PN_Port may operate according to these communication models:

a) simplex operation is defined as a PN_Port transferring Data frames in one direction only, with
Link_Control frames flowing in the opposite direction;

b) full-duplex operation is defined as a PN_Port simultaneously transmitting and receiving Data
frames, with Link_Control frames flowing in both directions as well; or

c) half-duplex operation is defined as a PN_Port both transmitting and receiving data, but not
simultaneously. Data frames and Link_Control frames flow in both directions, but the flow is
limited, to a single direction at a time.

4.6 Topology

4.6.1 Types

Topologies are defined, based on the capability and the presence or absence of Fabric between the
PN_Ports. There are three basic types:

a) Point-to-point topology;

b) Fabric topology; and

c) Arbitrated Loop topology.

The protocols specified herein are topology independent. However, attributes of the topology may restrict
operation to certain communication models.

4.6.2 Point-to-point topology

The point-to-point topology is shown in figure 5, in which communication between PN_Ports occurs without
the use of a Fabric.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

32

4.6.3 Fabric topology

The Fabric topology uses the D_ID embedded in the Frame_Header to route frames through a Fabric to
the desired destination PN_Port. Figure 6 illustrates multiple PN_Ports interconnected by a Fabric.

Figure 5 - Point-to-point topology

Figure 6 - Fabric topology

PN_Port A PN_Port B

Fabric

PN_Port

PN_Port

PN_Port

PN_Port

PN_Port

PN_Port

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

33

4.6.4 Arbitrated Loop topology

The Arbitrated Loop topology permits three or more L_Ports to communicate without the use of a Fabric,
as in Fabric topology. The Arbitrated Loop supports a maximum of one point-to-point circuit at a time.
When two L_Ports are communicating, the Arbitrated Loop topology supports simultaneous, symmetrical
bi-directional flow.

Figure 7 illustrates two independent Arbitrated Loop configurations each with multiple L_Ports attached.
Each line in the figure between L_Ports represents a single fibre. The first configuration shows an
Arbitrated Loop composed only of L_Ports. The second configuration shows an Arbitrated Loop composed
of one FL_Port and three L_Ports. In this topology, additional FC_Ports may be attached to the Switch.

Figure 7 - Examples of the Arbitrated Loop topology

L_Port

L_Port L_Port

L_Port

L_Port

L_Port L_Port

FL_Port

Switch

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

34

4.7 Classes of service

4.7.1 General

Classes of service are distinguished primarily by the level of delivery integrity required for an application.
Classes of service are topology independent. If a Fabric is not present, the class of service is provided as
a special case of point-to-point. FC_Ports are not required to support all classes of service.

4.7.2 Class 2 service - multiplex

Class 2 is a frame delivery service multiplexing frames at frame boundaries with frame acknowledgement
(see 17.3).

The transmitter transmits Class 2 Data frames in a sequential order within a given Sequence. However the
Fabric may not guarantee the order of delivery and frames may be delivered out of order.

The Fabric or the destination Nx_Port guarantees notification of delivery in the absence of link errors. In
case of link errors, notification is not guaranteed since the S_ID may not be error free.

4.7.3 Class 3 service - datagram

Class 3 is a frame delivery service with the Fabric multiplexing frames at frame boundaries without frame
acknowledgement (see 17.4).

Class 3 supports only unacknowledged delivery where the destination Nx_Port does not send any
confirmation of Link_Control frames on receipt of valid Data frames. Any acknowledgement of Class 3
service is beyond the scope of this standard.

The transmitter transmits Class 3 Data frames in sequential order within a given Sequence. However, the
Fabric may not guarantee the order of delivery and frames may be delivered out of order.

The Fabric is expected to make a best effort to deliver the frame to the intended destination and does not
issue a busy or reject frame to the source Nx_Port if unable to deliver the frame.

4.7.4 Class F service - Fabric

Class F is a frame delivery service used only for communication between switches in a Fabric (see
FC-SW-6).

4.8 General Fabric model

4.8.1 General

The primary function of the Fabric is to receive the frames from a source Nx_Port and route the frames to
the destination Nx_Port whose address identifier is specified in the frames. Each Nx_Port is physically
attached through a link to the Fabric. FC-2 specifies the protocol between the Fabric and the attached
Nx_Ports. A Fabric is characterized by a single address space where every Nx_Port has a unique
N_Port_ID.

A Fabric specifies the classes of service it supports in its Service Parameters (see FC-LS-3). Fabrics are
allowed to provide the classes of service through equivalent mechanisms and/or functions. See FC-SW-6
for the details.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

35

Figure 8 illustrates the general Fabric model. The model is conceptual and may provide the following major
functions:

a) bi-directional Physical Fabric Ports (PF_Ports);

b) receive buffer;

c) frame delivery service; and

d) receive buffer queue management.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

36

Figure 8 - Informative general Fabric model

Fabric

Legend: PF_Port: Bidirectional PF_Port
RBUF: Receive Buffer
R: Receiver
T: Transmitter

Receive Queue
Elements

PF_Port

R

T

RBUF

Receive Queue
Elements

PF_Port

R

T

RBUF

Receive Queue
Elements

PF_Port

R

T

RBUF

Receive Queue
Elements

PF_Port

R

T

RBUF

Receive Queue
Elements

PF_Port

R

T

RBUF

Receive Queue
Elements

PF_Port

R

T

RBUF

Frame
Delivery
Service

Fabric
Control

Services

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

37

4.8.2 Fabric Ports (Fx_Ports)

The Fabric model contains two or more Fx_Ports. Each Fx_Port is attached to one or more Nx_Ports at
one or more PN_Ports through a link. Each Fx_Port is bi-directional and supports one or more
communication models. Frames are routed to the Fx_Port attached to the destination Nx_Port.

The receiving Fx_Port responds to the sending Nx_Port according to the FC-2 protocol. The Fabric may
verify the validity of the frame as it passes through the Fabric (see 11.3.8.3 and 11.3.9.2).

An Fx_Port may contain receive buffers for the incoming frames. The maximum Data_Field size that the
Fabric is able to handle for frames is determined during Login. One of the Fabric Service Parameters
indicates the maximum Data_Field size for the entire Fabric (see FC-LS-3).

The Fabric routes the frame to the Fx_Port attached to the destination Nx_Port based on the value in the
D_ID field embedded in the Frame_Header of the frame. The routing mechanisms within the Fabric are
transparent to Nx_Ports and are not specified in this standard.

4.8.3 Frame delivery service

A frame delivery service multiplexes frames at frame boundaries. Frame delivery service does not
guarantee full link bandwidth between communicating Nx_Ports.

The Fabric notifies the transmitting Nx_Port with a reason code embedded in a Link_Response frame, if it
is unable to deliver a Class 2 frame. In the case of a Class 3 frame, the Fabric does not notify the
transmitting Nx_Port.

If frames from multiple Nx_Ports are targeted for the same destination Nx_Port in Class 2 or Class 3,
congestion of frames may occur within the Fabric. Management of this congestion is part of the frame
delivery service and buffer-to-buffer flow control.

If any buffer-to-buffer flow control error occurs and as a result causes overflow (see 20.4), the Fabric logs
the error and may discard the overflow frame without notification. Error logging is vendor specific.

4.9 Generic Services

Generic Services (e.g., Directory Service) may be provided in a Fibre Channel configuration to meet the
needs of the configuration. Each of these services is addressed with an N_Port_ID for the Nx_Port
providing the service or with a well-known address (see 12.4.2). These well-known addresses are
recognized and routed to by the Fabric. These services may be centralized or distributed (see FC-GS-7).

4.10 Building Blocks

4.10.1 Building block hierarchy

The FC-2 building blocks are used in a hierarchical fashion, as illustrated in figure 9.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

38

A Sequence is made up of one or more Data frames and if applicable, corresponding responses (see 19.7
and clause 15). An Exchange is made up of one or more Sequences flowing in a single direction from the
Originator of the Exchange to the Responder or in both directions between the Originator and the
Responder (see clause 19).

Prior to use by a ULP for its data transfer, Fibre Channel has to be setup for the operating environment.
The Fibre Channel operating environment is setup by performing Fabric Login and N_Port Login (see
FC-LS-3). Once these two Logins are performed, an FC-4 may start using Fibre Channel until one or both
of these Logins are invalidated.

Each Login uses an Exchange as the mechanism to accomplish the login function. A data transfer is
performed using an Exchange as the mechanism (see figure 9) with the related FC-4 translating the ULP
protocol to FC-2 protocol.

4.10.2 Frame

Frames are based on a common frame format (see clause 11). Frames are categorized as Data frames
and Link_Control frames (see clause 15). Data frames (see 15.2) are classified as

a) Link_Data frames;

b) Device_Data frames; and

c) Video_Data frames.

Link_Control frames (see 15.3) are classified as

a) Acknowledge (ACK) frames;

b) Link_Response (Busy and Reject) frames; and

Figure 9 - FC-2 building block hierarchy

Data
Transfer
Protocol

Exchange

N_Port
Logout

Protocol

Exchange

Fabric
Login

Protocol

Exchange

N_Port
Login

Protocol

Exchange

Data
Transfer
Protocol

Exchange

Data
Transfer
Protocol

Exchange

Frame

Seq. Seq. Seq. Seq. Seq. Seq. Seq. Seq.

Protocols

Exchange

Frames

Sequence

Frame Frame Frame Frame Frame Frame Frame Frame. . .

. . .

. . .

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

39

c) Link_Control command frames.

Selective retransmission of frames for error recovery is not supported in this standard (see clause 22).
However, an individual frame may be busied in Class 2 and the sender may later retransmit the busied
frame (see 15.3.3.2) up to the ability of the sender to retry. The number of times the sender may retry is not
specified in this standard.

4.10.3 Sequence

4.10.3.1 Introduction

A Sequence is a set of one or more related Data frames transmitted unidirectionally from one Nx_Port to
another Nx_Port with corresponding Link_Control frames, if specified, transmitted in response. An Nx_Port
that transmits a Sequence is referred to as the Sequence Initiator and the Nx_Port that receives the
Sequence is referred to as the Sequence Recipient. Sequence rules are specified in 19.7.

Error recovery is performed on the Sequence boundary at the discretion of a level higher than FC-2. If a
frame is not transmitted error free, and the error policy requires error recovery, the Sequence containing
the frame may be retransmitted (see clause 22).

4.10.3.2 Sequence_Identifier (SEQ_ID)

The Sequence Initiator assigns to the Sequence a Sequence_Identifier (SEQ_ID). The Sequence
Recipient uses the same SEQ_ID in its response frames. The Sequence Initiator at each of the
communicating Nx_Ports assigns SEQ_IDs independent of the other.

4.10.3.3 Sequence Status Blocks

A Sequence Status Block (SSB) is a logical construct representing the content of the Sequence status
information (see 19.9.2). It is used to track the progress of a Sequence at an Nx_Port on a frame by frame
basis. A Sequence Initiator SSB and a Sequence Recipient SSB are used by the respective Nx_Ports to
track the status of a given Sequence.

When a Sequence Initiator starts a Sequence, the Sequence Initiator allocates a SSB to be associated
with the Sequence it has initiated. The Sequence Recipient subsequently allocates a SSB at its end,
associated with the sequence that the Sequence Initiator has initiated. Both the Sequence Initiator and
Sequence Recipient Nx_Ports track the status of the Sequence through the Sequence Initiator and the
Sequence Recipient SSBs, respectively.

The maximum number of concurrent Sequences between two Nx_Ports is limited to the smaller of the
number of SSBs available at these Nx_Ports. This value is established during N_Port Login through the
Service Parameters (see FC-LS-3).

4.10.4 Exchange

4.10.4.1 Introduction

An Exchange is composed of one or more non-concurrent Sequences (see clause 19). An Exchange may
be unidirectional or bi-directional. A unidirectional Exchange results when the same Nx_Port initiates all
the Sequences within the Exchange. A bi-directional Exchange results when the Sequences within the
Exchange are initiated by both the Nx_Ports, but not concurrently.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

40

An FC-4 may achieve full bandwidth utilization between two Nx_Ports by supporting two or more
Exchanges concurrently with the two Nx_Ports using different Exchanges to transmit information.
Coordination of the Exchanges is FC-4 specific. All frames and Sequences of a given Exchange shall be
performed between the Nx_Ports that first originated and received the Exchange.

Exchanges are used by upper levels to relate sequences.

4.10.4.2 Exchange_Identifiers (OX_ID and RX_ID)

Exchange_Identifiers shall be used by the Originator and Responder to uniquely identify an Exchange.

The Originator assigns each new Exchange an Originator Exchange_ID (OX_ID) unique to the Originator
or Originator-Responder pair and embeds it in all frames of the Exchange.

The Responder may assign a Responder Exchange_ID (RX_ID) that is unique to the Responder or
Responder-Originator pair and communicates it to the Originator before the end of the first Sequence of
the Exchange in Class 2 (see 19.6). The Responder embeds the RX_ID along with OX_ID in all
subsequent frames of the Exchange.

On receiving the RX_ID from the Responder, the Originator embeds both the RX_ID and OX_ID in all
subsequent frames of the Exchange it originates.

The Originator may initiate multiple concurrent Exchanges, but each shall use a unique OX_ID.

4.10.4.3 Exchange Status Blocks

An Exchange Status Block (ESB) is a logical construct representing the format of the Exchange status
information (see 19.9.1). It is used to track the progress of an Exchange on a Sequence by Sequence
basis. An Originator and a Responder use an Originator ESB and a Responder ESB, respectively, to track
the status of an Exchange.

When an Originator initiates an Exchange, it assigns an Originator ESB associated with the Exchange.
The Originator references the Originator ESB through its respective OX_ID (see 19.9.1).

The Responder assigns a Responder ESB to the Exchange. The Responder references the Responder
ESB through the fully qualified X_ID (see 19.9.1 and SAM-5).

Both the Originator and the Responder track the status of the Exchange at their respective Nx_Ports.

4.10.5 Protocols

4.10.5.1 Primitive Sequence protocols

Primitive Sequence protocols are based on Primitive Sequences and specified for Link Failure, Link
Initialization, Link Reset, and Online to Offline transition (see 7.8).

4.10.5.2 Fabric Login protocol

An Nx_Port may explicitly interchange Service Parameters with the Fabric, if present, by performing the
Fabric Login protocol. The Fabric Login protocol also creates the first VN_Port associated with the
PN_Port and the Fabric. The Fabric Login protocol is an explicit Fabric Login procedure (see FC-LS-3) that
completes successfully (i.e., in an Exchange that completes with an LS_ACC).

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

41

4.10.5.3 Additional N_Port_ID protocol

An Nx_Port may create additional VN_Ports associated with the PN_Port and the Fabric using the
Additional N_Port_ID protocol. The Additional N_Port_ID protocol is an Additional N_Port_ID procedure
(see FC-LS-3) that completes successfully (i.e., in an Exchange that completes with an LS_ACC).

4.10.5.4 N_Port Login protocol

Before performing data transfer, an Nx_Port may explicitly interchange Service Parameters with another
Nx_Port by performing the N_Port Login protocol. The N_Port Login protocol is an explicit N_Port Login
procedure (see FC-LS-3) that completes successfully (i.e., in an Exchange that completes with an
LS_ACC).

4.10.5.5 Data transfer protocol

The ULP data is transferred using data transfer protocols. Data transfer protocols are specified in FC-4
standards. For examples, see SAM-5 and RFC 4338.

4.10.5.6 Nx_Port Logout protocol

An Nx_Port may explicitly request removal of its Service Parameters from another Nx_Port by performing
an Nx_Port Logout protocol. This may be used to free up resources at the other Nx_Port. The Nx_Port
Logout protocol is an explicit N_Port Logout procedure (see FC-LS-3) that completes successfully (i.e., in
an Exchange that completes with an LS_ACC).

4.10.5.7 Fabric Logout protocol

An Nx_Port may explicitly request removal of its Service Parameters from the Fabric by performing a
Fabric Logout protocol. This may be used to free up resources at the Fabric. The Fabric Logout protocol is
an explicit Fabric Logout procedure (see FC-LS-3) that completes successfully (i.e., in an Exchange that
completes with an LS_ACC).

4.11 Segmentation and reassembly of application data

Mapping application data to Upper Level Protocol (ULP) data blocks is outside the scope of this standard.
Mapping ULP data blocks to FC-4 Information Units (IUs) is specified in FC-4 level standards (e.g., SAM-5,
FC-SB-5). FC-4 IUs are mapped to Sequences. The transport of Sequences using Fibre Channel frames is
specified in this standard. Clause 21 specifies the following features of the FC-2V sublevel that support
efficient mapping of IUs onto frames:

a) identifying and classifying IUs (see 21.3);

b) multiplexing IUs within a Sequence (see 21.4);

c) relative offset of Data_Frames in an IU (see 21.5); and

d) transporting portions of an IU out of relative offset order (see 21.6).

Together, the rules for these features control the segmentation of IUs into transmitted frames and the
reassembly of IUs from received frames.

4.12 Error detection and recovery

In general, detected errors fall into two broad categories, frame errors and link-level errors.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

42

Frame errors result from missing frames or corrupted frames. Corrupted frames are discarded and for
corrupted frames the resulting error is detected at the Sequence level. At the Sequence level, a missing
frame is detected or the Sequence t imes out due to one or more missing Data frames or
Acknowledgments. If the discard policy (see 22.5.4.3) is used, the Sequence is aborted at the Sequence
level once an error is detected. Sequence errors may also cause Exchange errors that may also cause the
Exchange to be aborted. Error recovery may be performed on the failing Sequence or Exchange with the
involvement of the sending upper level. Other properly performing Sequences are unaffected.

Link-level errors result from errors detected at a lower level of granularity than frames, where the basic
signal characteristics are in question. Link-level errors include such errors as Loss-of-Signal,
Loss-of-Synchronization and several link timeout errors that indicate no frame activity. Link-level errors
may be isolated to a portion of the link. Transmission and reception of Primitive Sequences accomplish
recovery from link-level errors. Recovery at the link-level disturbs normal frame flow and may introduce
Sequence errors that may be resolved after recovery at the link-level.

See clause 22 for detailed error detection and recovery requirements.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

43

5 FC-1 transmission codes

5.1 Overview

Transmission codes are a function of the FC-1 level. Communication of words and Special Functions are
FC-1 functions. Use of Special Functions is an FC-2P function.

Information to be transmitted over a fibre shall be presented to the FC-1 level as a stream of words and
Special Functions. It shall be encoded using one of the transmission codes specified in this clause into a
stream of Transmission Words that shall be sent across the link. Information shall be received over the link
as a stream of Transmission Words. The stream of Transmission Words shall be decoded using one of the
transmission codes specified in this clause into a stream of words and Special Functions that shall be
delivered to the FC-2P sublevel.

This standard specifies two types of transmission codes:

a) frame transfer transmission codes are specified to transfer Upper Level Protocol data; and

b) other transmission codes (e.g., the Transmitter Training Signal, see 5.5) are specified for purposes
other than transferring Fibre Channel frames.

Both types of transmission code provide these functions:

a) maintaining Bit Synchronization and Transmission Word Synchronization;

b) communicating link control information; and

c) increasing the likelihood of detection of transmission errors.

Frame transfer transmission codes additionally provide these functions:

a) communicating link state machine transitions;

b) communicating other Special Functions;

c) denoting frame boundaries; and

d) communicating Upper Level Protocol data.

The encodings defined by the transmission code ensure that sufficient transitions are present in the serial
bit stream to make clock recovery possible at the receiver. Such encoding also increases the likelihood of
detecting any single or multiple bit errors that may occur during transmission and reception of information.
In addition, the transmission code assures presence of a distinct and easily recognizable bit pattern that
assists a receiver in achieving Transmission Word alignment on the incoming bit stream.

An FC-0 standard for a physical variant may specify a transmission code. If an FC-0 standard for a
physical variant does not specify a transmission code, then the physical variant shall use the 8B/10B
transmission code (see 5.2).

5.2 8B/10B transmission code

5.2.1 Overview

An FC-0 standard (e.g., FC-PI-5) may specify the use of the 8B/10B transmission code as its frame
transfer transmission code.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

44

The 8B/10B transmission code specified in this standard treats words as a series of four bytes and treats
Special Functions as a series of a control value and three bytes.

An 8B/10B Transmission Word is composed of four contiguous valid or invalid Transmission Characters
treated as a unit. Four data bytes and special codes shall be encoded according to the rules specified by
5.2.5 to create a Transmission Word. Likewise, the Transmission Characters of a Transmission Word shall
be decoded according to the rules specified by 5.2.6 to create data bytes and special codes.

When the 8B/10B transmission code is used, the Fill Word (see 11.3.2) is either Idle or ARBff, depending
on whether Emission Lowering Protocol (see 11.3.5) is used.

An 8B/10B Transmission Word shall be transmitted so that each bit in the Transmission Word is
transmitted before all less significant bits in the Transmission Word.

5.2.2 Notation conventions

8B/10B uses letter notation for describing information bits and control variables. Such notation differs from
the bit notation specified by the remainder of this standard (see 3.2). The following text describes the
translation process between these notations and provides a translation example. It also describes the
conventions used to name valid Transmission Characters. This text is provided for the purposes of
terminology clarification only and is not intended to restrict the implementation of 8B/10B functions in any
way.

An unencoded 8B/10B information byte is composed of eight information bits A,B,C,D,E,F,G,H and the
control variable Z. This information is encoded by 8B/10B into the bits a,b,c,d,e,i,f,g,h,j of a 10-bit
Transmission Character.

An information bit contains either a binary zero or a binary one. A control variable has either the value D or
the value K. An encoded bit contains either a binary zero or a binary one. When the control variable
associated with an unencoded 8B/10B information byte contains the value D, that byte is referred to as a
data byte. When the control variable associated with an unencoded 8B/10B information byte contains the
value K, that byte is referred to as a special code.

The unencoded information bit labeled A corresponds to bit 0 in the bit numbering scheme of the FC-2
specification, B corresponds to bit 1, and so on, as shown in table 2. The control variable is typically not
specified by FC-2. When the control variable is not specified by FC-2, 8B/10B assumes its value to be D
(data).

Each valid Transmission Character has been given a name using the convention, Zxx.y. Where:

a) Z is the control variable of the unencoded 8B/10B information byte. The value of Z is used to
indicate whether the Transmission Character is a data character (Z = D) or a special character (Z =
K);

b) xx is the decimal value of the binary number composed of the bits E, D, C, B, and A of the
unencoded 8B/10B information byte in that order; and

c) y is the decimal value of the binary number composed of the bits H, G, and F of the unencoded 8B/
10B information byte in that order.

Table 2 - Bit designations

FC-2 bit notation: 7 6 5 4 3 2 1 0 Control Variable

8B/10B unencoded bit notation: H G F E D C B A Z

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

45

Table 3 shows an example of the conversion from FC-2 byte notation to the 8B/10B Transmission
Character naming convention described above.

Most Kxx.y combinations do not result in valid Transmission Characters within the 8B/10B transmission
code. Only those combinations that result in special characters as specified by table 5 are considered
valid.

5.2.3 Valid 8B/10B Transmission Characters

Table 4 and table 5 define the valid data characters and valid special characters (K characters),
respectively. These tables shall be used for both generating valid Transmission Characters (encoding) and
checking the validity of received Transmission Characters (decoding).

Within the definition of the 8B/10B transmission code, the bit positions of the 10 bit Transmission
Characters are labeled a,b,c,d,e,i,f,g,h, and j. Bit "a" shall be transmitted first, followed by bits "b," "c," "d,"
"e," "i," "f," "g," "h," and "j," in that order. Bit "i" shall be transmitted between bit "e" and bit "f," rather than in
the order that would be indicated by the letters of the alphabet.

Table 3 - Conversion Example

FC-2 byte notification: BCh –- Special Code

FC-2 bit notation:
7 6 5 4 3 2 1 0 Control

1 0 1 1 1 1 0 0 K

8B/10B unencoded bit
notation:

H G F E D C B A Z

1 0 1 1 1 1 0 0 K

8B/10B unencoded bit
notation reordered to conform
with Zxx.y naming convention:

Z E D C B A H G F

K 1 1 1 0 0 1 0 1

8B/10B Transmission
Character name:

K 28 5

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

46

Table 4 - Valid Data Characters (part 1 of 4)

Data
Byte

Name

Bits
HGF

EDCBA
(binary)

Current RD -
abcdei fghj

(binary)

Current RD+
abcdei fghj

(binary)

Data
Byte

Name

Bits
HGF

EDCBA
(binary)

Current RD -
abcdei fghj

(binary)

Current RD+
abcdei fgh

(binary)

D00.0 000 00000 100111 0100 011000 1011 D00.1 001 00000 100111 1001 011000 1001

D01.0 000 00001 011101 0100 100010 1011 D01.1 001 00001 011101 1001 100010 1001

D02.0 000 00010 101101 0100 010010 1011 D02.1 001 00010 101101 1001 010010 1001

D03.0 000 00011 110001 1011 110001 0100 D03.1 001 00011 110001 1001 110001 1001

D04.0 000 00100 110101 0100 001010 1011 D04.1 001 00100 110101 1001 001010 1001

D05.0 000 00101 101001 1011 101001 0100 D05.1 001 00101 101001 1001 101001 1001

D06.0 000 00110 011001 1011 011001 0100 D06.1 001 00110 011001 1001 011001 1001

D07.0 000 00111 111000 1011 000111 0100 D07.1 001 00111 111000 1001 000111 1001

D08.0 000 01000 111001 0100 000110 1011 D08.1 001 01000 111001 1001 000110 1001

D09.0 000 01001 100101 1011 100101 0100 D09.1 001 01001 100101 1001 100101 1001

D10.0 000 01010 010101 1011 010101 0100 D10.1 001 01010 010101 1001 010101 1001

D11.0 000 01011 110100 1011 110100 0100 D11.1 001 01011 110100 1001 110100 1001

D12.0 000 01100 001101 1011 001101 0100 D12.1 001 01100 001101 1001 001101 1001

D13.0 000 01101 101100 1011 101100 0100 D13.1 001 01101 101100 1001 101100 1001

D14.0 000 01110 011100 1011 011100 0100 D14.1 001 01110 011100 1001 011100 1001

D15.0 000 01111 010111 0100 101000 1011 D15.1 001 01111 010111 1001 101000 1001

D16.0 000 10000 011011 0100 100100 1011 D16.1 001 10000 011011 1001 100100 1001

D17.0 000 10001 100011 1011 100011 0100 D17.1 001 10001 100011 1001 100011 1001

D18.0 000 10010 010011 1011 010011 0100 D18.1 001 10010 010011 1001 010011 1001

D19.0 000 10011 110010 1011 110010 0100 D19.1 001 10011 110010 1001 110010 1001

D20.0 000 10100 001011 1011 001011 0100 D20.1 001 10100 001011 1001 001011 1001

D21.0 000 10101 101010 1011 101010 0100 D21.1 001 10101 101010 1001 101010 1001

D22.0 000 10110 011010 1011 011010 0100 D22.1 001 10110 011010 1001 011010 1001

D23.0 000 10111 111010 0100 000101 1011 D23.1 001 10111 111010 1001 000101 1001

D24.0 000 11000 110011 0100 001100 1011 D24.1 001 11000 110011 1001 001100 1001

D25.0 000 11001 100110 1011 100110 0100 D25.1 001 11001 100110 1001 100110 1001

D26.0 000 11010 010110 1011 010110 0100 D26.1 001 11010 010110 1001 010110 1001

D27.0 000 11011 110110 0100 001001 1011 D27.1 001 11011 110110 1001 001001 1001

D28.0 000 11100 001110 1011 001110 0100 D28.1 001 11100 001110 1001 001110 1001

D29.0 000 11101 101110 0100 010001 1011 D29.1 001 11101 101110 1001 010001 1001

D30.0 000 11110 011110 0100 100001 1011 D30.1 001 11110 011110 1001 100001 1001

D31.0 000 11111 101011 0100 010100 1011 D31.1 001 11111 101011 1001 010100 1001

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

47

D00.2 010 00000 100111 0101 011000 0101 D00.3 011 00000 100111 0011 011000 1100

D01.2 010 00001 011101 0101 100010 0101 D01.3 011 00001 011101 0011 100010 1100

D02.2 010 00010 101101 0101 010010 0101 D02.3 011 00010 101101 0011 010010 1100

D03.2 010 00011 110001 0101 110001 0101 D03.3 011 00011 110001 1100 110001 0011

D04.2 010 00100 110101 0101 001010 0101 D04.3 011 00100 110101 0011 001010 1100

D05.2 010 00101 101001 0101 101001 0101 D05.3 011 00101 101001 1100 101001 0011

D06.2 010 00110 011001 0101 011001 0101 D06.3 011 00110 011001 1100 011001 0011

D07.2 010 00111 111000 0101 000111 0101 D07.3 011 00111 111000 1100 000111 0011

D08.2 010 01000 111001 0101 000110 0101 D08.3 011 01000 111001 0011 000110 1100

D09.2 010 01001 100101 0101 100101 0101 D09.3 011 01001 100101 1100 100101 0011

D10.2 010 01010 010101 0101 010101 0101 D10.3 011 01010 010101 1100 010101 0011

D11.2 010 01011 110100 0101 110100 0101 D11.3 011 01011 110100 1100 110100 0011

D12.2 010 01100 001101 0101 001101 0101 D12.3 011 01100 001101 1100 001101 0011

D13.2 010 01101 101100 0101 101100 0101 D13.3 011 01101 101100 1100 101100 0011

D14.2 010 01110 011100 0101 011100 0101 D14.3 011 01110 011100 1100 011100 0011

D15.2 010 01111 010111 0101 101000 0101 D15.3 011 01111 010111 0011 101000 1100

D16.2 010 10000 011011 0101 100100 0101 D16.3 011 10000 011011 0011 100100 1100

D17.2 010 10001 100011 0101 100011 0101 D17.3 011 10001 100011 1100 100011 0011

D18.2 010 10010 010011 0101 010011 0101 D18.3 011 10010 010011 1100 010011 0011

D19.2 010 10011 110010 0101 110010 0101 D19.3 011 10011 110010 1100 110010 0011

D20.2 010 10100 001011 0101 001011 0101 D20.3 011 10100 001011 1100 001011 0011

D21.2 010 10101 101010 0101 101010 0101 D21.3 011 10101 101010 1100 101010 0011

D22.2 010 10110 011010 0101 011010 0101 D22.3 011 10110 011010 1100 011010 0011

D23.2 010 10111 111010 0101 000101 0101 D23.3 011 10111 111010 0011 000101 1100

D24.2 010 11000 110011 0101 001100 0101 D24.3 011 11000 110011 0011 001100 1100

D25.2 010 11001 100110 0101 100110 0101 D25.3 011 11001 100110 1100 100110 0011

D26.2 010 11010 010110 0101 010110 0101 D26.3 011 11010 010110 1100 010110 0011

D27.2 010 11011 110110 0101 001001 0101 D27.3 011 11011 110110 0011 001001 1100

D28.2 010 11100 001110 0101 001110 0101 D28.3 011 11100 001110 1100 001110 0011

D29.2 010 11101 101110 0101 010001 0101 D29.3 011 11101 101110 0011 010001 1100

D30.2 010 11110 011110 0101 100001 0101 D30.3 011 11110 011110 0011 100001 1100

D31.2 010 11111 101011 0101 010100 0101 D31.3 011 11111 101011 0011 010100 1100

Table 4 - Valid Data Characters (part 2 of 4)

Data
Byte

Name

Bits
HGF

EDCBA
(binary)

Current RD -
abcdei fghj

(binary)

Current RD+
abcdei fghj

(binary)

Data
Byte

Name

Bits
HGF

EDCBA
(binary)

Current RD -
abcdei fghj

(binary)

Current RD+
abcdei fgh

(binary)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

48

D00.4 100 00000 100111 0010 011000 1101 D00.5 101 00000 100111 1010 011000 1010

D01.4 100 00001 011101 0010 100010 1101 D01.5 101 00001 011101 1010 100010 1010

D02.4 100 00010 101101 0010 010010 1101 D02.5 101 00010 101101 1010 010010 1010

D03.4 100 00011 110001 1101 110001 0010 D03.5 101 00011 110001 1010 110001 1010

D04.4 100 00100 110101 0010 001010 1101 D04.5 101 00100 110101 1010 001010 1010

D05.4 100 00101 101001 1101 101001 0010 D05.5 101 00101 101001 1010 101001 1010

D06.4 100 00110 011001 1101 011001 0010 D06.5 101 00110 011001 1010 011001 1010

D07.4 100 00111 111000 1101 000111 0010 D07.5 101 00111 111000 1010 000111 1010

D08.4 100 01000 111001 0010 000110 1101 D08.5 101 01000 111001 1010 000110 1010

D09.4 100 01001 100101 1101 100101 0010 D09.5 101 01001 100101 1010 100101 1010

D10.4 100 01010 010101 1101 010101 0010 D10.5 101 01010 010101 1010 010101 1010

D11.4 100 01011 110100 1101 110100 0010 D11.5 101 01011 110100 1010 110100 1010

D12.4 100 01100 001101 1101 001101 0010 D12.5 101 01100 001101 1010 001101 1010

D13.4 100 01101 101100 1101 101100 0010 D13.5 101 01101 101100 1010 101100 1010

D14.4 100 01110 011100 1101 011100 0010 D14.5 101 01110 011100 1010 011100 1010

D15.4 100 01111 010111 0010 101000 1101 D15.5 101 01111 010111 1010 101000 1010

D16.4 100 10000 011011 0010 100100 1101 D16.5 101 10000 011011 1010 100100 1010

D17.4 100 10001 100011 1101 100011 0010 D17.5 101 10001 100011 1010 100011 1010

D18.4 100 10010 010011 1101 010011 0010 D18.5 101 10010 010011 1010 010011 1010

D19.4 100 10011 110010 1101 110010 0010 D19.5 101 10011 110010 1010 110010 1010

D20.4 100 10100 001011 1101 001011 0010 D20.5 101 10100 001011 1010 001011 1010

D21.4 100 10101 101010 1101 101010 0010 D21.5 101 10101 101010 1010 101010 1010

D22.4 100 10110 011010 1101 011010 0010 D22.5 101 10110 011010 1010 011010 1010

D23.4 100 10111 111010 0010 000101 1101 D23.5 101 10111 111010 1010 000101 1010

D24.4 100 11000 110011 0010 001100 1101 D24.5 101 11000 110011 1010 001100 1010

D25.4 100 11001 100110 1101 100110 0010 D25.5 101 11001 100110 1010 100110 1010

D26.4 100 11010 010110 1101 010110 0010 D26.5 101 11010 010110 1010 010110 1010

D27.4 100 11011 110110 0010 001001 1101 D27.5 101 11011 110110 1010 001001 1010

D28.4 100 11100 001110 1101 001110 0010 D28.5 101 11100 001110 1010 001110 1010

D29.4 100 11101 101110 0010 010001 1101 D29.5 101 11101 101110 1010 010001 1010

D30.4 100 11110 011110 0010 100001 1101 D30.5 101 11110 011110 1010 100001 1010

D31.4 100 11111 101011 0010 010100 1101 D31.5 101 11111 101011 1010 010100 1010

Table 4 - Valid Data Characters (part 3 of 4)

Data
Byte

Name

Bits
HGF

EDCBA
(binary)

Current RD -
abcdei fghj

(binary)

Current RD+
abcdei fghj

(binary)

Data
Byte

Name

Bits
HGF

EDCBA
(binary)

Current RD -
abcdei fghj

(binary)

Current RD+
abcdei fgh

(binary)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

49

D00.6 110 00000 100111 0110 011000 0110 D00.7 111 00000 100111 0001 011000 1110

D01.6 110 00001 011101 0110 100010 0110 D01.7 111 00001 011101 0001 100010 1110

D02.6 110 00010 101101 0110 010010 0110 D02.7 111 00010 101101 0001 010010 1110

D03.6 110 00011 110001 0110 110001 0110 D03.7 111 00011 110001 1110 110001 0001

D04.6 110 00100 110101 0110 001010 0110 D04.7 111 00100 110101 0001 001010 1110

D05.6 110 00101 101001 0110 101001 0110 D05.7 111 00101 101001 1110 101001 0001

D06.6 110 00110 011001 0110 011001 0110 D06.7 111 00110 011001 1110 011001 0001

D07.6 110 00111 111000 0110 000111 0110 D07.7 111 00111 111000 1110 000111 0001

D08.6 110 01000 111001 0110 000110 0110 D08.7 111 01000 111001 0001 000110 1110

D09.6 110 01001 100101 0110 100101 0110 D09.7 111 01001 100101 1110 100101 0001

D10.6 110 01010 010101 0110 010101 0110 D10.7 111 01010 010101 1110 010101 0001

D11.6 110 01011 110100 0110 110100 0110 D11.7 111 01011 110100 1110 110100 1000

D12.6 110 01100 001101 0110 001101 0110 D12.7 111 01100 001101 1110 001101 0001

D13.6 110 01101 101100 0110 101100 0110 D13.7 111 01101 101100 1110 101100 1000

D14.6 110 01110 011100 0110 011100 0110 D14.7 111 01110 011100 1110 011100 1000

D15.6 110 01111 010111 0110 101000 0110 D15.7 111 01111 010111 0001 101000 1110

D16.6 110 10000 011011 0110 100100 0110 D16.7 111 10000 011011 0001 100100 1110

D17.6 110 10001 100011 0110 100011 0110 D17.7 111 10001 100011 0111 100011 0001

D18.6 110 10010 010011 0110 010011 0110 D18.7 111 10010 010011 0111 010011 0001

D19.6 110 10011 110010 0110 110010 0110 D19.7 111 10011 110010 1110 110010 0001

D20.6 110 10100 001011 0110 001011 0110 D20.7 111 10100 001011 0111 001011 0001

D21.6 110 10101 101010 0110 101010 0110 D21.7 111 10101 101010 1110 101010 0001

D22.6 110 10110 011010 0110 011010 0110 D22.7 111 10110 011010 1110 011010 0001

D23.6 110 10111 111010 0110 000101 0110 D23.7 111 10111 111010 0001 000101 1110

D24.6 110 11000 110011 0110 001100 0110 D24.7 111 11000 110011 0001 001100 1110

D25.6 110 11001 100110 0110 100110 0110 D25.7 111 11001 100110 1110 100110 0001

D26.6 110 11010 010110 0110 010110 0110 D26.7 111 11010 010110 1110 010110 0001

D27.6 110 11011 110110 0110 001001 0110 D27.7 111 11011 110110 0001 001001 1110

D28.6 110 11100 001110 0110 001110 0110 D28.7 111 11100 001110 1110 001110 0001

D29.6 110 11101 101110 0110 010001 0110 D29.7 111 11101 101110 0001 010001 1110

D30.6 110 11110 011110 0110 100001 0110 D30.7 111 11110 011110 0001 100001 1110

D31.6 110 11111 101011 0110 010100 0110 D31.7 111 11111 101011 0001 010100 1110

Table 4 - Valid Data Characters (part 4 of 4)

Data
Byte

Name

Bits
HGF

EDCBA
(binary)

Current RD -
abcdei fghj

(binary)

Current RD+
abcdei fghj

(binary)

Data
Byte

Name

Bits
HGF

EDCBA
(binary)

Current RD -
abcdei fghj

(binary)

Current RD+
abcdei fgh

(binary)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

50

5.2.4 Running disparity

In table 4 and table 5, each Valid-Data-Byte or special code entry has two columns that represent two (not
necessarily different) Transmission Characters. The two columns correspond to the current value of the
running disparity ("Current RD -" or "Current RD +"). Running disparity is a binary parameter with either the
value negative (-) or the value positive (+). The running disparity at the beginning of an Ordered Set is the
beginning running disparity (beginning RD).

After powering on, the transmitter shall initialize the Current RD to negative. Upon transmission of any
Transmission Character, the transmitter shall calculate a new value for its running disparity based on the
contents of the transmitted character and the Running Disparity at the beginning of the Transmission
Character.

After powering on or exiting diagnostic mode (the definition of diagnostic mode is beyond the scope of this
standard), the receiver should assume either the positive or negative value for its initial running disparity.
Upon reception of any Transmission Character, the receiver shall determine whether the Transmission
Character is valid or invalid (see 5.2.6 and table 4) and shall calculate a new value for its running disparity
based on the contents of the received character and the Running Disparity at the beginning of the received
Transmission Character.

The following rules for running disparity shall be used to calculate the new running disparity value for
Transmission Characters that have been transmitted (i.e., transmitter's running disparity) and that have
been received (i.e., receiver's running disparity).

Table 5 - Valid Special Characters

Special
Code Name

Current RD -
abcdei fghj

Current RD +
abcdei fghj

K28.0 001111 0100b 110000 1011b

K28.1 001111 1001b 110000 0110b

K28.2 001111 0101b 110000 1010b

K28.3 001111 0011b 110000 1100b

K28.4 001111 0010b 110000 1101b

K28.5 001111 1010b 110000 0101b

K28.6 001111 0110b 110000 1001b

K28.7 001111 1000b 110000 0111b

K23.7 111010 1000b 000101 0111b

K27.7 110110 1000b 001001 0111b

K29.7 101110 1000b 010001 0111b

K30.7 011110 1000b 100001 0111b

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

51

Running disparity for a Transmission Character shall be calculated on the basis of sub-blocks, where the
first six bits (i.e., abcdei) form one sub-block (i.e., six-bit sub-block) and the second four bits (i.e., fghj) form
the other sub-block (i.e., four-bit sub-block). Running disparity at the beginning of the six-bit sub-block is
the running disparity at the end of the last Transmission Character. Running disparity at the beginning of
the four-bit sub-block is the running disparity at the end of the six-bit sub-block. Running disparity at the
end of the Transmission Character is the running disparity at the end of the four-bit sub-block.

Running disparity for the sub-blocks shall be calculated as follows:

a) running disparity at the end of any sub-block is positive:

A) if the sub-block contains more ones than zeros;

B) if at the end of the six-bit sub-block, the six-bit sub-block is 000111b; or

C) if at the end of the four-bit sub-block, the four-bit sub-block is 0011b;

b) running disparity at the end of any sub-block is negative:

A) if the sub-block contains more zeros than ones;

B) if at the end of the six-bit sub-block, the six-bit sub-block is 111000b; or

C) if at the end of the four-bit sub-block, the four-bit sub-block is 1100b;

or

c) otherwise, running disparity at the end of the sub-block is the same as at the beginning of the
sub-block.

All sub-blocks with equal numbers of zeros and ones are disparity neutral. In order to limit the run length of
zeros or ones between sub-blocks, the 8B/10B transmission code rules specify that sub-blocks encoded
as 000111b or 0011b are generated only when the running disparity at the beginning of the sub-block is
positive; thus, running disparity at the end of these sub-blocks shall also be positive. Likewise, sub-blocks
containing 111000b or 1100b are generated only when the running disparity at the beginning of the
sub-block is negative; thus, running disparity at the end of these sub-blocks shall also be negative.

5.2.5 Generating Transmission Characters

The appropriate entry in the table shall be found for the data byte or special code used in generating
(encoding) a Transmission Character. The current value of the transmitter's running disparity shall be used
to select the Transmission Character from its corresponding column. For each Transmission Character
transmitted, a new value of the running disparity shall be calculated. This new value shall be used as the
transmitter's current running disparity for the next data byte or special code to be encoded and transmitted.

5.2.6 Validity of received Transmission Characters

The column corresponding to the current value of the receiver's running disparity shall be searched for the
received Transmission Character. If the received Transmission Character is found in the proper column,
then the Transmission Character shall be considered valid and the associated data byte or special code
determined (decoded). If the received Transmission Character is not found in that column, then the
Transmission Character shall be considered invalid and a code violation detected and reported to its
associated port. Independent of the Transmission Character's validity, the received Transmission
Character shall be used to calculate a new value of running disparity. This new value shall be used as the
receiver's current running disparity for the next received Transmission Character.

Detection of a code violation does not necessarily indicate that the Transmission Character where the
code violation was detected is in error. Code violations may result from a prior error that altered the running
disparity of the bit stream but that did not result in a detectable error at the Transmission Character where
the error occurred. The example shown in table 6 exhibits this behavior.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

52

The K28.7 special character shall not be followed by any of the following special or data characters: K28.x,
D3.x, D11.x, D12.x, D19.x, D20.x, or D28.x, where x is a value in the range 0 to 7, inclusive.

A receiver may substitute a K30.7 Transmission Character for a character received in error. A
Transmission Word in which a character received in error has been replaced by a K30.7 Transmission
Character shall be detected as an invalid Transmission Word (see 6.3.4.2). A transmitter shall not cause a
K30.7 Transmission Character to be sent.

5.2.7 8B/10B Ordered Sets

5.2.7.1 General

In the 8B/10B transmission code, an Ordered Set is a pattern in encoded data sent or received by an
FC_Port that, when decoded, communicates a Special Function rather than a word. Ordered Sets also
provide the ability to obtain bit and Transmission Word Synchronization and establish Transmission Word
boundary alignment. See 6.3.3.2 for the synchronization rules.

Characters within 8B/10B Ordered Sets shall be transmitted sequentially beginning with the special
character used to distinguish the Ordered Set (e.g., K28.5) and proceeding character by character from left
to right within the definition of the Ordered Set until all characters of the Ordered Set are transmitted.

If an unrecognized Ordered Set is detected while receiving 8B/10B encoded data, it shall be treated as a
Fill Word. Treating unrecognized Ordered Sets as Fill Words allows future introduction of Ordered Sets for
additional features and functions beyond the scope of this standard.

Each EOF-delimiter Ordered Set in 8B/10B encoded data is defined such that negative current running
disparity shall result after processing of the final (right-most) character of the Ordered Set. This, in
combination with the running disparity initialization rules, ensures that the first Ordered Set following an
EOF delimiter, transmitter power on, or transmitter exit from diagnostic mode (the definition of diagnostic
mode is beyond the scope of this standard) shall always be transmitted with negative beginning running
disparity. The Ordered Sets defined for the Primitive Signals and Primitive Sequences preserve this
negative disparity, ensuring that the Ordered Sets associated with SOF Delimiters, Primitive Signals, and
Primitive Sequences are always transmitted with negative beginning running disparity. As a result,
Primitive Signal, Primitive Sequence, and SOF Delimiter Ordered Sets are defined for the negative
beginning running disparity case only. The primary benefit of such a definition is that it allows Fill Words to
be removed and added from an encoded bit stream one Fill Word at a time without altering the beginning
running disparity associated with the Transmission Word subsequent to the removed Fill Word.

Table 6 - Delayed Code Violation example

RD Character RD Character RD Character RD

Transmitted
character stream

- D21.1 - D10.2 - D23.5 +

Transmitted bit
stream

- 101010 1001b - 010101 0101b - 111010 1010b +

Bit stream after error - 101010 1011b + 010101 0101b + 111010 1010b +

Decoded character
stream

- D21.0 + D10.2 + code violation +

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

53

The K28.5 special character is used as the first character of all 8B/10B Ordered Sets defined in this
standard for the following reasons:

a) bits abcdeif make up a comma; this is a singular bit pattern that in the absence of transmission
errors shall not appear in any other location of a Transmission Character and shall not be
generated across the boundaries of any two adjacent Transmission Characters. The comma
should be used to easily find and verify Transmission Character and Transmission Word
boundaries of the received bit stream; and

b) bits ghj of the encoded character present the maximum number of transitions, simplifying receiver
acquisition of Bit Synchronization.

The second character of the Ordered Sets used to represent 8B/10B EOF Delimiters differentiates
between normal and invalid frames. It also ensures that the running disparity resulting after processing of
an EOF Ordered Set is negative independent of the value of beginning running disparity. Link_Reset (LR)
and Link_Reset_Response (LRR) Ordered Sets are also differentiated through the use of their second
characters.

The third and fourth characters of the Delimiter functions, Receiver_Ready, and the Fill Words are
repeated to ensure that an error affecting a single character shall not result in the recognition of an
Ordered Set other than the one transmitted.

For some Primitive Signals and Primitive Sequences, the second byte of the Ordered Set specifies the
function of the Ordered Set. Bytes 3 and 4 of the Ordered Set are used to carry parameter information. The
receiving FC_Ports analyze the parameter information before taking any action.

5.2.7.2 8B/10B Frame delimiters

A frame delimiter is represented by an Ordered Set that immediately precedes or follows the contents of a
frame. Separate and distinct Ordered Sets shall identify the start of a frame and the end of a frame and
shall be recognized when a single Ordered Set is detected. The Ordered Sets used to represent frame
delimiters are listed in table 7. See 11.3.7 and 11.3.8 for the usage of each.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

54

Table 7 - 8B/10B Frame Delimiters

Abbr. Delimiter Function Reference
Beginning

RD
Ordered Set

SOFc1 SOF Connect Class 1 -
Obsolete

- Negative K28.5 - D21.5 - D23.0 - D23.0

SOFi1 SOF Initiate Class 1 -
Obsolete

- Negative K28.5 - D21.5 - D23.2 - D23.2

SOFn1 SOF Normal Class 1 -
Obsolete

- Negative K28.5 - D21.5 - D23.1 - D23.1

SOFi2 SOF Initiate Class 2 11.3.7.2.2 Negative K28.5 - D21.5 - D21.2 - D21.2

SOFn2 SOF Normal Class 2 11.3.7.3.2 Negative K28.5 - D21.5 - D21.1 - D21.1

SOFi3 SOF Initiate Class 3 11.3.7.2.3 Negative K28.5 - D21.5 - D22.2 - D22.2

SOFn3 SOF Normal Class 3 11.3.7.3.3 Negative K28.5 - D21.5 - D22.1 - D22.1

SOFc4 SOF Activate Class 4 -
Obsolete

- Negative K28.5 - D21.5 - D25.0 - D25.0

SOFi4 SOF Initiate Class 4 -
Obsolete

- Negative K28.5 - D21.5 - D25.2 - D25.2

SOFn4 SOF Normal Class 4 -
Obsolete

- Negative K28.5 - D21.5 - D25.1 - D25.1

SOFf SOF Fabric FC-SW-6 Negative K28.5 - D21.5 - D24.2 - D24.2

EOFt EOF Terminate
11.3.8.2.2 Negative K28.5 - D21.4 - D21.3 - D21.3

Positive K28.5 - D21.5 - D21.3 - D21.3

EOFdt
EOF Disconnect-
Terminate-Class 1 - Obsolete

- Negative K28.5 - D21.4 - D21.4 - D21.4

Positive K28.5 - D21.5 - D21.4 - D21.4

EOFa EOF Abort
11.3.8.3.2 Negative K28.5 - D21.4 - D21.7 - D21.7

Positive K28.5 - D21.5 - D21.7 - D21.7

EOFn EOF Normal
11.3.8.2.1 Negative K28.5 - D21.4 - D21.6 - D21.6

Positive K28.5 - D21.5 - D21.6 - D21.6

EOFni EOF Normal-Invalid
11.3.8.3.3 Negative K28.5 - D10.4 - D21.6 - D21.6

Positive K28.5 - D10.5 - D21.6 - D21.6

EOFdti
EOF
Disconnect-Terminate-Invalid
Class 1 - Obsolete

- Negative K28.5 - D10.4 - D21.4 - D21.4

Positive K28.5 - D10.5 - D21.4 - D21.4

EOFrt
EOF Remove-Terminate
Class 4 - Obsolete

- Negative K28.5 - D21.4 - D25.4 - D25.4

Positive K28.5 - D21.5 - D25.4 - D25.4

EOFrti
EOF Remove-Terminate
Invalid Class 4 - Obsolete

- Negative K28.5 - D10.4 - D25.4 - D25.4

Positive K28.5 - D10.5 - D25.4 - D25.4

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

55

5.2.7.3 8B/10B Primitive Signals

A Primitive Signal is an Ordered Set designated by this standard to have special meaning. All FC_Ports
shall at a minimum recognize R_RDY and Idle Primitive Signals. All Primitive Signals not recognized by
the FC_Port shall be treated as Fill Words. When a single Ordered Set is detected possible Primitive
Signals detected are listed in table 8.

To assure a sufficient number of Fill Words between frames, the originator of any Primitive Signal (except
ARByx, ARB(val), MRK, SYNx, SYNy, and SYNz) shall precede and follow the Primitive Signal by a
minimum of two Fill Words. Because Fill Words may be removed by intermediate transmitters, the number
of Fill Words preceding or following a Primitive Signal at a receiver may be reduced to zero.

All Primitive Signals in 8b/10B have negative beginning running disparity.

Table 8 - 8B/10B Primitive Signals

Abbr. Primitive Signal Reference Ordered Set

Idle Idle 5.2.7.4 K28.5 – D21.4 – D21.5 – D21.5

R_RDY Receiver_Ready 20.4 K28.5 – D21.4 – D10.2 – D10.2

VC_RDY Virtual Circuit Ready FC-SW-6 K28.5 – D21.7 – VC_ID – VC_ID

BB_SCs buffer-to-buffer State Change
(SOF)

20.4.9 K28.5 - D21.4 – D22.4 – D22.4

BB_SCr buffer-to-buffer State Change
(R_RDY)

20.4.9 K28.5 - D21.4 – D22.6 – D22.6

SYNx Clock Synchronization Word X 24.4 K28.5 – D31.3 – CS_X1 – CS_X2

SYNy Clock Synchronization Word Y 24.4 K28.5 – D31.5 – CS_Y1 – CS_Y2

SYNz Clock Synchronization Word Z 24.4 K28.5 – D31.6 – CS_Z1 – CS_Z2

ARBff Arbitrate FC-AL-2 and
11.3.5

K28.5 - D20.4 - D31.7 - D31.7

ARByx Arbitrate FC-AL-2 K28.5 – D20.4 – y – x

ARB(val) Arbitrate FC-AL-2 K28.5 – D20.4 – val – val

CLS Close FC-AL-2 K28.5 – D5.4 – D21.5 – D21.5

DHD Dynamic Half-Duplex FC-AL-2 K28.5 – D10.4 – D21.5 – D21.5

MRKtx Mark FC-AL-2 K28.5 – D31.2 – MK_TP – AL_PS

OPNyx Open full-duplex FC-AL-2 K28.5 – D17.4 – AL_PD – AL_PS

OPNyy Open half-duplex FC-AL-2 K28.5 – D17.4 – AL_PD – AL_PD

OPNyr Open selective replicate FC-AL-2 K28.5 – D17.4 – AL_PD – D31.7

OPNfr Open broadcast replicate FC-AL-2 K28.5 – D17.4 – D31.7 – D31.7

Idle2 Alternate Idle 2 FC-BaseT K28.5 – D7.0 – D9.1 – D9.1

Idle3 Alternate Idle 3 FC-BaseT K28.5 – D7.0 – D9.5 – D9.5

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

56

5.2.7.4 Idle

Idle is a Primitive Signal transmitted to indicate that link initialization is complete on all links, and as Fill
Words to maintain link synchronization on links not using Emission Lowering Protocol. Idles shall be
transmitted as Fill Words on links not using Emission Lowering Protocol during periods of time when
frames, other Primitive Signals or Primitive Sequences are not required to be transmitted. See 11.3 for the
requirements for the insertion of Fill Words between frames.

5.2.7.5 8B/10B Primitive Sequences

A Primitive Sequence is an Ordered Set that is transmitted repeatedly and continuously. Primitive
Sequences are transmitted to indicate specific conditions within or conditions encountered by the receiver
logic of an FC_Port. See table 9 for bit encodings of Primitive Sequences. The NOS, OLS, LR, and LRR
Primitive Sequences shall be supported. If the port supports FC-AL-2, it shall support the various LIP, LPB,
and LPE Primitives Sequences shown in table 9.

All Primitive Sequences in 8b/10B have negative beginning running disparity.

Primitive Sequences shall be transmitted continuously while the condition exists. A detailed description of
FC_Port state changes relative to Primitive Sequence reception and transmission is given in clause 7.
When a Primitive Sequence is received and recognized, depending on the state of the FC_Port, a
corresponding Primitive Sequence or Idles shall be transmitted in response as defined in clause 7.

Table 9 - 8B/10B Primitive Sequences

Abbr Primitive Sequence Reference Ordered Set

NOS Not_operational clause 7 K28.5 – D21.2 – D31.5 – D5.2

OLS Offline clause 7 K28.5 – D21.1 – D10.4 – D21.2

LR Link_Reset clause 7 K28.5 – D9.2 – D31.5 – D9.2

LRR Link_Reset_Response clause 7 K28.5 – D21.1 – D31.5 – D9.2

LIP(F7,F7) Loop Initialization - F7,F7 FC-AL-2 K28.5 – D21.0 – D23.7 – D23.7

LIP(F8,F7) Loop Initialization - F8,F7 FC-AL-2 K28.5 – D21.0 – D24.7 – D23.7

LIP(F7,x) Loop Initialization - F7,x FC-AL-2 K28.5 – D21.0 – D23.7 – AL_PS

LIP(F8,x) Loop Initialization - F8,x FC-AL-2 K28.5 – D21.0 – D24.7 – AL_PS

LIPyx Loop Initialization - reset FC-AL-2 K28.5 – D21.0 – AL_PD – AL_PS

LIPfx Loop Initialization - reset all FC-AL-2 K28.5 – D21.0 – D31.7 – AL_PS

LIPba Loop Initialization - reserved
LIPba

FC-AL-2 K28.5 – D21.0 – b – a

LPByx Loop Port Bypass FC-AL-2 K28.5 – D9.0 – AL_PD – AL_PS

LPBfx Loop Port Bypass all FC-AL-2 K28.5 – D9.0 – D31.7 – AL_PS

 LPEyx Loop Port Enable FC-AL-2 K28.5 – D5.0 – AL_PD – AL_PS

 LPEfx Loop Port Enable all FC-AL-2 K28.5 – D5.0 – D31.7 – AL_PS

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

57

A Primitive Sequence transmitted by an PN_Port shall be received and recognized by the locally attached
Fx_Port, but not transmitted through the Fabric.

Recognition of a Primitive Sequence shall require consecutive detection of three instances of the same
Ordered Set without any intervening data indications from the receiver logic (FC-1).

5.3 64B/66B transmission code

5.3.1 Overview

An FC-0 standard (e.g., FC-PI-5) may specify the use of the 64B/66B transmission code as its frame
transfer transmission code.

The 64B/66B transmission code specified by this standard treats a stream of words and Special Functions
in pairs, each pair being encoded as a 66-bit Transmission Word.

NOTE 1 - The IEEE 802.3-2012 specification of 64B/66B references as “blocks” what this standard
references as “Transmission Words”.

A stream of 64B/66B Transmission Words on a link may be further encoded to provide Forward Error
Correction (i.e., FEC). The use of FEC is negotiated using the transmitter training (see 5.5). How an
FC_Port determines to request use of FEC is not within the scope of this standard.

If the FC_Ports on a link determine to use FEC, the streams of 64B/66B Transmission Words in both
directions on the link shall be encoded as specified in 5.3 and then further encoded as specified in
subclause 74.7 and subclause 74.10 of IEEE 802.3-2012. If the FC_Ports on a link determine not to use
FEC, the streams of 64B/66B Transmission Words in both directions on the link shall be encoded as
specified in 5.3.

5.3.2 64B/66B Transmission Word format

All 64B/66B Transmission Words consist of 66 bits. Transmission Words are either data Transmission
Words or control Transmission Words (see 5.3.5 and 5.3.6). The first two bits of a Transmission Word are
the synchronization header, and are set to either 01h or 10h. The remaining 64 bits of the Transmission
Word are the output of a scrambler (see 5.3.3) applied to the Transmission Word body. The Transmission
Word body is eight bytes that represent a pair of words and/or Special Functions. See figure 10.

NOTE 2 - The IEEE 802.3-2012 specification of 64B/66B references as “block payload” what this
standard references as “Transmission Word body”.

Since the Transmission Word body is passed through the scrambler and the synchronization header is not
passed through the scrambler, the synchronization header is the only position in the Transmission Word
that always contains a transition. This feature of the code is used to obtain Transmission Word
Synchronization (see 6.4).

A 64B/66B Transmission Word shall be transmitted so that each bit in the Transmission Word is
transmitted before all more significant bits in the Transmission Word.

NOTE 3 - The intention is that the resulting transmitted bit sequence for Fibre Channel 64B/66B
transmission coding is the same as 10GBASE-R PCS (see IEEE 802.3-2012 clause 49). IEEE
802.3-2012 uses diagramming conventions that differ from those of this standard in certain ways: Less
significant bits within a byte are shown to the left of more significant bits, and bytes to be transmitted
earlier are identified with less significant bits than bytes to be transmitted later. In order to provide
transition from the conventions of this standard to the conventions of IEEE 802.3-2012, bit ordering

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

58

designations within the 64B/66B Transmission Word body and Transmission Word shown in this standard
follow the conventions of IEEE 802.3-2012, and are different from those used by the remainder of this
standard.

5.3.3 64B/66B scrambling

The most significant 64 bits of a 64B/66B Transmission Word is the body of the Transmission Word,
scrambled with a self-synchronizing scrambler. For each Transmission Word body that is to be scrambled,
the scrambling process shall be equivalent to this model:

1) serialize the bits within the Transmission Word body so that bit 0 of the Transmission Word body is
first and each remaining bit of the Transmission Word body follows all less significant bits of the
Transmission Word body;

2) scramble the serialized Transmission Word body as specified in IEEE 802.3-2012 subclause
49.2.6; and

3) place the first bit of the scrambled output into bit 2 of the Transmission Word, and place each
subsequent bit of scrambled output into a more significant bit position in the Transmission Word
than any prior bit of the scrambled output.

Key:
SH: Synchronization Header

Figure 10 - 64B/66B Transmission Word composition

Transmission Word body
0
0

6
3

0
0

0
1 Scrambled Transmission Word body

0
2

6
5

Scrambler

S
H

0
0

0
1

l
s
b

m
s
b

l
s
b

m
s
b

64B/66B Transmission Word

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

59

For each Transmission Word that is to be descrambled, the descrambling process shall be equivalent to
this model:

1) serialize bits 2 through 65 of the Transmission Word so that bit 2 of the Transmission Word is first
and each remaining bit of the Transmission Word follows all less significant bits of the
Transmission Word;

2) descramble the serialized Transmission Word bits as specified in IEEE 802.3-2012 subclause
49.2.10; and

3) place the first bit of the descrambled output into bit 0 of the Transmission Word body, and place
each subsequent bit of descrambled output into a more significant bit position in the Transmission
Word body than any prior bit of the descrambled output.

The self-synchronizing scrambler/descrambler does not need to be initialized to any specific state. An
implementation should not change the scrambler state or descrambler state when the port state is Active
other than in accord with the specified model. If its state is modified other than in accord with the specified
model, Invalid Transmission Words may be detected.

5.3.4 Invalid Synchronization Header

If both bits in the Synchronization Header have the same value, the Transmission Word shall cause a code
violation to be reported and shall be decoded as two Idle Special Functions.

5.3.5 Data Transmission Words

For a Data Transmission Word, the Synchronization Header shall be set so that the least significant bit is 0
and the most significant bit is 1. A Data Transmission Word body is two successive words of FC-2M level
data to transmit. Bits 0-7 of the Data Transmission Word body shall be set to the first byte to be transmitted
(i.e., bits 24-31 of the first word of FC-2M level data). Subsequently higher order bytes of the Data
Transmission Word body shall be set to successive bytes to be transmitted from the first word of FC-2M
level data and then from the second word of FC-2M level data. See figure 11.

Figure 11 - 64B/66B data Transmission Word body

l
s
b

m
s
b

data Transmission Word body

First word to transmit
m
s
b

l
s
b

Second word to transmit
m
s
b

l
s
b

0
0

0
7

0
8

1
5

1
6

2
3

2
4

3
1

3
2

3
9

4
0

4
7

4
8

5
5

5
6

6
3

1st
byte

3
1

2
4

2nd
byte

2
3

1
6

3rd
byte

1
5

0
8

4th
byte

0
7

0
0

1st
byte

3
1

2
4

2nd
byte

2
3

1
6

3rd
byte

1
5

0
8

4th
byte

0
7

0
0

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

60

5.3.6 Control Transmission Words

The Synchronization Header for all control Transmission Words shall be set so that the least significant bit
is 1 and the most significant bit is 0. The body of a Control Transmission Word is either two Special
Functions or one Special Function and one word. The most significant byte of the body of a Control
Transmission Word is the Transmission Word type field. The Transmission Word type field indicates the
format of the remainder of the body of the Transmission Word. The Transmission Word type field shall be
set to a value specified in table 10. If a Transmission Word type is decoded that is restricted in table 10, the
Transmission Word shall cause a code violation to be reported and shall be decoded as two Idle Special
Functions.

For a control Transmission Word body that includes a representation of a frame delimiter Special Function
(i.e., SOF Special Function or EOF Special Function), the Special Function is specified by the
Transmission Word type field together with three modifier bytes (see table 13).

Idle Special Functions and receiver detected errors shall be represented as a series of four 7-bit control
codes (see table 11). FC_Ports compliant with this standard shall not encode control codes other than the
following into a transmission word:

a) Idle (i.e., 00h), or

b) LPI (i.e., 06h), if the FC_Port supports Energy Efficient Fibre Channel.

If a control code value other than Idle or LPI if the FC_Port supports Energy Efficient Fibre Channel, is
decoded, the Transmission Word shall cause a code violation to be reported and the restricted control
code shall be decoded as an Idle control code.

To communicate LPI Mode (see 10), the LPI control code (i.e., 06h) is sent in place of the Idle control code
(i.e., 00h).

Table 10 - Valid 64B/66B Transmission Word type values

Transmission
Word type

value
Transmission Word content Reference

1Eh Idle or LPI Special Function followed by Idle or LPI Special
Function; or Receiver Error

5.3.6.1
5.3.6.10

33h Idle Special Function followed by SOF Special Function 5.3.6.2

B4h EOF Special Function followed by Idle or LPI Special Function 5.3.6.3

2Dh Idle Special Function followed by other Special Function 5.3.6.4

4Bh Other Special Function followed by Idle Special Function 5.3.6.5

55h Other Special Function followed by other Special Function 5.3.6.6

66h Other Special Function followed by SOF Special Function 5.3.6.7

78h SOF Special Function followed by word of data 5.3.6.8

FFh Word of data followed by EOF Special Function 5.3.6.9

any other value Restricted for IEEE 802.3-2012, shall not be transmitted IEEE 802.3-2012

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

61

Other Special Functions shall be indicated by a 4-bit order code (see table 12) together with three modifier
bytes (see table 14 and table 15). If a restricted order code value is decoded, the Special Function shall
cause a code violation to be reported and shall be decoded as an Idle Special Function.

Table 11 - Valid control code values

Value
(least significant

seven bits)
Meaning Reference

00h Idle 5.3.7.2

06h LPI 10

1Eh Error. This code shall be used only for receiver error reporting
(see 5.3.6.10)

5.3.6.10

any other value Restricted for IEEE 802.3-2012, shall not be transmitted IEEE 802.3-2012

Table 12 - Valid order code values

Value Ordered Set Reference

0h Primitive Sequence 5.3.7.3

Fh Primitive Signal 5.3.7.2

any other value Restricted for IEEE 802.3, shall not be transmitted IEEE 802.3-2012

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

62

5.3.6.1 Idle or LPI followed by Idle or LPI

If the control Transmission Word represents transmission of an Idle or LPI Special Function followed by an
Idle or LPI Special Function, the body of the control Transmission Word shall be composed as shown in
figure 12. In each field, lower numbered bits represent less significant bits of the value than higher
numbered bits.

5.3.6.2 Idle followed by SOF

If the control Transmission Word represents transmission of an Idle Special Function followed by an SOF
Special Function, the body of the control Transmission Word shall be composed as shown in figure 13. In
each field, lower numbered bits represent less significant bits of the value than higher numbered bits.

An Idle followed by SOF Transmission Word shall cause a code violation to be reported and shall be
decoded as two Idle Special Functions if the Transmission Word received prior to receiving an Idle followed
by SOF Transmission Word:

a) was a data Transmission Word;

b) was any transmission word containing an SOF; or

c) caused a coding violation to be reported.

Key:
T Transmission Word type value set to 1Eh
C 7-bit control code set to zero (i.e., the Idle control code), or 06h (i.e., the

LPI control code)
Each field with a name marked by ' is shown in transmission bit order. It has the same numeric value as
the field with the same unmarked name.

Figure 12 - 64B/66B control Transmission Word body: Idle or LPI followed by Idle or LPI

control Transmission Word body fields shown in 64B/66B bit ordering

T

control Transmission Word body fields shown in FC-2 bit ordering

0
0

0
6

0
0

0
7

C

1
4

0
8

C'T'

0
7

0
0

0
0

0
6

C

2
1

1
5

C'

0
0

0
6

C

2
8

2
2

C'

0
0

0
6

C

3
5

2
9

C'

0
0

0
6

C

4
2

3
6

C'

0
0

0
6

C

4
9

4
3

C'

0
0

0
6

C

5
5

5
0

C'

0
0

0
6

C

6
3

5
6

C'

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

63

NOTE 4 - The code violations based on the prior Transmission Word reflect behavior required by the
Receive state machine in IEEE 802.3-2012 subclause 49.2.13.3.

5.3.6.3 EOF followed by Idle or LPI

If the control Transmission Word represents transmission of an EOF Special Function followed by an Idle
or LPI Special Function, the body of the control Transmission Word shall be composed as shown in figure
14. In each field, lower numbered bits represent less significant bits of the value than higher numbered
bits.

An EOF followed by Idle or LPI Transmission Word shall cause a code violation to be reported and shall be
decoded as two Idle Special Functions if the Transmission Word received following receiving an EOF
followed by Idle or LPI Transmission Word:

a) is a data Transmission Word;

b) is any transmission word containing an EOF; or

c) causes a coding violation to be reported.

NOTE 5 - This requires lookahead on encountering an EOF. The code violations based on the
following Transmission Word reflect behavior required by the Receive state machine in IEEE
802.3-2012 subclause 49.2.13.3.

T Transmission Word type value set to 33h
C 7-bit control code set to zero (i.e., the Idle control code)
M1, M2, M3 Modifier bytes for SOF (see 5.3.7.1)

Each field with a name marked by ' is shown in transmission bit order. It has the same numeric value as
the field with the same unmarked name.

Figure 13 - 64B/66B control Transmission Word body: Idle followed by SOF

control Transmission Word body fields shown in 64B/66B bit ordering

T

control Transmission Word body fields shown in FC-2 bit ordering

0
0

0
6

0
0

0
7

C

1
4

0
8

C'T'

0
7

0
0

0
0

0
6

C

2
1

1
5

C'

0
0

0
6

C

2
8

2
2

C'

0
0

0
6

C

3
5

2
9

C'

M1

0
0

0
7

M1'

4
7

4
0

M2

0
0

0
7

M2'

5
5

4
8

M3

0
0

0
7

M3'

6
3

5
6

3
9

3
6

0h

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

64

5.3.6.4 Idle / other Special Function

If the control Transmission Word represents transmission of an Idle Special Function followed by a Special
Function other than Idle, an SOF or an EOF, the body of the control Transmission Word shall be composed
as shown in figure 15. In each field, lower numbered bits represent less significant bits of the value than
higher numbered bits.

Key:
T Transmission Word type value set to B4h
M1, M2, M3 Modifier bytes for EOF (see 5.3.7.1)
C 7-bit control code set to zero (i.e., the Idle control code) or 06h (i.e., the

LPI control code)
Each field with a name marked by ' is shown in transmission bit order. It has the same numeric value as
the field with the same unmarked name.

Figure 14 - 64B/66B control Transmission Word body: EOF followed by Idle or LPI

control Transmission Word body fields shown in 64B/66B bit ordering

T

control Transmission Word body fields shown in FC-2 bit ordering

0
0

0
7

T'

0
7

0
0

M1

0
0

0
7

M1'

1
5

0
8

M2

0
0

0
7

M2'

2
3

1
6

M3

0
0

0
7

M3'

3
1

2
4

3
5

3
2

0h

0
0

0
6

C

4
2

3
6

C'

0
0

0
6

C

4
9

4
3

C'

0
0

0
6

C

5
6

5
0

C'

0
0

0
6

C

6
3

5
7

C'

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

65

5.3.6.5 Other Special Function / Idle

If the control Transmission Word represents transmission of a Special Function other than Idle, an SOF or
an EOF, followed by an Idle Special Function, the body of the control Transmission Word shall be
composed as shown in figure 16. In each field, lower numbered bits represent less significant bits of the
value than higher numbered bits.

Key:
T Transmission Word type value set to 2Dh
C 7-bit control code set to zero (i.e., the Idle control code)
O Order code (see 5.3.7.2 and 5.3.7.3)
M1, M2, M3 Modifier bytes for Special Function (see 5.3.7.2 and 5.3.7.3)

Each field with a name marked by ' is shown in transmission bit order. It has the same numeric value as
the field with the same unmarked name.

Figure 15 - 64B/66B control Transmission Word body: Idle / other Special Function

control Transmission Word body fields shown in 64B/66B bit ordering

T

control Transmission Word body fields shown in FC-2 bit ordering

0
0

0
6

0
0

0
7

C

1
4

0
8

C'T'

0
7

0
0

0
0

0
6

C

2
1

1
5

C'

0
0

0
6

C

2
8

2
2

C'

0
0

0
6

C

3
5

2
9

C'

M1

0
0

0
7

M1'

4
7

4
0

M2

0
0

0
7

M2'

5
5

4
8

M3

0
0

0
7

M3'

6
3

5
6

0
0

0
3

O

3
9

3
6

O'

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

66

Key:
T Transmission Word type value set to 4Bh
M1, M2, M3 Modifier bytes for Special Function (see 5.3.7.2 and 5.3.7.3)
O Order code (see 5.3.7.2 and 5.3.7.3)
C 7-bit control code set to zero (i.e., the Idle control code)

Each field with a name marked by ' is shown in transmission bit order. It has the same numeric value as
the field with the same unmarked name.

Figure 16 - 64B/66B control Transmission Word body: other Special Function / Idle

control Transmission Word body fields shown in 64B/66B bit ordering

T

control Transmission Word body fields shown in FC-2 bit ordering

0
0

0
7

T'

0
7

0
0

M1

0
0

0
7

M1'

1
5

0
8

M2

0
0

0
7

M2'

2
3

1
6

M3

0
0

0
7

M3'

3
1

2
4

0
0

0
6

C

4
2

3
6

C'

0
0

0
6

C

4
9

4
3

C'

0
0

0
6

C

5
6

5
0

C'

0
0

0
6

C

6
3

5
7

C'

0
0

0
3

O

3
5

3
2

O'

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

67

5.3.6.6 Other Special Function / other Special Function

If the control Transmission Word represents transmission of a Special Function other than Idle, an SOF or
an EOF followed by another Special Function other than Idle, an SOF or an EOF, the body of the control
Transmission Word shall be composed as shown in figure 17. In each field, lower numbered bits represent
less significant bits of the value than higher numbered bits.

Special Functions adjacent to Primitive Sequence Special Functions shall be transmitted only as allowed
by clause 7.

5.3.6.7 Other Special Function / SOF

If the control Transmission Word represents transmission of a Special Function other than Idle, an SOF or
an EOF followed by an SOF, the body of the control Transmission Word shall be composed as shown in
figure 18. In each field, lower numbered bits represent less significant bits of the value than higher
numbered bits.

Key:
T Transmission Word type value set to 55h
M11, M12, M13 Modifier bytes for first Special Function (see 5.3.7.2 and 5.3.7.3)
O1 Order code for first Special Function (see 5.3.7.2 and 5.3.7.3)
O2 Order code for second Special Function (see 5.3.7.2 and 5.3.7.3)
M21, M22, M23 Modifier bytes for second Special Function (see 5.3.7.2 and 5.3.7.3)

Each field with a name marked by ' is shown in transmission bit order. It has the same numeric value as
the field with the same unmarked name.

Figure 17 - 64B/66B control Transmission Word body: two other Special Functions

control Transmission Word body fields shown in 64B/66B bit ordering

T

control Transmission Word body fields shown in FC-2 bit ordering

0
0

0
7

T'

0
7

0
0

M11

0
0

0
7

M11'

1
5

0
8

M12

0
0

0
7

M12'

2
3

1
6

M13

0
0

0
7

M13'

3
1

2
4

0
0

0
3

O1

3
5

3
2

O1'

0
0

0
3

O2

3
9

3
6

O2'

M21

0
0

0
7

M21'

4
7

4
0

M22

0
0

0
7

M22'

5
5

4
8

M23

0
0

0
7

M23'

6
3

5
6

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

68

An Other Special Function/SOF Transmission Word shall cause a code violation to be reported and shall
be decoded as two Idle Special Functions if the Transmission Word received prior to receiving an Other
Special Function/SOF Transmission Word:

a) was a data Transmission Word;

b) was any transmission word containing an SOF; or

c) caused a coding violation to be reported.

NOTE 6 - The code violations based on the prior Transmission Word reflect behavior required by the
Receive state machine in IEEE 802.3-2012 subclause 49.2.13.3.

5.3.6.8 SOF / data

If the control Transmission Word represents transmission of an SOF Special Function followed by a word,
the body of the control Transmission Word shall be composed as shown in figure 19. In each field, lower
numbered bits represent less significant bits of the value than higher numbered bits.

Key:
T Transmission Word type value set to 66h
M11, M12, M13 Modifier bytes for Special Function (see 5.3.7.2 and 5.3.7.3)
O Order code for Special Function (see 5.3.7.2 and 5.3.7.3)
M21, M22, M23 Modifier bytes for SOF (see 5.3.7.1)

Each field with a name marked by ' is shown in transmission bit order. It has the same numeric value as
the field with the same unmarked name.

Figure 18 - 64B/66B control Transmission Word body: other Special Function / SOF

control Transmission Word body fields shown in 64B/66B bit ordering

T

control Transmission Word body fields shown in FC-2 bit ordering

0
0

0
7

T'

0
7

0
0

M11

0
0

0
7

M11'

1
5

0
8

M12

0
0

0
7

M12'

2
3

1
6

M13

0
0

0
7

M13'

3
1

2
4

0
0

0
3

O

3
5

3
2

O'

3
9

3
6

0h

M21

0
0

0
7

M21'

4
7

4
0

M22

0
0

0
7

M22'

5
5

4
8

M23

0
0

0
7

M23'

6
3

5
6

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

69

An SOF/Data Transmission Word shall cause a code violation to be reported and shall be decoded as two
Idle Special Functions if the Transmission Word received prior to receiving an SOF/Data Transmission
Word:

a) was a data Transmission Word;

b) was any transmission word containing an SOF; or

c) caused a coding violation to be reported.

NOTE 7 - The code violations based on the prior Transmission Word reflect behavior required by the
Receive state machine in IEEE 802.3-2012 subclause 49.2.13.3.

5.3.6.9 Data / EOF

If the control Transmission Word represents transmission of a word followed by an EOF Special Function,
the body of the control Transmission Word shall be composed as shown in figure 20. In each field, lower
numbered bits represent less significant bits of the value than higher numbered bits.

Key:
T Transmission Word type value set to 78h
M1, M2, M3 Modifier bytes for SOF (see 5.3.7.1)
D1, D2, D3, D4 First, second, third, and fourth bytes of the word to transmit

Each field with a name marked by ' is shown in transmission bit order. It has the same numeric value as
the field with the same unmarked name.

Figure 19 - 64B/66B data Transmission Word body: SOF / data

control Transmission Word body fields shown in 64B/66B bit ordering

T

control Transmission Word body fields shown in FC-2 bit ordering

0
0

0
7

T'

0
7

0
0

M1

0
0

0
7

M1'

1
5

0
8

M2

0
0

0
7

M2'

2
3

1
6

M3

0
0

0
7

M3'

3
1

2
4

D4

0
0

0
7

D4'

6
3

5
6

D1

0
0

0
7

D1'

3
9

3
2

D2

0
0

0
7

D2'

4
7

4
0

D3

0
0

0
7

D3'

5
5

4
8

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

70

A Data / EOF Transmission Word shall cause a code violation to be reported and shall be decoded as two
Idle Special Functions if the Transmission Word received following receiving a Data / EOF Transmission
Word:

a) is a data Transmission Word;

b) is any transmission word containing an EOF; or

c) causes a coding violation to be reported.

NOTE 8 - This requires lookahead on encountering an EOF. The code violations based on the
following Transmission Word reflect behavior required by the Receive state machine in IEEE
802.3-2012 subclause 49.2.13.3.

5.3.6.10 Receiver error reporting

A receiver may substitute an Error Transmission Word for a Transmission Word received in error. An Error
Transmission Word shall cause a code violation to be reported and shall be decoded as two Idle Special
Functions. A transmitter shall not cause an Error Transmission Word to be sent. The body of the control
Transmission Word shall be composed as shown in figure 21. In each field, lower numbered bits represent
less significant bits of the value than higher numbered bits.

Key:
T Transmission Word type value set to FFh
D1, D2, D3, D4 First, second, third, and fourth bytes of the word to transmit
M1, M2, M3 Modifier bytes for EOF (see 5.3.7.1)

Each field with a name marked by ' is shown in transmission bit order. It has the same numeric value as
the field with the same unmarked name.

Figure 20 - 64B/66B data Transmission Word body: Data / EOF

control Transmission Word body fields shown in 64B/66B bit ordering

T

control Transmission Word body fields shown in FC-2 bit ordering

0
0

0
7

T'

0
7

0
0

M1

0
0

0
7

M1'

4
7

4
0

M2

0
0

0
7

M2'

5
5

4
8

M3

0
0

0
7

M3'

6
3

5
6

D4

0
0

0
7

D4'

3
9

3
2

D1

0
0

0
7

D1'

1
5

0
8

D2

0
0

0
7

D2'

2
3

1
6

D3

0
0

0
7

D3'

3
1

2
4

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

71

5.3.7 64B/66B representation of Special Functions

5.3.7.1 64B/66B frame delimiters

A frame delimiter is a Special Function that immediately precedes or follows the contents of a frame.
Separate and distinct Special Functions shall identify the start of a frame and the end of a frame and shall
be recognized when a single Special Function is decoded. Frame delimiter Special Functions shall be
represented by the combination of the Transmission Word type code (see table 10) and three modifier
bytes, as specified in table 13. If the Transmission Word type code specifies that a frame delimiter Special
Function is decoded but the three modifier bytes do not appear in table 13, the Special Function shall be
treated as an EOFa.

Key:
T Transmission Word type value set to 1Eh
C 7-bit control code set to the least significant 7 bits of 1Eh

(i.e., the Error control code)
Each field with a name marked by ' is shown in transmission bit order. It has the same numeric value as
the field with the same unmarked name.

Figure 21 - 64B/66B control Transmission Word body: receiver detected error

control Transmission Word body fields shown in 64B/66B bit ordering

T

control Transmission Word body fields shown in FC-2 bit ordering

0
0

0
6

0
0

0
7

C

1
4

0
8

C'T'

0
7

0
0

0
0

0
6

C

2
1

1
5

C'

0
0

0
6

C

2
8

2
2

C'

0
0

0
6

C

3
5

2
9

C'

0
0

0
6

C

4
2

3
6

C'

0
0

0
6

C

4
9

4
3

C'

0
0

0
6

C

5
5

5
0

C'

0
0

0
6

C

6
3

5
6

C'

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

72

5.3.7.2 64B/66B Primitive Signals

A Primitive Signal is a Special Function for which each instance has meaning independent of neighboring
Special Functions.

When the 64B/66B transmission code is used, the Fill Word (see 11.3.2) is either Idle or Low Power Idle,
depending on whether Energy Efficient operation (see 10) is used. The Idle Primitive Signal shall be
represented as a series of four Idle control codes.

Primitive Signal Special Functions other than the Idle Primitive Signal shall be represented by the
combination of the Transmission Word type code (see table 10), an order code (see table 12), and three
modifier bytes, as specified in table 14. If a valid order code associated with a series of modifier bytes that
is not specified in table 14 is decoded, the order code together with its associated modifier bytes shall be
processed as though an Idle Special Function had been decoded in the same position.

All FC_Ports shall at a minimum recognize the R_RDY Primitive Signal and the Idle Primitive Signal.

Table 13 - 64B/66B representation of frame delimiter Special Functions

Abbr. Frame delimiter Reference
Modifier
Byte 1

Modifier
Byte 2

Modifier
Byte 3

SOFi2 SOF Initiate Class 2 11.3.7.2.2 B5h 55h 55h

SOFn2 SOF Normal Class 2 11.3.7.3.2 B5h 35h 35h

SOFi3 SOF Initiate Class 3 11.3.7.2.3 B5h 56h 56h

SOFn3 SOF Normal Class 3 11.3.7.3.3 B5h 36h 36h

SOFf SOF Fabric FC-SW-6 B5h 58h 58h

EOFt EOF Terminate 11.3.8.2.2 95h 75h 75h

EOFa EOF Abort 11.3.8.3.2 95h F5h F5h

EOFn EOF Normal 11.3.8.2.1 95h D5h D5h

EOFni EOF Normal-Invalid 11.3.8.3.3 8Ah D5h D5h

Table 14 - 64B/66B representation of Primitive Signal Special Functions

Abbr. Primitive Signal Reference
Order
code

Modifier
Byte 1

Modifier
Byte 2

Modifier
Byte 3

R_RDY Receiver_Ready 20.4 Fh 95h 4Ah 4Ah

VC_RDY Virtual Circuit Ready FC-SW-6 Fh F5h VC_ID VC_ID

BB_SCs Buffer-to-Buffer State
Change (SOF)

20.4.9 Fh 95h 96h 96h

BB_SCr Buffer-to-Buffer State
Change (R_RDY)

20.4.9 Fh 95h D6h D6h

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

73

To assure a sufficient number of Fill Words between frames, the originator of any Primitive Signal other
than Idle shall precede and follow the Primitive Signal by a minimum of two Fill Words. Because Fill Words
may be removed by intermediate transmitters, the number of Fill Words preceding or following a Primitive
Signal at a receiver may be reduced to zero.

5.3.7.3 64B/66B Primitive Sequences

Primitive Sequence Special Functions shall be represented by the combination of the Transmission Word
type code (see table 10), an order code (see table 12), and three modifier bytes, as specified in table 15. If
a valid order code associated with a series of modifier bytes that is not specified in table 15 is decoded, the
order code together with its associated modifier bytes shall be processed as though an Idle Special
Function had been decoded in the same position.

The Primitive Sequences specified in table 15 shall be transmitted continuously while the condition exists.
A detailed description of FC_Port state changes relative to Primitive Sequence reception and transmission
is given in clause 7. When a Primitive Sequence is received and recognized, depending on the state of the
FC_Port, a corresponding Primitive Sequence or Idles shall be transmitted in response as defined in
clause 7. Primitive Sequences shall be transmitted only as specified in clause 7.

A Primitive Sequence transmitted by a PN_Port and received by a local Fx_Port shall be recognized by the
local Fx_Port, but not transmitted through the Fabric.

Recognition of a Primitive Sequence Special Function shall require detection of three consecutive
instances of the Primitive Sequence Special Function without any intervening data indications from the
receiver logic.

5.4 256B/257B transmission code

5.4.1 Overview

An FC-0 standard (e.g., FC-PI-6) may specify the use of the 256B/257B transmission code as its frame
transfer transmission code. If the 256B/257B transmission code is specified, then it shall be:

a) generated as described in 5.4.2;
b) encoded with Reed Solomon coding as described in 5.4.3;
c) scrambled as described in 5.4.4;

Table 15 - 64B/66B representation of Primitive Sequence Special Functions

Abbr. Primitive Sequence Reference
Order
code

Modifier
Byte 1

Modifier
Byte 2

Modifier
Byte 3

NOS
(see
NOTE)

Not_operational clause 7 0h 55h BFh 45h

OLS Offline clause 7 0h 35h 8Ah 55h

LR Link_Reset clause 7 0h 49h BFh 49h

LRR Link_Reset_Response clause 7 0h 35h BFh 49h

NOTE The representation of NOS used in this standard is consistent with the 8B/10B representation,
and differs from that used in 10GFC (i.e., a REMOTE FAULT Primitive Sequence)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

74

d) descrambled as described in 5.4.5;
e) decode with the Reed Solomon decoder as described in 5.4.6; and
f) decoded as described in 5.4.7.

5.4.2 64B/66B to 256B/257B Transcoding

The 256B/257B transmission code specified by this standard operates on 4 consecutive 64B/66B
Transmission Words (see 5.3xxx, each group being encoded as a 257-bit Transmission Word.

NOTE 9 - The IEEE 802.3bj-2014 specification of 256B/257B references as “blocks” what this standard
references as “Transmission Words”.

The transcoder constructs a 257-bit Transmission Word from a group of 4 x 66-bit Transmission Words to
allocate bandwidth for the parity check symbols added by the Reed-Solomon encoder.

The 257-bit Transmission Word tx_xcoded<256:0> shall be constructed as defined in SAM-5 91.5.2.5
given 4 x 66-bit Transmission Words denoted as tx_coded_j<65:0> where j=0 to 3. The first 5 bits of
tx_xcoded<256:0> are not scrambled (i.e., the step that generates tx_scrambled<256:0> is not
performed).

Figure 22 shows the 256B/257B encoding of four data words.

Figure 22 - 256B/257B encoding of four data words

01 d_0 01 d_1 01 d_2 01 d_3

d_3d_2d_1d_01

0 256

0 65 0 65 0 65 0 65

tx_coded_0 tx_coded_1 tx_coded_2 tx_coded_3

Tx_xcoded

Key:
_x = data from the encoded 64/66b block

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

75

Figure 23 shows the 256B/257B encoding of three data words followed by one control word.

Figure 24 shows the 256B/257B encoding of one control word followed by three data words.

Figure 23 - 256B/257B encoding of three data words followed by one control word

Figure 24 - 256B/257B encoding of one control word followed by three data words

01 d_0 01 d_1 01 d_2 10 c_3

c_3d_2d_1d_00

0 256

0 65 0 65 0 65 0 2 6 10 65

tx_coded_0 tx_coded_1 tx_coded_2 tx_coded_3

Tx_xcoded

f_3 s_3

f_31110

Key:
d_x = data from the encoded 64/66b block
c_x = control codes from the encoded 64/66b block
f_x = first 4 bits of the block type field in he encoded 64/66b block
s_x = second4 bits of the block type field in the encoded 64/66b block

d_3

01 d_301 d_1 01 d_2

c_0 d_2d_10

0 256

65 0 65 0 65 0 65

tx_coded_0 tx_coded_1 tx_coded_2 tx_coded_3

Tx_xcoded

f_00111

10 c_0f_0 s_0

0 2 6 10

Key:
d_x = data from the encoded 64/66b block
c_x = control codes from the encoded 64/66b block
f_x = first 4 bits of the block type field in the encoded 64/66b block
s_x = second 4 bits of the block type field in the encoded 64/66b block

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

76

Figure 25 shows the 256B/257B encoding of four control words.

Figure 26 shows the 256B/257B encoding of one data word followed by one control word followed by two
data words.

A stream of 256B/257B Transmission Words on a link shall be further encoded to provide Forward Error
Correction (i.e., FEC).

Figure 25 - 256B/257B encoding of four control words

Figure 26 - 256B/257B encoding of one data word, followed by one control word, followed by two
data words

c_3c_0 c_2c_10

0 256

65 0 65 0 65 0 65

tx_coded_0 tx_coded_1 tx_coded_2 tx_coded_3

Tx_xcoded

f_00000

10 c_0f_0 s_0

0 2 6 10

10 c_2f_2 s_2 10 c_3f_3 s_310 c_1f_1 s_1

f_1 f_2 f_3s_1 s_2 s_3

Key:
d_x = data from the encoded 64/66b block
c_x = control codes from the encoded 64/66b block
f_x = first 4 bits of the block type field in the encoded 64/66b block
s_x = second 4 bits of the block type field in the encoded 64/66b block

01 d_0 01 d_301 d_210 c_1

c_1 d_3d_2d_00

0 256

0 65 65 0 65 0 65

tx_coded_0 tx_coded_1 tx_coded_2 tx_coded_3

Tx_xcoded

f_1 s_1

f_11011

0 2 6 10

Key:
d_x = data from the encoded 64/66b block
c_x = control codes from the encoded 64/66b block
f_x = first 4 bits of the block type field in the encoded 64/66b block
s_x = second 4 bits of the block type field in the encoded 64/66b block

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

77

The streams of 256B/257B Transmission Words in both directions on the link shall be encoded as
specified in 5.4 and then further encoded as specified in subclause 91.5.2.7 of IEEE 802.3bj-2014.

5.4.3 Reed-Solomon encoder

The RS-FEC sublayer employs a Reed-Solomon code (see bibliography Annex L) operating over the
Galois Field GF(210) (see bibliography Annex L) where the symbol size is 10 bits. The encoder processes
k message symbols to generate 2t parity symbols which are then appended to the message to produce a
code word of n=k+2t symbols. For the purposes of this clause, a particular Reed-Solomon code is denoted
RS(n, k).

The RS-FEC sublayer shall implement RS(528, 514). Each k-symbol message corresponds to twenty
257-bit Transmission Words produced by the transcoder. Each code is based on the generating polynomial
given by Equation 91–1 of IEEE 802.3bj-2014.

5.4.4 Scrambler

Each RS-FEC code word is scrambled with a known sequence to randomize the 257-bit Transmission
Word headers and to enable robust code word synchronization at the receiver (i.e., ensure that any shifted
input bit sequence is not equal to another RS-FEC code word). Scrambling is implemented as modulo 2
addition of the RS-FEC code word and a pseudo-noise sequence 5280 bits in length defined as PN-5280
(see figure 35).

PN-5280 is generated by the polynomial r(x).

r(x) = x39 +x58 + 1

Figure 27 - PN-5280 as a linear feedback shift register

S0 S1 S38 S39 S56 S57

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

78

At the start of each RS-FEC code word, the initial state of the pseudo-noise generator is set to:

S57 = 1

Si–1 = Si XOR 1

(i.e., a binary sequence of alternating 1’s and 0’s).

5.4.5 Descrambler

Each code word shall be descrambled prior to decoding. Descrambling is implemented as the modulo 2
addition of RS-FEC code word and the same pseudo-noise sequence PN-5280 defined for the scrambler
(see 5.4.4).

5.4.6 Reed-Solomon decoder

The Reed-Solomon decoder extracts the message symbols from the code word, correcting them as
necessary, and discards the parity symbols. The message symbols correspond to 20 x 257-bit
Transmission Words.

The Reed-Solomon decoder shall be capable of correcting any combination of up to t=7 symbol errors in a
code word. It shall also be capable of indicating when a code word contains errors but was not corrected
(e.g., it contains a number of errors in excess of the error correction capability).

5.4.7 256B/257B to 64B/66B transcoder

The transcoder reconstructs a group of 4 x 66-bit Transmission Words from each received 257-bit
Transmission Word.

The 4 x 66-bit Transmission Words, denoted as rx_coded_j<65:0> where j=0 to 3, shall be derived from
each 257-bit Transmission Word rx_xcoded<256:0> as defined in IEEE 802.3bj-2014 91.5.2.5. As the first
5 bits of rx_xcoded<256:0> are not scrambled, the step defined in 802.3bj that derives rx_xcoded from
rx_scrambled is not performed on those bits.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

79

5.4.8 Transmit Bit Ordering

Transmit bit ordering for 256B/257B is as shown in figure 28.

Figure 28 - 256B/257B transmit bit ordering

0 SH_0 1 2 STWB_0 65 0 SH_1 1 2 STWB_1 65 0 SH_2 1 2 STWB_2 65 0 SH_3 1 2 STWB_3 65

64B/66B to 256B/257B Transcoder

Tx_xcoded0 256

Reed-Solomon Encoder [RS (528,514)]
20 x Tx_xcoded (5140b) => 514 x Message Symbols (5140b) + Parity (140b)

29
M511

20

39
M510

30
RS-FEC_codeword

5139
M0

5130

5149
P13

5140

5279
P0

5270

9
M513

0

19
M512

10

Scrambler [PN-5280 LFSR]

PN5280_word0 5279

Transmitter

5279

1
0

SH_n = Synchronization Header n according to figure 10
TWB_n = Scrabled Transmission Word Body n according to figure 10; n = 0 (i.e., earliest word) to n = 3 (i.e., latest word)

Tx_xcoded = Transcoded Transmission Word (see 5.4.2)

Transcoded 4xCONTROL/DATA WORDS (256b or 252b)HEADER
1 or 5b)

Transmit Order: 0 to 256

Mxxx = 10 bit RS encoded Message symbol xxx Pyy = 10 bit RS Parity symbol yy

Transmit Order: 0 to 5279

Transmit Order: 0 to 5279

Last Bit

First Bit

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

80

5.4.9 Receive Bit Ordering

Receive bit ordering for 256B/257B is as shown in figure 29.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

81

Figure 29 - 256B/257B receive bit ordering

0 SH_0 1 2 STWB_0 65 0 SH_1 1 2 STWB_1 65 0 SH_2 1 2 STWB_2 65 0 SH_3 1 2 STWB_3 65

64B/66B to 256B/257B Transcoder

Rx_xcoded0 256

Reed-Solomon Encoder [RS (528,514)]
514 x Message Symbols (5140b) + Parity (140b) => 20 x Tx_xcoded (5140b)

29
M511

20

39
M510

30
RS-FEC_codeword

5139
M0

5130

5149
P13

5140

5279
P0

5270

9
M513

0

19
M512

10

Descrambler [PN-5280 LFSR]

PN5280_word0 5279

Receiver

0

5278
5279

SH_n = Synchronization Header n according to figure 10
TWB_n = Scrabled Transmission Word Body n according to figure 10; n = 0 (i.e., earliest word) to n = 3 (i.e., latest word)

Rx_xcoded = Received Transmission Word (see 5.4.7)

Encoded 4xCONTROL/DATA WORDS (256b or 252b)HEADER
1 or 5b)

Receive Order: 0 to 256

Mxxx = 10 bit RS encoded Message symbol xxx Pyy = 10 bit RS Parity symbol yy

Receive Order: 0 to 5279

Receive Order: 0 to 5279

First Bit

Last Bit

rx_coded_n = Received 66 bit Transmission word (see 5.4.7)

rx_coded_0 rx_coded_1 rx_coded_2 rx_coded_3

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

82

5.5 Transmitter Training Signal

5.5.1 Overview

An FC-0 standard (e.g., FC-PI-5) may specify the use of the Transmitter Training Signal. The Transmitter
Training Signal shall not be used for communication of Fibre Channel frames.

The Transmitter Training Signal is a transmission code that enables active feedback from a receiver to a
transmitter to assist in adapting the transmitter to the characteristics of the link that connects them.
Adjustable transmitter coefficients are supported. The use and effect of each coefficient is specified in
FC-PI-x. It is expected that two FC_Ports on a link will concurrently send the Transmitter Training Signal
allowing each FC_Port to evaluate the received signal quality and recommend adjustments to the
transmitter of the other FC_Port. The Transmitter Training Signal may be sent to communicate information
without doing transmitter training.

The Transmitter Training Signal allows enabling of Forward Error Correction (FEC) (see 5.3). FEC is
optional for 16GFC and mandatory for 32GFC. FEC negotiation is not performed for 32GFC links and
128GFC links (i.e., four parallel lanes of 32GFC in each direction). The Transmitter Training Signal allows
enabling parallel lane support (see table 16) by setting Training Frame Control field bit 10 to one, if a lane
is capable of running at 32GFC speeds.

The Transmitter Training Signal shall be a repeating series of Transmission Words, each containing two
elements (see figure 30):

1) A Training Frame (see 5.5.2), which carries recommended adjustments to the transmitter of the
receiving FC_Port based on the quality of the signal detected at the receiver of the sending
FC_Port. The information in the Training Frame is encoded so as to increase its likelihood of
reliable communication when the transmitter is not optimally adjusted for the link; and

2) A Training Pattern (see 5.5.3), which allows the receiving FC_Port to formulate recommended
adjustments to the transmitter of the sending FC_Port. The Training Pattern is encoded so as to
challenge the ability to reliably recover it when the transmitter is not optimally adjusted for the link.

5.5.2 Training Frame

The Training Frame is the element of a Transmitter Training Signal that communicates training information
from a receiver to a transmitter. A Training Frame comprises a 32 TUI frame marker followed by a 128 TUI
Control field followed by a 128 TUI Status field (see figure 31).

Figure 30 - Transmitter Training Signal

Training Frame Training Pattern
Next

Training
Frame

Prior
Training
pattern

• • •• • •

4096
TUI

288
TUI

Transmitter Training Signal
Transmission Word

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

83

The Training Frame is intended to communicate information if the transmitter is not optimally adjusted for
the link and the selected link speed. The Training Frame also carries information as to whether the
physical interface supports parallel lanes and whether FEC is supported. Information in the Training Frame
shall be encoded using differential Manchester coding at one eighth the nominal bit rate of the selected link
speed (see figure 32).

The beginning of a Training Frame shall be signaled by a frame marker. A frame marker shall be
transmitted by holding the physical medium signal at logical “1” for 16 TUI followed by holding the physical
medium at logical “0” for 16 TUI. This is a deliberate violation of one eighth rate differential Manchester
coding, and carries no information (see figure 33).

NOTE Each bit of information in the Control field and the Status field is differential Manchester coded
in an 8 TUI interval.

Figure 31 - Training Frame format

NOTE Each bit of information in the Control field and the Status field is differential Manchester coded
in an 8 TUI interval.

Figure 32 - Differential Manchester coding

Frame marker Control field

32 TUI

Status Field

16 bits
128 TUI

16 bits
128 TUI

Bit value 1:
physical medium transitions

at ends and middle

8 TUI

Bit value 0:
physical medium transitions

at ends but not middle

8 TUI

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

84

The Control field and the Status field each contain 16 bits of information (i.e., each contain 128 TUI of
differential Manchester coded information). The information in these fields shall be transmitted so that
more significant encoded information bits are transmitted before less significant encoded information bits.
The electrical characteristics of the Transmitter Training Signal are specified in an FC-0 standard, and
when indicated in this standard, are indicated informatively.

An extended marker was specified in the Training Frame Control field for 32GFC since the 16GFC Training
Frame Control field could be incorrectly recognized as the 32GFC frame marker and a 32GFC port could
synchronize on the 16GFC Training Frame Control field. The extended marker is for 16 TUI as shown in
figure 34 of alternating highs and lows to uniquely identify 32GFC. 32GFC locks onto the frame marker
plus extended marker to preclude the potential of a false lock at 16GFC speeds. The extended marker
shall be transmitted after the frame marker whenever a 32GFC Training Frame is transmitted.

Fields in the Control field shall be set as specified in table 16. Fields in the Status field shall be set as
specified in table 17. See clause 9 For the use of these fields.

Figure 33 - Frame marker signal

Figure 34 - 32GFC frame marker signal

16
TUI

Physical medium state “1” Physical medium state “0”

16
TUI

Prior Training
Pattern ends in
“0” state.

16
TUI

16
TUI

4
 TUI

4
 TUI

4
 TUI

4
 TUI

Frame Marker Extended Marker

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

85

Table 16 - Training Frame Control field

Bits Field name Content

15-14 Extended
Marker

Set to 11b: Extended marker for 32GFC.
Set to 10b: reserved.
Set to 01b: reserved.
Set to 00b: for 16GFC.

13 Preset Set to one: the transmitter should set all coefficients to preset
values.
Set to zero: no transmitter action advised.

12 Initialize Set to one: The Transmitter should set all coefficients to initialize
values.
Set to zero: no transmitter action.

11 FECReq Set to one: the FC_Port is requesting the use of Forward Error
Correction (FEC) (see 5.3) in association with 64B/66B.
Set to zero: the FC_Port is directing not to use Forward Error
Correction (FEC) in association with 64B/66B.

10 Parallel Lane
Support

Set to one: parallel lanes are supported.
Set to zero: parallel lanes are not supported.

9-6 Reserved

5-4 C1Upd Set to 11b: reserved.

Set to 10b: transmitter should decrement coefficient 1 one step. a

Set to 01b: transmitter should increment coefficient 1 one step. a

Set to 00b: transmitter should not change coefficient 1.

3-2 C0Upd Set to 11b: reserved.

Set to 10b: transmitter should decrement coefficient 0 one step. a

Set to 01b: transmitter should increment coefficient 0 one step. a

Set to 00b: transmitter should not change coefficient 0.

1-0 C-1Upd Set to 11b: reserved.

Set to 10b: transmitter should decrement coefficient -1 one step. a

Set to 01b: transmitter should increment coefficient -1 one step. a

Set to 00b: transmitter should not change coefficient -1.

a See FC-PI-5.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

86

Table 17 - Training Frame Status field

Bits Field name Content

15 TC Set to one: transmitter training is complete.
Set to zero: request to begin or continue transmitter training.

14 SN Set to one: the transmitter is using and has not completed
Speed Negotiation.
Set to zero: the transmitter has completed or did not use Speed
Negotiation.

13 FECCap Set to one: FC_Port has Forward Error Correction (FEC)
capability (see 5.3).
Set to zero: FC_Port does not have Forward Error Correction
(FEC) capability.

12 TF Set to one: the transmitter is operating with fixed transmitter
coefficients.
Set to zero: the transmitter coefficients may be trained by the
receiver.

11-6 Reserved

5-4 C1Stat Set to 11b: transmitter coefficient 1 acknowledges an update

that left it at its maximum value. a

Set to 10b: transmitter coefficient 1 acknowledges an update

that left it at its minimum value. a

Set to 01b: transmitter coefficient 1 acknowledges an update

that is complete. a

Set to 00b: transmitter coefficient 1 is ready for another update.

3-2 C0Stat Set to 11b: transmitter coefficient 0 acknowledges an update
that left it at its maximum value.
Set to 10b: transmitter coefficient 0 acknowledges an update

that left it at its minimum value. a

Set to 01b: transmitter coefficient 0 acknowledges an update

that is complete. a

Set to 00b: transmitter coefficient 0 is ready for another update.

1-0 C-1Stat Set to 11b: transmitter coefficient -1 acknowledges an update

that left it at its maximum value. a

Set to 10b: transmitter coefficient -1 acknowledges an update

that left it at its minimum value. a

Set to 01b: transmitter coefficient -1 acknowledges an update

that is complete. a

Set to 00b: transmitter coefficient -1 is ready for another
update.

a See FC-PI-5.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

87

5.5.3 Training Pattern

The Training Pattern is the element of a Transmitter Training Signal that allows a receiver to evaluate its
ability to achieve reliable Fibre Channel communication across the link on which the Training Pattern is
sent. The Training Pattern shall be composed of 4094 TUI of PRBS-11 followed by two TUI of zero.
PRBS-11 (see figure 35) shall be equivalent to the output of an 11-bit linear feedback shift register that is
initialized to a value that is randomized to a non-zero value for each training frame, and that implements
the polynomial

x11 +x9 + 1

5.6 FEC for 128GFC

5.6.1 Overview

This clause specifies how Forward Error Correction (FEC) is implemented on 128GFC ports. FEC usage is
mandatory on 128GFC ports. Streams of 64/66B Transmission Words in both directions on a 128G link are
encoded by the FEC layer as specified below.

Figure 35 - PRBS-11 as a linear feedback shift register

x1 x2 x3 x8 x9 x10 x11

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

88

5.6.2 Functional block diagram

A functional block diagram of the 128GFC RS-FEC sub layer is shown in figure 36.

5.6.2.1 64B/66B to 256B/257B Transcoder

Transcoding is done as specified in 5.4.2.

In addition, as a final step, the first five bits are scrambled in transmission order as specified in IEEE
802.3bj-2014 91.5.2.5.

After this step, tx_xcoded<256:0> will yield tx_scrambled<256:0> as follows:

a) Set tx_scrambled<4:0> to the result of the bit wise Exclusive-OR of tx_xcoded<4:0> and
tx_xcoded <12:8>; and

b) Set tx_scrambled<256:5> to tx_xcoded<256:5>.

Figure 36 - 128GFC RS-FEC sub layer functional block diagram

Transcode Transcode

64B/66B Words 64B/66B Words

Alignment
Insertion

Reed-Solomon
Encoder

Symbol
Distribution

Alignment
Removal

Reed-Solomon
Decoder

Lane
Reorder

Alignment Lock
and Deskew

128GFC link

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

89

5.6.2.2 Alignment marker mapping and insertion

The alignment insertion function inserts a unique data pattern (i.e., Alignment Marker) for each link into the
data stream to enable identification of which of the four links is which FEC lane. This function enables the
receiver to map the physical links to logical lanes allowing for random connections of the Transmit links to
the Receive links within the group of 4 links, in addition to providing a framing pattern for aligning the FEC
code words.

The first 514b of every 4096th FEC code word carries Alignment Marker information.

The alignment marker bit sequence is identical to the first two re-mapped AM TC blocks specified in
Clause 82.2.7 and Clause 91.5.2.6 when replacing the BIP3 field in all four instances of the AM0 blocks
with the value 0xCA, the BIP3 for AM4 with 0x9D, the BIP3 for AM5 with 0xD7, the BIP3 for AM6 with
0x6F, and the BIP3 for AM7 with 0xA1. Additionally the first bit of AM8 and AM9 that are part of the
sequence is changed from 0->1 to maintain DC balance.

Table 18 shows the data stream that will appear on each of the 4 lanes after the RS symbol distribution of
the AM pattern is done. The ‘d’ is the first 6b of data from TC block that follows the AM pattern. The
underlined values are the replaced BIP3 and BIP7 fields in the AM blocks.

5.6.2.3 Reed-Solomon encoder

Reed-Solomon encoding is done as specified in 5.4.3.

5.6.2.4 Symbol distribution

Once the data has been encoded, it is distributed to 4 lanes, in groups of 10 bit symbols.

Symbol distribution is done as specified in IEEE 802.3bj-2014 91.5.2.8.

5.6.2.5 Transmit bit ordering

Table 18 - 128GFC FEC Alignment Marker

AM bits Lane3 Lane2 Lane1 Lane0

[39:0] 0011000001 0011000001 0011000001 0011000001

[79:40] 0001011010 0001011010 0001011010 0001011010

[119:80] 0010100010 0010100010 0010100010 0010100010

[159:120] 0011111011 0011111011 0011111011 0011111011

[199:160] 1010010111 1010010111 1010010111 1010010111

[239:200] 0101110111 0101110111 0101110111 0101110111

[279:240] 1110110011 0110100011 0111010011 1101010011

[319:280] 0100010101 0100101010 0001010011 0000011111

[359:320] 0101100110 1100100110 1111000010 0100001001

[399:360] 0100101000 0101011011 0010110101 1010100111

[439:400] 1110101000 1101010110 1010110010 1110000000

[479:440] 1001100110 1101100110 0011110111 1111011011

[513:480] dddddd1110 0110010000 0100101000 0101100010

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

90

Transmit bit ordering is as shown in figure 37.

5.6.2.6 Alignment lock and deskew

The receive function creates 4 bit streams after concatenating the bits received on each lane. It then
obtains LOCK to the alignment markers on each lane as specified by the FEC synchronization state
diagram in IEEE802.3bj-2014 91.5.3.1.

After alignment marker lock is achieved on all four lanes, all inter lane skew is removed as specified by the
FEC alignment state diagram in IEEE802.3bj-2014 91.5.3.1. The FEC receive function will support a
maximum skew of 180ns between lanes and a maximum skew variation of 4ns.

5.6.2.7 Lane reorder

FEC lanes may be received on different lanes of the service interface from which they were originally
transmitted.

The FEC receive function shall order the FEC lanes according to the FEC lane number per
IEEE802.3bj-2014-91.5.3.2.The FEC lane number is defined by the alignment marker that is mapped to
each FEC lane.

After all FEC lanes are aligned, deskewed, and reordered, the FEC lanes are multiplexed together in the
proper order to reconstruct the original stream of FEC code words.

5.6.2.8 Reed-Solomon decoder

Decoding is done as specified in 5.4.6.

5.6.2.9 Alignment marker removal

The first 514 bits in every 4096 code words are the mapped alignment marker bits. These are removed
before sending the data to the transcode block.

5.6.2.10 256B/257B to 64B/66B transcoder

The first five bits of the of the received block rx_scrambled<256:0>, in reception order, are descrambled.
Rx_scrambled<256:0> will yield rx_coded<256:0> as follows:

a) Set rx_coded<4:0> to the result of the bit wise Exclusive-OR of rx_scrambled<4:0> and
rx_scrambled<12:8>; and

b) Set rx_coded<256:5> to rx_scrambled<256:5>.

Next, a group of four 66bit transmission words are constructed from each received 257 bit transmission
word as specified in 5.4.7.

5.6.2.11 Receive bit ordering

Receive bit ordering is as specified in figure 38.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

91

Figure 37 - Transmit bit ordering

0 SH_0 1 2 STWB_0 65 0 SH_1 1 2 STWB_1 65 0 SH_2 1 2 STWB_2 65 0 SH_3 1 2 STWB_3 65

64B/66B to 256B/257B Transcoder (see 5.6.2.1)

Tx_scrambled0 256

Alignment Insertion (see 5.6.2.2)
20 x Tx_scrambled (5140b) => 514 x Message Symbols w/ AM (5140b)

29
M511

20

39
M510

30
RS-FEC_codeword

5139
M0

5130

5149
P13

5140

5279
P0

5270

9
M513

0

19
M512

10

Symbol Distribution (see 5.6.2.4)

SH_n = Synchronization Header n according to figure 10
STWB_n = Scrambled Transmission Word Body n according to figure 10; n = 0 (i.e., earliest word) to n = 3 (i.e., latest word)

Transcoded 4xCONTROL/DATA WORDS (256b or 252b)HEADER
(1b or 5b)

Transmit Order: 0 to 256

Mxxx = 10 bit RS encoded Message symbol xxx Pyy = 10 bit RS Parity symbol yy

Transmit Order: 0 to 5279

29
M511

20

39
M510

30
Message

5139
M0

5130

9
M513

0

19
M512

10

Mxxx = 10 bit Message symbol xxx

Reed-Solomon Encoder (see 5.6.2.3)
Message (5140b) => Message (5140b) + Parity (140b)

Transmit Order: 0 to 5139

5249
5240

P3

49
40

M509

9
0

M513

5259
5250

P2

59
50

M508

19
10

M512

5269
5260

P1

69
60

M507

29
20

M511

5279
5270

P0

79
70

M506

39
30

M510

Last Symbol

First Symbol

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

92

Figure 38 - Receive bit ordering

0 SH_0 1 2 STWB_0 65 0 SH_1 1 2 STWB_1 65 0 SH_2 1 2 STWB_2 65 0 SH_3 1 2 STWB_3 65

256B/257B to 64B/66B Transcoder (see 5.6.2.10)

Rx_scrambled0 256

Alignment Removal (see 5.6.2.9)
514 x Message Symbols w/ AM (5140b) => 20 x Rx_scrambled (5140b)

29
M511

20

39
M510

30
RS-FEC_codeword

5139
M0

5130

5149
P13

5140

5279
P0

5270

9
M513

0

19
M512

10

Alignment Lock, Deskew and Lane Reorder (see 5.6.2.6, 5.6.2.7)

SH_n = Synchronization Header n according to figure 10
STWB_n = Scrambled Transmission Word Body n according to figure 10; n = 0 (i.e., earliest word) to n = 3 (i.e., latest word)

Encoded 4xCONTROL/DATA WORDS (256b or 252b)HEADER
(1b or 5b)

Receive Order: 0 to 256

Mxxx = 10 bit RS encoded Message symbol xxx Pyy = 10 bit RS Parity symbol yy

Receive Order: 0 to 5279

29
M511

20

39
M510

30
Message

5139
M0

5130

9
M513

0

19
M512

10

Mxxx = 10 bit Message symbol xxx

Reed-Solomon Decoder [RS (528,514)] (see 5.6.2.8)
Message (5140b) + Parity (140b) => Message (5140b)

Receive Order: 0 to 5139

5240
5249

P3

40
49

M509

0
9

M513

5250
5259

P2

50
59

M508

10
19

M512

5260
5269

P1

60
69

M507

20
29

M511

5270
5279

P0

70
79

M506

30
39

M510First Symbol

Last Symbol

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

93

6 FC-1 Transmission Word Synchronization

6.1 Scope

Transmission Word Synchronization is a function of the FC-1 level.

6.2 Introduction

In the Fibre Channel architecture, the FC-0 level is responsible for bit transmission and reception (see
FC-PI-x). The FC-1 level is responsible for providing a stream of bits for the FC-0 level to transmit. No state
information is needed to accomplish this other than that necessary for 64B/66B scrambling and 8B/10B
running disparity. The FC-1 level is also responsible for deriving Transmission Word Synchronization and
Transmission Words from the received bit stream.

Whenever a signal (see FC-PI-x) is detected on a fibre, the receiver attached to that fibre shall attempt to
achieve synchronization on both bit and Transmission Word boundaries of the received encoded bit
stream. Bit Synchronization is defined in FC-PI-x. Transmission Word Synchronization is defined in this
clause. Synchronization failures on either bit or Transmission Word boundaries are not separately
identifiable; both cause Loss-of-Synchronization errors.

An FC_Port receiver has two mutually exclusive receiver Transmission Word Synchronization states, Word
Synchronization Acquired and Loss of Synchronization. In the Word Synchronization Acquired state, the
FC-1 level shall decode the received signal and pass information to the FC-2P level. In the Loss of
Synchronization state, the FC-1 level shall not pass information to the FC-2P level.

A receiver may provide an indication of a Loss-of-Signal condition (see FC-PI-x).

6.3 8B/10B Transmission Word Synchronization

6.3.1 State Diagram Overview

The Receiver State Diagram for 8B/10B Transmission Word Synchronization is shown in figure 39.

The Receiver states are as follows:

a) Loss of Synchronization state;

b) No Invalid Transmission Word Detected state;

c) First Invalid Transmission Word Detected state;

d) Second Invalid Transmission Word Detected state;

e) Third Invalid Transmission Word Detected state; and

f) Reset state.

Being in one of the Word Synchronization Acquired states refers to being in any of:

a) No Invalid Transmission Word Detected state;

b) First Invalid Transmission Word Detected state;

c) Second Invalid Transmission Word Detected state; or

d) Third Invalid Transmission Word Detected state.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

94

The receiver state transitions are defined as follows:

a) Transition 1: Power-on;

b) Transition 2: Acquisition of Word Synchronization (see 6.3.3.2.2);

c) Transition 3: An invalid Transmission Word is detected (see 6.3.4.2);

d) Transition 4: A detection of a Loss-of-Signal condition (see 6.2);

e) Transition 5: Two consecutive Transmission Words that are not Invalid Transmission Words are
detected (see 6.3.4.2);

f) Transition 6: Reset condition imposed on the receiver (see 6.3.5.4); and

g) Transition 7: Exiting of receiver reset condition (see 6.3.5.4).

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

95

6.3.2 Operational and not operational conditions

When the receiver is operational, it shall be in either the Loss of Synchronization state or in one of the
Word Synchronization Acquired states.

When the receiver is Not operational, it shall be in the Reset state.

Reset

Figure 39 - Receiver state diagram

Loss of
Synchronization

Word
Synchronization

Acquired

First Invalid
Transmission Word Detected

No Invalid
Transmission Word Detected

Second Invalid
Transmission Word Detected

Third Invalid
Transmission Word Detected

2

4

4

4

4

6

6

6

6

3

3

7

5

3 5

3 5

1

Power-on

6

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

96

6.3.3 Transmission Word Synchronization Procedure

The Transmission Word Synchronization procedure consists of first achieving Bit Synchronization (see
6.3.3.1), followed by achieving Transmission Word Synchronization (see 6.3.3.2).

6.3.3.1 Bit Synchronization

An operational receiver that is in the Loss of Synchronization state shall first acquire Bit Synchronization
before attempting to acquire Transmission Word Synchronization. Bit Synchronization is defined in
FC-PI-x. After achieving Bit Synchronization, the receiver shall remain in the Loss of Synchronization state
until it achieves Transmission Word Synchronization.

6.3.3.2 Transmission Word Synchronization detection

6.3.3.2.1 Introduction

The comma contained within the K28.5 special character is a singular bit pattern that in the absence of
transmission errors shall not appear in any other location of a Transmission Character and shall not be
generated across the boundaries of any two adjacent Transmission Characters. This bit pattern is
sufficient to identify the Transmission Word alignment of the received bit stream. Some implementations
(e.g., those that choose to implement the Transmission Word alignment function in Continuous-mode
alignment) may choose to align on the full K28.5 Ordered Set to decrease the likelihood of false alignment
when bit errors are present in the received bit stream.

Placement of a K28.5 Transmission Character at the left-most position of a received Transmission Word
ensures proper alignment of that Transmission Word and of subsequently received Transmission Words.
Ordered Set detection shall include both detection of the individual Transmission Characters that make up
an Ordered Set and proper alignment of those characters (i.e., the Special Character used to designate an
Ordered Set shall be aligned in the leading (left-most) character position of the received Transmission
Word).

6.3.3.2.2 Achieving Transmission Word Synchronization

A receiver that is in the Loss of Synchronization state and has acquired Bit Synchronization shall attempt
to acquire Transmission Word Synchronization. Transmission Word Synchronization is acquired by the
detection of three Ordered Sets containing commas in their left-most bit positions without an intervening
invalid Transmission Word, as specified in 6.3.4.2. The third detected Ordered Set shall change the state
from the Loss of Synchronization state to the No Invalid Transmission Word Detected state using transition
2. The third detected Ordered Set shall be considered valid information and shall be decoded and provided
by the receiver to its FC_Port. A receiver in any of the Word Synchronization Acquired states shall provide
information that has been received from its attached fibre and decoded.

The method used by the receiver to implement the Transmission Word alignment function and to detect
Ordered Sets is not defined by this standard.

6.3.3.2.3 8B/10B Transmission Word Synchronization for speed negotiation

If the link speed negotiation algorithm (see 8.6) is performed using 8B/10B, then the pass sync_test count
shall be 1 000.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

97

6.3.3.2.4 Transmission Word alignment methods

6.3.3.2.4.1 Continuous-mode alignment

Continuous-mode alignment allows the receiver to reestablish Transmission Word alignment at any point
in the incoming bit stream while the receiver is operational. Such realignment is likely (but not guaranteed)
to result in code violations and subsequent Loss-of-Synchronization. Under certain conditions, it may be
possible to realign an incoming bit stream without Loss-of-Synchronization. If such a realignment occurs
within a received frame, detection of the resulting error condition is dependent upon higher-level function
(e.g., invalid CRC, missing EOF Delimiter).

6.3.3.2.4.2 Explicit-mode alignment

Explicit-mode alignment allows the receiver to reestablish Transmission Word alignment under controlled
circumstances (e.g., while in the Loss of Synchronization State). Once synchronization has been acquired,
the Transmission Word alignment function of the receiver is disabled.

6.3.4 Loss of Transmission Word Synchronization

6.3.4.1 Introduction

Loss of Transmission Word Synchronization shall occur in the following conditions:

a) a Loss-of-Signal is detected when in any of the Word Synchronization Acquired states; or

b) an invalid Transmission Word is detected in the Third Invalid Transmission Word Detected state.

6.3.4.2 Detection of an invalid Transmission Word

In each of the Word Synchronization Acquired states each received Transmission Word is tested to
determine the validity of the Transmission Word.

An invalid Transmission Word shall be recognized by the receiver when one of the following conditions is
detected:

a) a code violation, as specified by the 8B/10B transmission code (see 5.2), is detected within a
Transmission Word. This is referred to as a code violation condition;

b) a K30.7 special character is detected in any character position of a Transmission Word. This
indicates an error condition has been detected at a lower implementation level within the receiver;

c) any valid special character is detected in the second, third, or fourth character position of a
Transmission Word. This is referred to as an invalid special code alignment condition; or

d) a defined Ordered Set (see clause 5) is received with improper beginning running disparity (e.g., a
SOF delimiter is received with positive beginning running disparity, an EOF delimiter specified for
positive beginning running disparity is received when beginning running disparity for that
Transmission Word is negative). This is referred to as an invalid beginning running disparity
condition.

6.3.5 State transitions

6.3.5.1 Default State

A receiver shall enter the Loss of Synchronization state on power-on (i.e., default).

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

98

6.3.5.2 Loss of Synchronization state

The Loss of Synchronization State shall be entered upon the following conditions:

a) completion of the Loss-of-Synchronization procedure while in the Third Invalid Transmission Word
Detected state using transition 3;

b) detection of Loss-of-Signal while in the No Invalid Transmission Word Detected state, the First
Invalid Transmission Word Detected state, the Second Invalid Transmission Word Detected state,
or the Third Invalid Transmission Word Detected state using transition 4; or

c) completion of the reset while in the Reset state using transition 7.

While in the Loss of Synchronization State, the receiver may attempt to reacquire Bit Synchronization. In
some instances, this may allow the receiver to regain Transmission Word Synchronization when it
otherwise would not be possible. However, initiation of bit re synchronization may also delay the
synchronization process by forcing the receiver to reestablish a clock reference when such
reestablishment is otherwise unnecessary (see FC-PI-x for a detailed discussion of Bit Synchronization).

When Transmission Word Synchronization is acquired the receiver shall enter the No Invalid Transmission
Word Detected state using transition 2. Imposing a reset condition upon the receiver shall cause any state
to transition to the Reset state using transition 6.

6.3.5.3 Word Synchronization Acquired states

6.3.5.3.1 Loss-of-Synchronization procedure

The following four states are defined as Word Synchronization Acquired states:

a) No Invalid Transmission Word Detected state;

b) First Invalid Transmission Word Detected state;

c) Second Invalid Transmission Word Detected state; or

d) Third Invalid Transmission Word Detected state.

NOTE 10 - The rationale for the Loss-of-Synchronization procedure is to reduce the likelihood that a
single error results in a Loss-of-Synchronization. A single two-bit error positioned to overlap two
Transmission Words could result in the detection of three invalid Transmission Words; the two
Transmission Words directly affected by the error and a subsequent Transmission Word that was affected
by a disparity change resulting from the error. The procedure described above would maintain
synchronization in such a case.

6.3.5.3.2 No Invalid Transmission Word Detected state

When the procedure is in the No Invalid Transmission Word Detected state, checking for an invalid
Transmission Word shall be performed. Any invalid Transmission Word shall cause the No Invalid
Transmission Word Detected state to transition to the First Invalid Transmission Word Detected state
(transition 3). A Loss-of-Signal condition shall cause the No Invalid Transmission Word Detected state to
transition to the Loss of Synchronization state (transition 4). A reset condition imposed upon the receiver
shall cause the No Invalid Transmission Word Detected state to transition to the Reset state (transition 6).

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

99

6.3.5.3.3 First Invalid Transmission Word Detected state

When the procedure is in the First Invalid Transmission Word Detected state, checking for an invalid
Transmission Word shall be performed. Any invalid Transmission Word shall cause the First Invalid
Transmission Word Detected state to transition to the Second Invalid Transmission Word Detected state
(transition 3). If two consecutive Transmission Words that are not Invalid Transmission Words are
received, the First Invalid Transmission Word Detected state shall transition to the No Invalid Transmission
Word Detected state (transition 5). A Loss-of-Signal condition shall cause the First Invalid Transmission
Word Detected state to transition to the Loss of Synchronization state (transition 4). A reset condition
imposed upon the receiver shall cause the First Invalid Transmission Word Detected state to transition to
the Reset state (transition 6).

6.3.5.3.4 Second Invalid Transmission Word Detected state

When the procedure is in the Second Invalid Transmission Word Detected state, checking for an invalid
Transmission Word shall be performed. Any invalid Transmission Word shall cause the Second Invalid
Transmission Word Detected state to transition to the Third Invalid Transmission Word Detected state
(transition 3). If two consecutive Transmission Words that are not Invalid Transmission Words are
received, the Second Invalid Transmission Word Detected state shall transition to the First Invalid
Transmission Word Detected state (transition 5). A Loss-of-Signal condition shall cause the Second Invalid
Transmission Word Detected state to transition to the Loss of Synchronization state (transition 4). A reset
condition imposed upon the receiver shall cause the Second Invalid Transmission Word Detected state to
transition to the Reset state (transition 6).

6.3.5.3.5 Third Invalid Transmission Word Detection state

When the procedure is in the Third Invalid Transmission Word Detected state, checking for an invalid
Transmission Word shall be performed. Any invalid Transmission Word shall cause the Third Invalid
Transmission Word Detected state to transition to the Loss of Synchronization state (transition 3). If two
consecutive Transmission Words that are not Invalid Transmission Words are received, the Third Invalid
Transmission Word Detected state shall transition to the Second Invalid Transmission Word Detected state
(transition 5). A Loss-of-Signal condition shall cause the Third Invalid Transmission Word Detected state to
transition to the Loss of Synchronization state (transition 4). A reset condition imposed upon the receiver
shall cause the Third Invalid Transmission Word Detected state to transition to the Reset state (transition
6).

6.3.5.4 Reset state

When a receiver reset condition is imposed on a receiver, either internally or externally, the receiver shall
enter the Reset state (transition 6). Once the Reset state is entered, the receiver shall become not
operational and shall remain in the Reset state until it is subsequently made operational by exiting the
receiver reset condition.

NOTE 11 - A typical use of receiver reset is to force a receiver in the Loss of Synchronization State to
attempt reacquisition of Bit Synchronization. Entry into this state does not necessarily indicate loss of Bit
Synchronization.

When the receiver is operational after exiting from a receiver reset condition imposed upon it, either
externally or internally, the receiver shall enter the Loss of Synchronization state.

NOTE 12 - The conditions required for a receiver in the Reset state to exit that state are not defined by
this standard. Such conditions may be based on explicit indications. They may also be time-dependent in
nature.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

100

6.4 64B/66B Transmission Word Synchronization

6.4.1 Overview

64B/66B Transmission Word Synchronization state shall be maintained as specified by the Lock state
machine and the BER monitor state machine of the Physical Coding Sublayer (PCS) for 64B/66B, type
10GBASE-R (see subclause 49.2.13 of IEEE 802.3-2012):

a) if the block_lock flag of the Lock state machine is TRUE, the hi_ber flag of the BER monitor state
machine is FALSE, and the receiver is not indicating Loss-of-Signal, the receiver Transmission
Word Synchronization state shall be Word Synchronization Acquired; and

b) if the block_lock flag of the Lock state machine is FALSE, the hi_ber flag of the BER monitor state
machine is TRUE, or the receiver is indicating Loss-of-Signal, the receiver Transmission Word
Synchronization state shall be Loss of Synchronization.

If a receiver is decoding 64B/66B that has been further encoded with FEC (see 5.3.1 and 9.3.7.2.1), loss of
FEC block synchronization (see subclause 74.10 of IEEE 802.3-2012) is indicated by the value of the
fec_signal_ok variable of the FEC block synchronization state machine. A value of FALSE for the
fec_signal_ok variable of the FEC block synchronization state machine shall be treated as a
Loss-of-Signal indication by the receiver.

The Lock state machine relies on the property of the 64B/66B Transmission code that a bit value transition
is always encoded between the two least significant bits of a Transmission Word, and because of
scrambling is unlikely to occur consistently at any other 66-bit period in the encoded bit stream.

Other than loss of Bit Synchronization, signal conditions (e.g., code violation detection) detected between
expected synchronization headers do not affect the receiver Transmission Word Synchronization state
during use of the 64B/66B transmission code.

6.4.2 64B/66B Transmission Word Synchronization for speed negotiation

If the link speed negotiation algorithm (see 8.6) is performed using 64B/66B, then the pass sync_test count
shall be 1 000.

6.4.3 Detection of an invalid 64B/66B Transmission Word

An invalid 64B/66B Transmission Word shall be recognized by the receiver:

a) if both bits in the Synchronization Header have the same value, then the Transmission Word shall
cause a code violation (i.e., Invalid Synchronization Header, see 5.3.4) to be reported;

b) if a Transmission Word type is decoded that is restricted in table 10, then the Transmission Word
shall cause a code violation (i.e., Restricted Transmission Word type, see 5.3.6) to be reported;

c) if a control code value other than Idle or LPI (i.e., if the FC_Port supports Energy Efficient Fibre
Channel), is decoded, then the Transmission Word shall cause a code violation (i.e., Restricted
Control Code, see 5.3.6) to be reported;

d) if a restricted order code value is decoded, the Special Function shall cause a code violation (i.e.,
Restricted Order Code, see 5.3.6) to be reported;

e) an Idle followed by SOF Transmission Word shall cause a code violation (i.e., Idle followed by
SOF error, see 5.3.6.2) to be reported if the Transmission Word received prior to receiving an Idle
followed by SOF Transmission Word:

A) was a data Transmission Word;

B) was any Transmission Word containing an SOF; or

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

101

C) caused a coding violation to be reported;

f) an EOF followed by Idle or LPI Transmission Word shall cause a code violation (i.e., EOF followed
by Idle or LPI error, see 5.3.6.3) to be reported if the Transmission Word received following
receiving an EOF followed by Idle or LPI Transmission Word:

A) is a data Transmission Word;

B) is any Transmission Word containing an EOF; or

C) causes a coding violation to be reported;

g) an Other Special Function/SOF Transmission Word shall cause a code violation (i.e., Other
Special Function / SOF error, see 5.3.6.7) to be reported if the Transmission Word received prior to
receiving an Other Special Function/SOF Transmission Word:

A) was a data Transmission Word;

B) was any Transmission Word containing an SOF; or

C) caused a coding violation to be reported;

h) a SOF/data Transmission Word shall cause a code violation (i.e., SOF/data error, see 5.3.6.8) to
be reported if the Transmission Word received prior to receiving an SOF/data Transmission Word:

A) was a data Transmission Word;

B) was any Transmission Word containing an SOF; or

C) caused a coding violation to be reported;

i) a data/EOF Transmission Word shall cause a code violation (i.e., data/EOF error, see 5.3.6.9) if
the Transmission Word received following receiving a data/EOF Transmission Word:

A) is a data Transmission Word;

B) is any transmission word containing an EOF; or

C) causes a coding violation to be reported.,

j) if an Error Transmission Word is received, then a code violation (i.e., receiver detected error, see
5.3.6.10) shall be reported;

k) an RX_E transition error shall be reported if a transition from the:

A) RX_INIT state to the RX_E state;

B) RX_C state to the RX_E state;, or

C) RX_D state to the RX_E state occurs (see IEEE Std 802.3-2012, figure 49-17).

6.5 Transmitter Training Signal Transmission Word Synchronization

6.5.1 Introduction

Transmitter Training Signal Transmission Word Synchronization state shall be maintained as specified by
the Frame lock state machine of the Physical Medium Dependent Sublayer and Baseband Medium, Type
10GBASE-KR (see subclause 72.6.10.4.1 of IEEE 802.3-2012), except that the condition for entry to the
state machine is that the FC_Port initiates use of the Transmitter Training Signal. The training variable of
the 10GBASE-KR Frame lock state machine shall be ignored:

a) if the frame_lock variable of the 10GBASE-KR Frame lock state machine is set to one and the
receiver is not indicating Loss-of-Signal, the receiver Transmission Word Synchronization state
shall be Word Synchronization Acquired; and

b) if the frame_lock variable of the 10GBASE-KR Frame lock state machine is set to zero or the
receiver is indicating Loss-of-Signal, the receiver Transmission Word Synchronization state shall
be Loss of Synchronization.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

102

Transmitter Training Signal Transmission Word Synchronization relies on the properties of the Transmitter
Training Signal that each Transmission Word begins with a 32 TUI frame marker pattern that appears
nowhere else in any Transmission Word.

Other than an indication of Loss-of-Signal, the signal between expected frame markers shall not affect
Transmitter Training Signal Transmission Word Synchronization state.

In the case of a DME coding violation, the Transmitter Training packet shall be ignored. See IEEE
802.3-2012 for definition of DME code violation.

6.5.2 Transmitter Training Transmission Word Synchronization for speed negotiation

If the link speed negotiation algorithm (see 8.6) is performed using Transmitter Training Signal, then the
pass sync_test count shall be 300.

6.6 256B/257B Transmission Word Synchronization

6.6.1 Overview

Transmission Word Synchronization is performed on the stream of 64B/66B Transmission Words as
follows:

1) given a candidate starting bit position for an RS-FEC code word, descramble the Transmission
Word and compute the syndrome and if the syndrome is:
a) not zero, then choose the next candidate starting bit position and return to step 1; and
b) zero, then set good transmission words count to 1 and go to step 2;

2) descramble the next Transmission Word received, starting at the candidate bit position, and
attempt to correct it and if the Transmission Word:
a) contains errors but is not corrected, then choose the next candidate starting bit position and

return to step 1; and
b) is error-free or corrected, then:

i) increment the good transmission words count;
ii) If the good transmission words count is less than 2, then go step 2; and
iii) If the good transmission words count is not less than 2, then set codeword_sync to true,
set bad transmission words count to 0, and go to step 3;

and
3) while codeword_sync is true, descramble and attempt to correct next received code word, and if

the Transmission Word:
a) is error-free or corrected, then set bad transmission words count to 0 and return to step 3;
b) contains errors but is not corrected, then:

i) increment the bad transmission words count;
ii) if the bad transmission words count is less than 3, then return to step 3;
iii) if the bad transmission words count is not less than 3, then set codeword_sync to false
and return to step 1.

6.6.2 RS-FEC rapid code Word Synchronization process

The RS-FEC rapid code Word Synchronization process identifies the starting bit position of an RS-FEC
code word and provides it to the Transmission Word Synchronization process to greatly reduce the time to
achieve lock. It performs this function by searching for either of two known patterns that are sent by the
transmitter when scr_bypass is set to TRUE (i.e., one pattern includes Idle control codes while the other
includes LPI control codes).

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

103

Upon a transition from rx_mode=QUIET to rx_mode=DATA, the receiver suspends the Transmission Word
Synchronization process and starts a timer whose duration is Trs. During this time, the RS-FEC rapid code
Word Synchronization process attempts to identify either of the known patterns in the received bits.

When a known pattern is found, the corresponding starting bit position for the RS-FEC Codeword is
passed to the Transmission word synchronization process which is then released and resumes normal
operation.

If the timer expires before the known pattern is found, then the Transmission Word Synchronization
resumes normal operation.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

104

7 FC_Port state machine

7.1 Scope

The FC_Port state machine is a function of the FC-2P sublevel.

7.2 Introduction

An FC_Port shall conform to the FC_Port state machine that is composed of up to three partial state
machines:

a) optional speed negotiation - An FC_Port in this partial state machine cycles through the speeds it
supports until it has selected the highest speed supported by its connected FC_Port and the link
that connects them (see clause 8). This partial state machine does not require that the FC_Port
and its connected FC_Port have previously negotiated its use (i.e., the connected FC_Port may
have a fixed speed or the connected FC_Port may also implement this partial state machine
cycling through the speeds it supports);

b) optional transmitter training - An FC_Port in this state machine attempts to negotiate use of
forward error correction and optimize transmitter equalizer coefficients with its connected FC_Port
(see clause 9). This partial state machine requires that the FC_Port and its connected FC_Port
have previously negotiated its use; and

c) mandatory normal operation (see 7.3).

If an FC-0 variant using the Transmitter Training Signal was either configured by administrative action or
selected by the speed negotiation state machine, then the transmitter training partial state machine shall
be performed. Otherwise, optional partial state machines are present or absent based on the requirements
of other standards. Each partial state machine shall operate as specified in this standard. The FC_Port
state machine shall be specified by the partial state machine transitions as specified by figure 40 and by
the partial state machines. The Restart Link state is entered by failure of another partial state machine or
by an event that is out of scope of this standard (e.g., power-on or administrative request).

Before starting transmitter training the FC_Port shall transmit a Transmitter Training Signal with the SN bit
set to zero, and shall have received a Transmitter Training Signal with the SN bit set to zero.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

105

7.3 Normal operation states

In normal operation, an FC_Port has successfully concluded any speed negotiation and transmitter
training that it supports, and may be capable of transmitting and receiving Fibre Channel frames. In normal
operation, port state is maintained by a protocol that includes four Primitive Sequences:

a) the NOS Primitive Sequence is transmitted to indicate that the FC_Port transmitting the NOS has
detected a Link Failure condition or is Offline, waiting for OLS to be received;

b) the OLS Primitive Sequence is transmitted to indicate that the FC_Port transmitting the Primitive
Sequence is:

A) initiating the Link Initialization Protocol;

B) receiving and recognizing NOS; or

Figure 40 - FC_Port partial state machine transitions

Maintain link state and
communicate Fibre Chan-
nel frames (see 7.3)

normal operation

Determine optimal trans-
mitter equalization (see
clause 9)

transmitter training

Determine optimum speed
for the link (see clause 8)

speed negotiation

Set all login parameters
to initialize values.

restart link

speed
negotiation
supported?

Y

N

speed
negotiation
successful?

N

Y

Transmitter
Training Signal
configured or
negotiated?

Y

N

transmitter
training

successful?
N

Y

out of scope event

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

106

C) entering the Offline State;

c) the LR Primitive Sequence is transmitted by an FC_Port to initiate the Link Reset Protocol or to
recover from a Link Timeout (see 22.5.2); and

d) the LRR Primitive Sequence is transmitted by an FC_Port to indicate that it is receiving and
recognizes the LR Primitive Sequence.

Normal operation for an FC_Port that is not operating a loop port state machine shall conform to table 19.
For conditions not explicitly listed to cause state changes to occur, the FC_Port shall remain in the current
state. See FC-AL-2 for normal operation of devices that support a loop port state machine.

Table 19 - FC_Port states

Current State

Active Link Recovery Link Failure Offline

AC
(see
7.4)

LR1
(see
7.5.2)

LR2
(see
7.5.3)

LR3
(see
7.5.4)

LF1
(see
7.6.1)

LF2
(see
7.6.2)

OL1
(see
7.7.2)

OL2
(see
7.7.3)

OL3
(see
7.7.4)

Primitive
Sequence
transmitted
while in state

Fill

Word g
LR LRR Idle OLS NOS OLS LR NOS

Input Event: Next State:

L >> LR LR2 LR2 LR2 LR2 LR2 LF2 LR2 b LR2 LF2

L >> LRR LR3 c LR3 LR3 LR3 LF1 LF2 OL1 LR3 LF2

L >> Idles AC LR1 AC AC LF1 LF2 OL1 OL2 OL3

L >> OLS OL2 OL2 OL2 OL2 OL2 OL2 OL2 b OL2 OL2

Key: L >> means receiving from the Link
N/A means not applicable

a Depending on Laser safety requirements, the transmitter may enter a “pulse” transmission mode of
operation when Loss-of-Signal is detected.

b All events are ignored until the FC_Port determines it is time to leave the OL1 state.
c A Primitive Sequence Protocol error is detected (An improper Primitive Sequence was received in this

State). The Primitive Sequence Protocol error count in the LESB is incremented.
d The time-out period starts timing when NOS is no longer recognized and continues while none of the

other events occur that cause a transition out of the state.
e The time-out period starts timing when OLS is no longer recognized and continues while none of the

other events occur that cause a transition out of the state.
f The time-out period starts timing when the FC_Port is attempting to go online transmits OLS, and

continues while none of the other events occur that cause a transition out of state.
g On entry to the Active State, an FC_Port shall transmit a minimum of 6 IDLES before transmitting

other Transmission Words.
h An FC_Port that supports either speed negotiation or transmitter training shall instead perform actions

specified for entry into state LF2 (see 7.6.2) and leave normal operation (see figure 40).

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

107

7.4 Active State (AC)

An FC_Port shall enter the Active State when it completes the Link Initialization Protocol (see 7.8.2) or the
Link Reset Protocol (see 7.8.3). Upon entry to the Active state an FC_Port shall transmit a minimum of 6
IDLE Primitive Signals before transmitting any other Primitive Signals and frames. After transmitting a
minimum of 6 IDLE Primitives, the FC_Port may transmit other Primitive Signals and frames.

When an FC_Port is in the Active State, it is able to transmit and receive frames and Primitive Signals.
When a Primitive Sequence (see 5.2.7.5 and 5.3.7.3) is received, the FC_Port shall exit the Active State as
defined in table 19. If any frame or Primitive Signal (see 5.2.7.3 and 5.3.7.2) is received and recognized,
the FC_Port shall remain in the Active State.

The Active state shall transition to other states to perform Primitive Sequence Protocols in conditions
indicated by reference from table 20:

L > > NOS LF1 LF1 LF1 LF1 LF1 LF1 LF1 b LF1 LF1

Loss-of-Signal LF2 LF2 LF2 LF2 LF2 LF2 a OL3 b OL3 a OL3

Loss of Sync
>(R_T_TOV) LF2 h LF2 h LF2 h LF2 h LF2 h LF2 h OL3 b h OL3 h OL3 h

Event time-out
(R_T_TOV)

N/A LF2 LF2 LF2 LF2 d N/A OL3 b f OL3 e N/A

Link time-out
(E_D_TOV)

LR1 LR1 LR1 LR1 LR1 LR1 LR1 LR1 LR1

Table 19 - FC_Port states

Current State

Active Link Recovery Link Failure Offline

AC
(see
7.4)

LR1
(see
7.5.2)

LR2
(see
7.5.3)

LR3
(see
7.5.4)

LF1
(see
7.6.1)

LF2
(see
7.6.2)

OL1
(see
7.7.2)

OL2
(see
7.7.3)

OL3
(see
7.7.4)

Key: L >> means receiving from the Link
N/A means not applicable

a Depending on Laser safety requirements, the transmitter may enter a “pulse” transmission mode of
operation when Loss-of-Signal is detected.

b All events are ignored until the FC_Port determines it is time to leave the OL1 state.
c A Primitive Sequence Protocol error is detected (An improper Primitive Sequence was received in this

State). The Primitive Sequence Protocol error count in the LESB is incremented.
d The time-out period starts timing when NOS is no longer recognized and continues while none of the

other events occur that cause a transition out of the state.
e The time-out period starts timing when OLS is no longer recognized and continues while none of the

other events occur that cause a transition out of the state.
f The time-out period starts timing when the FC_Port is attempting to go online transmits OLS, and

continues while none of the other events occur that cause a transition out of state.
g On entry to the Active State, an FC_Port shall transmit a minimum of 6 IDLES before transmitting

other Transmission Words.
h An FC_Port that supports either speed negotiation or transmitter training shall instead perform actions

specified for entry into state LF2 (see 7.6.2) and leave normal operation (see figure 40).

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

108

An FC_Port may also transition from Active State on the reception of an LPI (see 10).

7.5 Link Recovery

7.5.1 Link Recovery hierarchy

The Link Recovery hierarchy is shown in figure 78.

7.5.2 LR Transmit State (LR1)

An FC_Port shall enter the LR1 State to initiate the Link Reset Protocol. While in the LR1 State, the
FC_Port shall transmit the LR Primitive Sequence. When a Primitive Sequence is received, the FC_Port
shall respond as defined in table 19.

Within the FC_Port, the BB_Credit_CNT value shall be set to zero. An Fx_Port shall process or discard
any Class 2 or Class 3 frames currently held in the receive buffer associated with the outbound fibre of the
attached FC_Port. The Class 2 EE_Credit value shall not be affected.

7.5.3 LR Receive State (LR2)

An FC_Port shall enter the LR2 State when it receives and recognizes the LR Primitive Sequence while it
is not in the OL3 or LF2 State. While in the LR2 State, the FC_Port shall transmit the LRR Primitive
Sequence. When a Primitive Sequence is received, the FC_Port shall respond as defined in table 19.

An FC_Port that receives and recognizes the Link Reset Primitive Sequence shall process or discard
frames currently held in its receive buffers. Within the FC_Port, the BB_Credit_CNT value shall be set to
zero.

7.5.4 LRR Receive State (LR3)

An FC_Port shall enter the LR3 State when it receives and recognizes the LRR Primitive Sequence while it
is in the Active State, LR1 State, LR2 State, or OL2 State. While in the LR3 State, the FC_Port shall
transmit Idles. When a Primitive Sequence is received, the FC_Port shall respond as defined in table 19.

Table 20 - Transitions from the Active State

Primitive Sequence Protocol
Transition to

State

Reference for
transition
conditions

Link Initialization OL1 7.8.2

Link Reset LR1 7.8.3

Link Failure LF2 7.8.4

Online-to-Offline OL1 7.8.5

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

109

7.6 Link Failure

7.6.1 NOS Receive State (LF1)

An FC_Port shall enter the LF1 State when it receives and recognizes the NOS Primitive Sequence. Upon
entry into the LF1 State, the FC_Port shall update the appropriate error counter in the Link Error Status
Block (see 22.4.8). Only one error per Link Failure event shall be recorded. When a Primitive Sequence is
received, the FC_Port shall respond as defined in table 19.

7.6.2 NOS Transmit State (LF2)

An FC_Port shall enter the LF2 State when a Link Failure condition is detected. Upon entry into the LF2
State, the FC_Port shall update the appropriate error counter in the Link Error Status Block (see 22.4.8).
Only one error per Link Failure event shall be recorded. The FC_Port shall remain in the LF2 State while
the condition that caused the Link Failure exists. While in the LF2 State, the FC_Port shall transmit the
NOS Primitive Sequence.

When the Link Failure condition is no longer detected, the FC_Port shall respond to Primitive Sequences
received as defined in table 19.

NOS transmission by a PN_Port shall be received and recognized by the locally attached Fx_Port, but not
transmitted through the Fabric. The Fx_Port shall respond by entering the LF1 State.

7.7 Offline

7.7.1 General

While Offline, an FC_Port shall not record receiver errors (e.g., Loss-of-Synchronization). NOS Reception
or Link Failure conditions that are detected shall not be recorded as Link Failure events in the Link Error
Status Block (see 22.4.8).

7.7.2 OLS Transmit State (OL1)

An FC_Port shall enter the OL1 State in order to:

a) perform the Link Initialization Protocol (see 7.8.2) in order to exit the Offline State; or

b) transition from Online-to-Offline using the Online-to-Offline Protocol (see 7.8.5).

When the FC_Port enters the OL1 State, it shall transmit OLS for a minimum time of 5 ms while ignoring
any received data. After that period of time has elapsed, the FC_Port shall respond as defined table 19
when a Primitive Sequence is received.

NOTE 13 - The timeout value of 5 ms allows a Port to enter the Offline State in the absence of an
appropriate response from the attached Port.

While an FC_Port is attempting to go Online, if no Primitive Sequence is received or event detected that
causes the FC_Port to exit the OL1 State after R_T_TOV, the FC_Port shall enter the OL3 State.

OLS transmission by a PN_Port shall be received and recognized by the locally attached Fx_Port, but not
transmitted through the Fabric. The Fx_Port shall respond by entering the OL2 State.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

110

7.7.3 OLS Receive State (OL2)

An FC_Port shall enter the OL2 State when it receives and recognizes the OLS Primitive Sequence. When
a Primitive Sequence is received, the FC_Port shall respond as defined in table 19. Detection of
Loss-of-Signal or Loss-of-Synchronization shall not be counted as a Link Failure event in the Link Error
Status Block.

7.7.4 Wait for OLS State (OL3)

An FC_Port shall enter the OL3 State when it detects Loss-of-Signal or Loss-of-Synchronization for more
than a timeout period (R_T_TOV) while it is in the OLS Receive or Transmit State at an appropriate time
during the Link Initialization Protocol (see 7.8.2).

Upon entry into the OL3 State, the FC_Port shall transmit the NOS Primitive Sequence. When a Primitive
Sequence is received, the FC_Port shall respond as defined in table 19.

7.8 Primitive Sequence Protocols

7.8.1 Functions

Primitive Sequence Protocols provide two basic functions. The first function is to notify the other end of the
link that a specific type of link error has occurred. The second function is to reset the link to a known state
at both ends.

7.8.2 Link Initialization Protocol

The Link Initialization Protocol shall be performed by an LCF after one of the following events has
occurred:

a) powered-on;

b) internal reset (the definition of internal reset is beyond the scope of this standard); or

c) has been offline and desires to come back online.

The LCFs involved may be a PN_Port and PF_Port or two PN_Ports.

The Link Initialization Protocol begins when the LCF enters the OL1 State after one of the above events
has been detected and is complete when the LCF enters the Active State.

The Link Initialization Protocol results in implicit Fabric Logout (see FC-LS-3).

7.8.3 Link Reset Protocol

The Link Reset Protocol shall be performed when any of the following conditions are detected:

a) link timeout (see 22.5.2); or

b) buffer-to-buffer overrun (i.e., an FC_Port receives a frame subject to buffer-to-buffer flow control
without a buffer available).

The Link Reset Protocol begins when the FC_Port enters the LR1 State after one of the above events has
been detected and is complete when the FC_Port enters the Active State.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

111

7.8.4 Link Failure Protocol

The Link Failure Protocol shall be performed after an FC_Port has detected one of the following
conditions:

a) a Loss-of-Synchronization for a period of time greater than R_T_TOV;

b) Loss-of-Signal while not in the Offline State; or

c) Link Reset Protocol timeout error is detected (see 7.8.3).

The Link Failure Protocol begins when the FC_Port enters the LF2 State after one of the above events has
been detected and is complete when the Active State is entered.

7.8.5 Online-to-offline Protocol

The FC_Port shall perform the Online-to-offline Protocol to enter the Offline State from the Active State.
This protocol should be performed in order to power-down and shall be performed in order to perform
diagnostics (diagnostic requirements are beyond the scope of this standard). This Protocol provides an
FC_Port with a graceful indication prior to Loss-of-Signal. This avoids logging an error event for a normal
system function. The Online-to-offline Protocol shall start when the FC_Port enters the OL1 State.

After transmitting OLS for the time specified in 7.7.2, the FC_Port shall be Offline and may do any of the
following:

a) perform diagnostic procedures;

b) turn off its transmitter;

c) transmit any signal (excluding Primitive Sequences other than OLS) without errors being detected
by the attached FC_Port;

d) power-down; or

e) start the Link Initialization Protocol.

NOTE 14 - After entering the OL1 State and transmitting OLS for a minimum of 5 ms, the FC_Port may
then transmit any Transmission Word other than LR, LRR, NOS, or LIP without causing the remote
FC_Port to leave the OL2 State.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

112

8 Link speed negotiation

8.1 Scope

Link speed negotiation is a function of the FC-2P sublevel.

8.2 Speed negotiation overview

The optional speed negotiation method may be used to enable ports that are capable of multiple data
transfer rates to establish in-band communications on a link (all port types). The term “speed” as used in
this clause refers to the bit transfer rate. This method finds the highest speed common to the ports and to
the infrastructure connecting the ports. Each port may support up to a maximum of 4 speeds in the
negotiation process. The exact speeds are not specified. Different ports may negotiate with different speed
ranges up to a maximum of 4 speeds each and speed negotiation shall converge provided there is at least
one common speed. The link quality for speed negotiation purposes is error free Transmission Word
Synchronization for a minimum number of Transmission Words specified in clause 6 as the pass sync_test
count for the transmission code being used.

Because the link quality requirements for speed negotiation are not as stringent as for other operations it is
possible to complete speed negotiation yet have an excessive error rate in other operations. Determination
of excessive error rate outside of speed negotiation may be as specified for transmitter training (see 9.2) or
by vendor specific methods. The response to a determination of excessive error rate in transmitter training
is to re-enter speed negotiation, having eliminated the faulty speed from negotiation. The response to a
vendor specific determination of excessive error rate may also be to re-enter speed negotiation, having
eliminated the faulty speed from negotiation. A speed, having been eliminated, is restored to subsequent
speed negotiation upon vendor specific determination that the reliability of the link at that speed may have
improved (e.g., detection of physical disconnect and reconnect of the link, or an administrative action out of
scope of this standard).

Transceivers may be able to transmit and detect error free bit streams even though they and other link
elements were not designed or specified for operation at the speed being used. This condition may allow
links to achieve Transmission Word Synchronization and satisfactory error rates but with degraded margin.
It is up to the implementer to ensure that the elements of the physical plant are designed to comply with the
requirements specified for operation at the set speed.

Once a particular speed has been established, speed negotiation is not attempted again unless a Signal
Failure is detected. Speed negotiation may disrupt communication in excess of a second. An FC_Port
capable of the speed negotiation procedure shall initiate Speed negotiation upon power on or Signal
Failure. For this purpose, Signal Failure shall be presumed to pertain only in the following circumstances:

a) the port receiver circuit has indicated Loss of Signal;

b) the port receiver has remained in "Loss of Synchronization" state for a time in excess of R_T_TOV;
or

c) the port transceiver has been reset by means other than power on.

An FC_Port should not initiate speed negotiation for other reasons.

8.3 Link physical architecture and requirements

The physical architecture of the link is assumed to be as shown in figure 41.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

113

There are several points derived from this physical architecture that bear on the speed negotiation
algorithm:

a) only point-to-point links are supported;

b) loop configurations that negotiate speeds shall present a single port to the other negotiating port
for speed negotiation purposes;

c) the speed negotiation algorithm is specified for only one port at a time (i.e., when port “A” is
involved, the term transmitter applies only to the transmitter in port “A” and the term receiver
applies only to the receiver in port “A”). The algorithm may be executing on both ports at the same
time;

d) no requirements are explicitly placed by the algorithm on the means for controlling the transceiver
speed capabilities. However:

A) ports implementing this algorithm shall not attain Transmission Word Synchronization unless
the incoming signal is within 10% of the receive rate set by the port implementing the
algorithm;

B) the transmitter shall have a Transmitter Stabilization Time for each speed it negotiates (see
8.6.7);

C) the receiver shall have a Receiver Stabilization Time for each speed it negotiates (see 8.6.7);
and

D) if the sum of the Receiver Stabilization Time plus one fifth of the Transmitter Stabilization Time
exceeds 28 ms for a speed (see 8.6.7), speed negotiation shall not be conducted for that
speed;

e) a stable physical environment (fully mated connectors, no power cycles, no cable flexing, no
transient noise sources, etc.) is expected during speed negotiation. Otherwise, speed negotiation
may settle to a sub-optimum speed. The algorithm is capable of handling the normal connection
start up transients caused by the connector insertion process (e.g., such transients include contact
bounce and partial optical coupling). Sub-optimal speed may result if the connection start up
transient conditions persist for more than a few milliseconds. Sub-optimal speed may also result if
connectors between devices in the process of negotiating are demated and then remated within
three seconds;

f) the transmitter and receiver shall be capable of working at different speeds at the same time
during speed negotiation;

g) the algorithm supports ports capable of up to a maximum of any 4 speeds; and

Figure 41 - Physical architecture of the speed negotiating link

Duplex Port
Connector

Port
A

Port
B

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

114

h) if an L_Port configured for speed negotiation is attached to a loop, the L_Port either:

A) is being attached to a port in the loop that presents a single speed and does not perform
speed negotiation; or

B) is being attached to a port in the loop that completes the speed negotiation algorithm
described here before inserting the L_Port into the loop.

8.4 Speed negotiation requirements on L_Ports

Removal of an L_Port from a loop shall not cause speed negotiation to occur on the remaining loop. This
requirement applies even if the removal of the L_Port allows negotiation of a higher common speed.

As an option to negotiating each hub port per the algorithm, multiple speed hubs may be set to a single
speed during speed negotiation by some out-of-band means.

8.5 Primitives

8.5.1 Overview

For FC_Ports that do not support the Transmitter Training Signal, either OLS or NOS (for ports not
operating in Arbitrated Loop topology) or LIP (for ports operating in Arbitrated Loop topology) shall be the
only signals transmitted during speed negotiation.

For FC_Ports that support the Transmitter Training Signal:

a) if the FC_Port is transmitting using media and speeds that support the Transmitter Training Signal
(see FC-PI-x), then the Transmitter Training Signal shall be transmitted during speed negotiation;

b) if the Transmitter Training Signal (see 5.5.2) is transmitted during speed negotiation, then the SN
field in the Training Status field shall be set to one;

c) if the FC_Port is transmitting using media and speeds that do not support the Transmitter Training
Signal, then either OLS or NOS (for ports not operating in Arbitrated Loop topology) or LIP (for
ports operating in Arbitrated Loop topology) shall be transmitted using the required frame transfer
transmission code (see FC-PI-x) during speed negotiation;

d) if the FC_Port is receiving on media at speeds that support the Transmitter Training Signal, then
Transmitter Training Signal Transmission Word Synchronization shall be attempted during speed
negotiation;

e) if the Transmitter Training Signal is received during speed negotiation, then the settings of fields in
the Training Control field and the Training Status field shall be ignored; and

f) if the FC_Port is receiving on media at speeds that do not support the Transmitter Training Signal,
then Transmission Word Synchronization for the required frame transfer transmission code shall
be attempted during speed negotiation.

If a PN_Port negotiates among multiple physical variants that use different transmission codes, the
transmission code changes (e.g., from Transmitter Training Signal to 8B/10B and back) during speed
negotiation, and the transmitter uses a different transmission code than the receiver at some times.

8.5.2 32GFC speed negotiation

For 32GFC the Transmitter Training Signal is used for speed negotiation. For copper links, transmitter
training is performed if requested. For optical links transmitter training shall not be used. Bit 10 in the
Control field of the Training Frame shall be set to zero during speed negotiation.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

115

8.5.3 128GFC speed negotiation

For 128GFC links speed negotiation shall be performed independently on all lanes. A link that supports
128GFC operation shall set bit 10 in the Control field of the Training Frame (see table 16) on every lane to
one if it desires to come up as a 128GFC link. The state machine transitions for speed negotiation on a
128GFC link are as shown in figure 42.

Figure 42 - 128GFC speed negotiation state machine

Restart link

Set all login
parameters to

initialize
values

Initiate speed
negotiation/
transmitter

training on all
lanes

Link Failure

Out of
scope
event

Are all lanes
32GFC

capable and
received
bit10=1?

Individual
links

allowed?

Normal
operation

individual links
(see 7.2)

Maintain link state
and communicate
FC frames on links

with received
bit10=0

Are all
links

down?

Initiate speed
negotiation/
transmitter

 training on links
with event

Start link
initialization as
128GFC link

Link
initialization
successful?

Normal
operation

128GFC link

Maintain link state
and communicate

FC frames

Out of
scope
event

Out of scope event

Link
Failure

Out of scope event

N

N N

N

Y

YY

Y

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

116

The ‘Out of scope event’ in the state diagram occurs if any of the following conditions are true on a
128GFC link:

a) Loss-of-Signal; or

b) Loss-of-Synchronization.

If parallel lanes are supported as indicated by receiving Training Frame Control field bit 10 set to one on all
lanes and all the lanes negotiate to a speed of 32GFC, then the link may be able to operate at 128GFC. If
link initialization is successful, then the link shall enter normal operation as a 128GFC link. If link
initialization is unsuccessful as a 128GFC link, then the link transitions to the Link Failure State and
transitions to the Restart Link state if an out of scope event occurs.

If any of the lanes do not support 32GFC or parallel lanes are not supported as indicated by receiving
Training Frame Control field bit 10 set to 0 on any lane, then 128GFC is not supported and the lanes may
operate as individual links at the highest negotiated speed. A link that supports 128GFC operation may
support individual links of 16GFC and 32GFC. Support for individual 32GFC links is allowed only if the
value of bit 10 in the Training Frame Control field received is zero during speed negotiation.

If a lane is operating as an individual link and it becomes inoperable due to an out of scope event, and all
four lanes are in the link failure state, then the state machine transitions to the Restart Link state and speed
negotiation is performed as a 128GFC link. If all four lanes are not in the link failure state, then speed
negotiation is performed only on the failed link.

8.6 Speed negotiation algorithm

8.6.1 Algorithm overview

Figure 43 shows an overview of the speed negotiation algorithm. Dashed lines indicate optional features.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

117

Figure 43 - Overview of the speed negotiation algorithm stages

Wait_for_signal:
Tx cycles speeds at a rate to allow other Rx
to sync. Rx cycles speeds looking for a sig-
nal from other Tx.

Negotiate_master:
Tx starts at max and cycles speeds down.
Dwell at each speed to allow other devices to
follow. Done if pass sync_test and
a) RX = TX at end of dwell (won master);
b) RX > TX (relinquish master); or
c) RX = TX_MAX (relinquish master).
If required, attempted speeds adapt to
incoming speeds.

Negotiate_follow:
TX = RX. Tests stability of Rx speed to con-
firm successful negotiation, or follows
speeds from other master. If a timeout
expires (unstable or missing signal), return to
Wait_for_signal or Slow_wait (optional). If
signal is stable, go to Normal_operation.

RX signal detected

Won or relinquished Master role

RX signal is stable

From FC_Port State Machine

M

M

slow_wait
configured?

RX Signal lost
or not stable

RX Signal lost
or not stable

No

yes

Slow_wait
(optional)
Tx cycles speeds at
a rate to allow other
Rx to sync. Rx cycles
speeds looking for
signal from the other
Tx. Rx cycling rate
alternates between
slow and normal.
Intended to reduce
processing time poll-
ing for return of
devices which have Successful exit to FC_Port State Machine

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

118

8.6.2 Speed Negotiation stage specification conventions

8.6.2.1 Diagramming conventions

A stage is a period of time during which a PN_Port conducting Speed Negotiation performs a repeating
series of activities in order to determine some major condition of the link to which it is attached (see figure
43). Each stage is specified by a stage diagram and its associated text.

For the stage diagrams of 8.6, the following concepts and diagramming symbols (see figure 44) are used:

a) a state is a specific activity within a specific stage. Depending on the type of state, different
symbols are used. For reference from text, the symbol for each state has a numeric identifier in
one corner;

b) a path specifies that a state may be followed by a successor state. The symbol for a path is a line
with an arrowhead directed from the state to the successor state;

c) an action state sets variables and conditions that control subsequent action or capture the results
of prior action. The symbol for an action state is a rounded rectangle shape;

d) a decision state has more than one successor among which it selects by the result of a test. The
symbol for a decision state is a diamond shape, each path from which is labelled with the result
that causes it to be selected. A “yes” result may be abbreviated as “Y”, and a “no” result may be
abbreviated as “N”;

e) a delay-and-test state is a decision state that operates for a specific time period at current settings
before performing the indicated test (see figure 45). The symbol for a delay-and-test state is a
boldface diamond shape, each path from which is labelled with the result that causes it to be
selected; and

f) within diagrams for required stages, paths and states that are optional to implement are indicated
by symbols composed of dashed lines.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

119

Figure 44 - Stage diagram symbols

optional action state
5

Action state

1

from some other stage

Decision state? 2Y

N

Optional
decision state?

4Y

N

Delay-and-test
state?

 3
N

Y

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

120

8.6.2.2 Terminology

In the stage diagrams in 8.6, the following terminology is used:

Speeds

a) Tx speed list refers to the set of speeds that are currently available for negotiation by the Port. The
Tx speed list may change during Negotiate_master. Transmit speed changes in the algorithm shall
always be based on the Tx speed list that is currently set;

b) there is no explicit Rx speed list, since the receiver is always cycled through all speeds it supports;

c) recorded Rx list refers to a list of the signal speeds at which pass sync_test has succeeded;

d) RX_MAX refers to the maximum Rx speed; TX_MAX refers to the maximum speed in the current
Tx speed list;

e) TX refers to the present transmitter speed; RX refers to the receiver speed;

f) TxNext(xxx) is the next speed less than xxx in the Tx speed list if there is a lower speed; otherwise
it is the highest speed in the Tx speed list; and

g) RxNext(xxx) is the next speed less than xxx among all speeds supported by the port if there is a
lower speed; otherwise it is the highest speed supported by the port.

a t is a timing variable with minimum value t (min) and maximum value t (max)

Figure 45 - Delay / test operations

Test

after t a

IMPLIES

Test
Passed

?

Delay by any
means so that
t (min) d t (max)

Delay Test

d

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

121

Timing

a) pass sync_test decision blocks (states 11, 21, 27, 34, 52, 56) requires that Transmission Word
Synchronization be maintained for a monitoring period that shall equal or exceed receiving the
pass sync_test count (see clause 6) of consecutive Transmission Words for the transmission code
being used. The period of monitoring shall not exceed 100 microseconds. Counting of code
violations may be used for the monitoring period to ensure robustness, if available to the firmware.
If 64B/66B transmission code is used, then code violations shall be counted for the monitoring
period. If counted, then the number of errors allowed shall be zero. If the number of errors is not
zero, then Transmission Word Synchronization (Pass sync_test decision blocks) is not considered
to have occurred and a different speed is negotiated or the algorithm does not converge;

b) in contrast, Sync decision block in state 31 is Transmission Word Synchronization per clause 6;

c) in figures 46, 47, 48, and 49 a decision diamond with a bold-face outline indicates that a delay and
a test are combined (see figure 45). In operations so indicated:

A) other activity may be implemented before the test is performed;

B) the test shall be completed after the minimum and before the maximum values of the delay
time parameter; and

C) the actual delay time may vary from test to test, but the test shall fall within the specified limits;

d) all flowchart atoms (action boxes or decision diamonds) that do not have a bold-face outline shall
execute in less than 100 microseconds, and no delays shall accrue between atoms (bold-face
outline or not);

e) elapsed-time timers are compared against constants in several places:

A) ttx, tneg, and tsync start where shown being (re)set to 0 in the algorithm;

B) ttx is compared against t_txcycl;

C) tneg is compared against t_fail;

D) tsync is compared against t_stbl; and

E) tnc is compared against t_ncycl and may be set at several different places;

and

f) the R_T_TOV watchdog timer begins anytime Transmission Word Synchronization is lost during
Normal_operation. Because elapsed-time counters are tested at intervals determined by a
preceding delay-and-test decision (see bullet above relating to decision diamonds), the actual
elapsed time determined by the elapsed-time counter test may vary from the value of the counter
up to its value plus the length of the delay. In most instances, the delay may be as much as the
maximum value of the range of t_rxcycl. This value was chosen to tolerate the response times of
typical operating system kernels.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

122

8.6.3 Stage 1 - Wait_for_signal

Figure 46 shows the flowchart for the Wait_for_signal stage.

Figure 46 - Wait_for_signal flowchart

tnc = 0
19

from FC_Port
state machine

0

Set Tx speed list to
all supported speeds,
clear recorded Rx list,
TX =TX_MAX, ttx=0,

RX = RX_MAX
10

from watchdog or
normal_operation

(Signal failure)

Slow_wait
supported?

17Y

N

set tneg= 0,

start watchdog timer
(See “W” in
negotiate_master
stage)

16

RX = RxNext(RX)
14

TX = TxNext(TX),
ttx=0

15

Rx_LOS true?
(no signal)

18Y

N

Pass
sync_test

after t_rxcycl?
 11

N

Y

ttx
 t_txcycl?

13N

Y

Record RX,
tnc= t_ncinit

12

go to
negotiate_master

Note: Rx_LOS
(if imple-
mented)
is executed
concurrently
with main flow

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

123

Description

a) the device sets default parameters in state 10. States 11, 13, 14 cycle Rx speeds looking for the
presence of an incoming signal from the other device that is adequate to pass the Pass sync_test.
If found, RX is recorded, and the device moves onto Negotiate_master;

b) Tx speeds are cycled slowly compared to the time spent in 1 Rx speed. This allows the receiving
side of the opposite Port to cycle through at least 5 Rx speeds at each transmitted speed before
the transmitted speed changes;

c) monitoring for synchronization is performed as part of the test in state 11. Should the period of
monitoring satisfy the definition of “Pass sync_test” decision blocks above, the reception of this
speed shall be recorded and tnc shall be set to t_ncinit (state 12);

d) if the slow_wait optional stage is implemented, the watchdog timer diagrammed in figure 47 and
described in 8.6.4 shall be initiated after entry to the wait_for_signal stage. If the slow_wait
optional stage is not implemented, the watchdog timer shall be initiated at entry to the
Negotiate_master stage but not initiated in the Wait_for_signal stage; and

e) prior to entering state 10 from power on and ready condition, a port capable of speed negotiation
shall be considered incapable of participating in normal protocol, so its transmitter shall be
disabled and nothing shall be transmitted until its transmitter is enabled in the course of step 10
(see FC-PI-x).

Rx_LOS, if implemented (see dashed lines in figure 46), may be used in addition to periodically monitoring
for receiver synchronization. If this option is implemented, Rx_LOS may be monitored by any means and
at any time during the wait_for_signal stage after execution of block 10. If Rx_LOS becomes false, the
algorithm transitions to the Negotiate_master stage without recording a received speed. In some
configurations, Rx_LOS negation may occur in the absence of an active attached device. This may cause
spurious entry into Negotiate_master.

8.6.4 Stage 2 - Negotiate_master and Watchdog timer

Figure 47 shows the flowchart for Negotiate_master and Watchdog timer.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

124

ttx t_txcycl? 23 N

Y

N

Figure 47 - Negotiate_master and watchdog timer flowchart

TX = TX_MAX,
RX = RX_MAX,

ttx=0, tneg=0

Start watchdog timer
(see "W" below)

20

Pass
sync_test after

t_rxcycl?
 21

YRX > TX or
RX=TX_MAX?

24Y

N

RX = TX
26

Pass
sync_test after

t_rxcycl?
 27

N

Y

Add RX to recorded
Rx list, tneg=0

25

RX_mem=RX
22

RX=RxNext(RX)
2C

tnc t_ncycl? 28

Y

N

TX=TxNext(TX)
RX=RxNext(RX_mem

) 29

Set Tx speed list to
recorded Rx list

2A

from wait_for_signal or
optional slow_wait

go to negotiate_follow
tneg t_fail

after t_wddly?
 2B

N

Y

W
(Start

watchdog
timer)

go to wait_for_signal or
optional slow_wait

(see text)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

125

Description:

a) the general operation of the algorithm is to start at the highest speed and step down until both
devices agree on a speed. Lower speeds are tried only if higher speeds fail;

b) states 23 & 26-2A control TX. A transmit speed is forced (starting at the highest speed) for
sufficient time (t_txcycl + t_rxcycl) for the other device to pass the Pass sync_test and follow (see
8.6.5) and return TX back to the master. If NO from state 27, another (lower) Tx speed is
attempted; if YES, the master role is assumed to be successful, and the algorithm moves to state
30 in Negotiate_follow;

c) there are two conditions that may cause YES in state 27: (1) the other device is in follow mode as
described above, and (2) the other device is also in master mode transmitting at the same speed.
If the latter, the master role is effectively relinquished to the other master;

d) if the port has had sufficient time to detect all possible speeds (maximum of 4 speeds) from the
other port, but master role has not completed, states 28 & 2A adapt the Tx speed list to the
incoming speeds recorded in the Rx list (state 25). This is usually does not occur unless the cable
plant only supports a limited set of speeds;

e) states 21-25 control RX. To constantly monitor for an incoming rate that is higher than TX or equal
to the maximum rate in the Tx speed list. If such a speed is found (Pass sync_test passed), the
device relinquishes its master role to the other device, and transfers to the Negotiate_follow stage;
and

f) a watchdog timer, tneg, keeps track of time between passed Pass sync_tests (states 11, 21, 27,

and 34). If tneg exceeds t_fail the port enters Slow_wait if the optional slow_wait stage is

implemented and enabled. If the optional Slow_wait stage is not implemented the Port returns to
wait_for_signal if tneg exceeds t_fail.

Rx_LOS shall not be used during Negotiate_master stage.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

126

8.6.5 Stage 3 - Negotiate_follow

Figure 48 shows the flowchart for the Negotiate_follow stage.

Figure 48 - Negotiate_follow flowchart

Pass
sync_test after

t_rxcycl?
 34

N Y

from
negotiate _master

TX = RX,
tsync=0, tneg=0

30

Stop watchdog
timer

35

RX=RxNext(RX)
33

Sync
after t_rxcycl?

 31
N

Y

tsync t_stbl? 32 N

Y

Successful exit to FC_Port State Machine

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

127

Description:

a) a Port in the Negotiate_follow stage attempts to transmit its incoming speed;

b) if sync is lost (e.g., due to an incoming signal speed change), the port seeks sync at another Rx
speed. If obtained, TX is adjusted to follow the new RX, and the test for t_stbl starts over;

c) this continues until sync is held for at least t_stbl in state 31 (in the case where the other master is
not driving other speeds). During this time, TX and RX have been matched, allowing the other
device to come to a YES decision in state 27. After t_stbl, the Port returns to the FC_Port state
machine (see 7.2) indicating successful Speed Negotiation; and

d) the same watchdog timer used in Negotiate_master is also used in Negotiate_follow.

Rx_LOS shall not be used during Negotiate_follow stage.

8.6.6 Optional Stage 5 - Slow_wait

Upon watchdog timer expiration, the Slow_wait stage may be entered as an alternative to returning to the
Wait_for_signal stage. Its implementation is optional, and if implemented, its use may be a configuration
option. Use of this optional stage reduces by approximately 80% the processing time required to monitor a
Port that does not receive a valid signal at any supported speed (e.g., not cabled). However, the response
to a signal being presented may be delayed by up to t_sleep (see table 22). Figure 49 shows the flowchart
for the optional slow_wait stage.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

128

Figure 49 - Slow_wait flowchart

twk > t_wake? 59Y

N

Set Tx speed list to all
supported speeds,

clear recorded speeds,
TX=TxNext(TX),

ttx =0
50

Rx_LOS true?
(no signal)

5C N

Y

tnc = 0
5D

tsl =0, RX=TX
51

Pass
sync_test after

t_txdly?
 52

Y

N

TX=TxNext(TX),
ttx=0, RX=TX

53

tsl > t_sleep 54Y

N

twk=0, RX=RX_MAX
55

ttx > t_txcycl 57N

Y

Pass
sync_test

after t_rxcycl?
 56

N Y

From the stage execut-
ing when the Watch-

dog timer expires

go to negotiate_master

TX=TXNext(TX), ttx=0
58

RX=RxNext(RX)
5A

Record RX speed,
tnc=t_ncinit

5B

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

129

Description:

a) entry into the Slow_wait stage occurs when the watchdog timer expires regardless of the stage
executing when the expiration occurs;

b) the device sets default parameters in state 50. Transmit speed cycling begins here and is
uninterrupted throughout this stage, independent of cycling between slow and normal receiver
speed changes;

c) state 51 initializes the sleep timer that defines the low processing load portion of the algorithm
(states 52, 53, and 54);

d) states 52, 53, and 54 cycle both transmitter and receiver speeds at the normal transmitter speed
cycling rate, checking for synchronization with any incoming signal from the upstream device
before each speed change. Limiting the transmit time at each speed allows a downstream device
to detect sync but not exit prematurely from Negotiate_follow. The synchronization test enables
prompt synchronization to a fixed speed upstream device, reducing loop disruption upon
attachment to a hub, or to an upstream device in Negotiate_follow stage. Processing load is
reduced because the normal transmitter speed cycle is approximately one fifth the rate of the
normal receiver speed cycle. This loop exits after operating for time t_sleep, or it transits to the
Negotiate_master stage if synchronization is detected at the transmitted speed;

e) states 55 initializes the receive speed and the wake timer for a period of normal receiver speed
cycling; and

f) states 56, 57, 58, 59, and 5A continue to cycle transmitter speeds but now cycle receiver speeds
at their normal rate. This continues to present a signal for the downstream device to synchronize,
while now attempting to synchronize with a negotiating upstream device. During this period, the
behavior and processing load of the slow_wait stage is the same as the wait_for_signal stage. If
synchronization is achieved, the receiver speed is recorded and the algorithm proceeds to the
Negotiate_master stage. If the wake timer expires, the algorithm returns to the low processing load
mode of operation.

Rx_LOS, if implemented (see dashed lines in figure 49), may be used in addition to periodically monitoring
for receiver synchronization. If this option is implemented, Rx_LOS may be monitored by any means and
at any time during the slow_wait stage. If Rx_LOS becomes false, the algorithm transitions to the
Negotiate_master stage without recording a received speed. In some configurations, Rx_LOS negation
may occur in the absence of an active attached device. This may cause spurious entry into
Negotiate_master.

8.6.7 Timing requirements

This section describes the timing requirements for the speed negotiation algorithm.

The following are variables implemented to execute the algorithm:

a) ttx: a timer that indicates the length of time since a transmitter has most recently been instructed to

switch speeds. It is compared against t_txcycl to control duration of a transmitted speed;

b) tneg: a timer that indicates the length of time since the most recent:

A) successful Pass sync_test;

B) entry into Negotiate_master;

C) entry into Negotiate_follow; or

D) entry into Wait_for_signal if the optional Slow_wait stage is implemented.

c) tneg is compared against t_fail to timeout in case of Loss-of-Signal quality during negotiation; and

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

130

d) tsync: a timer that indicates the length of time that a receiver maintains Word_sync at a single

speed. Tsync is used to determine that the remote transmitter is stable and is not actively changing

speeds.

The following are parameters that define part of the criteria for decision points in the algorithm:

a) transmitter Stabilization Time: The maximum time that it takes for a transmitter to achieve
compliant transmission of the signal it uses for speed negotiation in a speed when administratively
requested to change transmission to that speed. For any variant that does not specify a
Transmitter Stabilization Time, including those specified in FC-PI-2, FC-PI-3, FC-PI-4, 10GFC, the
Transmitter Stabilization Time shall be one millisecond. Other variants (e.g., those specified in
FC-PI-5) may specify the Transmitter Stabilization Time to be greater than one millisecond;

b) receiver Stabilization Time: The maximum time that it takes for a receiver to stabilize detection of
the signal it uses for speed negotiation in a speed when administratively requested to change
reception to that speed, or when the signal presented to the receiver changes from any other
speed to the speed at which the receiver is operating. For any variant that does not specify a
Receiver Stabilization Time, including those specified in FC-PI-2, FC-PI-3, FC-PI-4, 10GFC, the
Receiver Stabilization Time shall be one millisecond. Other variants (e.g., those specified in
FC-PI-5) may specify the Receiver Stabilization Time to be greater than one millisecond;

c) receiver Cycle Time, t_rxcycl: The limits for the time the receiver is set to a particular speed during
portions of the algorithm where the receiver is cycling speeds;

d) master_Transmitter Cycle Time, t_txcycl: The time threshold used to govern the transmission time
of a particular speed in the Wait_for_signal, Negotiate_master, and Slow_wait stages;

e) speed stability time, t_stbl: Time threshold required to ensure stability of the speed received from
the other Port;

f) watchdog timer threshold, t_fail: Time allowed for the algorithm to continue without passing the
Pass sync_test at any supported speed;

g) low processing load sleep time, t_sleep: Threshold time for which the receiver may be cycled at
the transmitter cycling rate in the Slow_wait stage. During this interval, attachment to a negotiating
Port may not be detected, but attachment to a fixed speed Port is detected;

h) periodic sync search wake time, t_wake: Threshold time for normal cycling of receiver speeds in
the Slow_wait stage required to allow synchronization if the upstream Port is executing speed
negotiation;

i) speed recording time, t_ncycl: A threshold time that ensures that all possible speeds from another
negotiating Port have been sampled by the receiver during the Negotiate_master stage;

j) speed recording time initial value, t_ncinit: a constant describing the initial value for tnc when Pass

sync_test has been achieved at a speed before entry to Negotiate_master stage;

k) timer test delay, t_wddly: Denotes the limits on the delay that shall be included in each cycle of the
watchdog timer test (state 2B); and

l) slow_wait stage transmit cycle delay, t_txdly: Denotes the limits on the delay that shall be included
in each cycle of the low processing overhead loop implemented by states 52-54.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

131

Table 21 lists the range of values allowed for the specified timing parameter. Table 22 lists the value of
timing parameters used only in comparison or as a value that is set, t_ncinit.

Table 21 - Timing parameters with a range

Timing Parameter Min (ms) Max (ms)

t_rxcycl 2 a 30 b

t_wddly 0 32

t_txdly 154 184

a t_rxcycl shall be no less than 2 ms and no less than the
Receiver Stabilization Time plus one ms.

b t_rxcycl shall be no more than 30.2 ms minus one fifth of
the Transmitter Stabilization Time.

Table 22 - Constant timing parameters

Timing Parameter Value (ms)

t_txcycl 154

t_stbl 217

t_ncycl 1 652

t_ncinit 370

t_fail 1 620

t_sleep 5 000

t_wake 900

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

132

9 Transmitter training

9.1 Scope

Transmitter training is a function of the FC-2P sublevel.

9.2 Overview

Transmitter training negotiates capabilities between the transmitters and receivers connected by a link:

a) values of transmitter equalizer coefficients that result in most reliable signal reception across the
link;

b) use of FEC;

c) Parallel Lane Support; and

d) Extended Marker Present.

This clause specifies the protocol by which these capabilities shall be negotiated.

Transmitter training includes two steps:

a) active training; and

b) link quality check.

Active training is performed while transmitting and receiving the Transmitter Training Signal (see 5.5).
Information in the Training Frame (see 5.5.2) portion of the Transmitter Training Signal is used to
implement the protocol for negotiation of capabilities. The Training Pattern (see 5.5.3) portion of the
Transmitter Training Signal allows each FC_Port to evaluate the received signal quality and recommend
adjustments to the transmitter of the other FC_Port.

Training of transmitter equalizer coefficients is based on modeling the transmitter equalizer as having up to
three coefficients that may be controlled by information in the Training Frame of the Transmitter Training
Signal (see 5.5.2). The use of each coefficient is specified by FC-PI-x for each FC-0 variant that supports
transmitter training. Each coefficient in the model has a minimum value, a maximum value, an initialize
value, a preset value, and a step size by which it may be adjusted. These values are specified by FC-PI-x
for each FC-0 physical variant that supports transmitter training.

An FC_Port that does not support training of transmitter equalizer coefficients acknowledges transmitter
training commands but takes no action on its transmitter.

Training of transmitter equalizer coefficients presumes an adaptation process that determines the
feedback requests to send to the remote transmitter and adjusts the local transmitter in response to
feedback requests from the remote transmitter. The adaptation process observes the sequence of events
specified by this standard, but the process by which it determines the need to send requests and adapts to
received requests is not within the scope of this standard.

Link quality check confirms the ability of the link to be used for normal operation. Link quality check is
performed while transmitting and receiving 64B/66B transmission code. Link quality check for frame
transfer transmission codes other than 64B/66B is out of the scope of this standard.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

133

9.3 Transmitter training state machines

9.3.1 Overview

Transmitter training shall cause link behavior equivalent to the state machines specified in 9.3.

Active training is specified by seven state machines operating concurrently:

a) Training_Sequencer;

b) a Cn_Controller for each coefficient n (i.e., n=-1, 0, 1) in the equalizer model; and

c) a Cn_Responder for each coefficient n (i.e., n=-1, 0, 1) in the equalizer model.

Link quality check is specified by a single state machine, Link_Qual_Check.

The transitions among these state machines and with the FC_Port state machine are specified by the
transmitter training flow diagrammed in figure 50.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

134

Figure 50 - Transmitter training flow

Overall control of the
active training process
(see 9.3.4)

Training_Sequencer

active
training

successful?
N

Y

from FC_Port state machine

successful exit to FC_Port state machine

terminate the
Cn_Controller and
Cn_Responder machines

Test link with frame trans-
fer transmission code (see
9.3.7)

Link_Qual_Check

link
quality check
successful?

N

Y

unsuccessful exit to FC_Port state machine

Remove the current
speed from the list of sup-
ported speeds if speed
negotiation is used.

Prepare settings for trans-
mitted Control field (see
9.3.5)

C1_Controller

Prepare settings for trans-
mitted Control field (see
9.3.5)

C0_Controller

Prepare settings for trans-
mitted Control field (see
9.3.5)

C-1_Controller Respond to received Con-
trol field and Status field
(see 9.3.6)

C1_Responder

Respond to received Con-
trol field and Status field
(see 9.3.6)

C0_Responder

Respond to received Con-
trol field and Status field
(see 9.3.6)

C-1_Responder

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

135

9.3.2 Timers

The timers specified in this subclause are visible to all state machines specified in 9.3.

train_fail_timer: a timer that limits the duration of active training. The train_fail_timer expires between 1 s
and 1.5 s from the time it is started.

link_wait_timer: a timer that limits the duration in which the transmitter will transmit the Transmitter
Training Signal at fixed settings after the remote FC_Port indicates training complete to ensure that remote
FC_Port correctly detects the local interface state. The link_wait_timer expires between 32 s and 96 s
from the time it is started.

link_test_timer: a timer that determines the delay in the LINK_TEST state before sampling of the link
quality. The link_test_timer expires between 30 ms and 45 ms from the time it is started.

9.3.3 Variables

The variables specified in this subclause are visible to all state machines specified in 9.3.

These variables are set on decoding the values received in arriving Training Frames (see table 16 and
table 17) during transmitter training. They are only set while the Transmitter Training Signal Transmission
Word Synchronization state is Word Synchronization Acquired (see 6.5.1):

a) rcv_Preset: the value in the Preset field of the Control field in the most recently received Training
Frame;

b) rcv_Initialize: the value in the Initialize field of the Control field in the most recently received
Training Frame;

c) rcv_FECReq: the value in the FECReq field of the Control field in the most recently received
Training Frame;

d) rcv_C1Upd: the value in the C1Upd field of the Control field in the most recently received Training
Frame;

e) rcv_C0Upd: the value in the C0Upd field of the Control field in the most recently received Training
Frame;

f) rcv_C-1Upd: the value in the C-1Upd field of the Control field in the most recently received
Training Frame;

g) rcv_TC: the value in the TC field of the Status field in the most recently received Training Frame;

h) rcv_SN: the value in the SN field of the Status field in the most recently received Training Frame;

i) rcv_FECCap: the value in the FECCap field of the Status field in the most recently received
Training Frame;

j) rcv_TF: the value in the TF field of the Status field in the most recently received Training Frame;

k) rcv_C1Stat: the value in the C1Stat field of the Status field in the most recently received Training
Frame;

l) rcv_C0Stat: the value in the C0Stat field of the Status field in the most recently received Training
Frame; and

m) rcv_C-1Stat: the value in the C-1Stat field of the Status field in the most recently received Training
Frame.

The term rcv_CnUpd is used to reference some member of rcv_C-1Upd, rcv_C0Upd, or rcv_C1Upd,
specified by the context of the reference. The term rcv_CnStat is used to reference some member of
rcv_C-1Stat, rcv_C0Stat, or rcv_C1Stat, specified by the context of the reference.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

136

These variables contain the values that are set in transmitted Training Frames (see table 16 and table 17)
while the Transmitter Training Signal is being used during transmitter training:

a) send_Preset: the value to set in the Preset field of the Control field of subsequently sent Training
Frames;

b) send_Initialize: the value to set in the Initialize field of the Control field of subsequently sent
Training Frames;

c) send_FECReq: the value to set in the FECReq field of the Control field of subsequently sent
Training Frames. The value of send_FECReq does not change;

d) send_C1Upd: the value to set in the C1Upd field of the Control field of subsequently sent Training
Frames;

e) send_C0Upd: the value to set in the C0Upd field of the Control field of subsequently sent Training
Frames;

f) send_C-1Upd: the value to set in the C-1Upd field of the Control field of subsequently sent
Training Frames;

g) send_TC: the value to set in the TC field of the Status field of subsequently sent Training Frames;

h) send_SN: the value to set in the SN field of the Status field of subsequently sent Training Frames;

i) send_FECCap: the value to set in the FECCap field of the Status field of subsequently sent
Training Frames. The value of send_FECCap does not change;

j) send_TF: the value to set in the TF field of the Status field of subsequently sent Training Frames.
The value of send_TF does not change;

k) send_C1Stat: the value to set in the C1Stat field of the Status field of subsequently sent Training
Frames;

l) send_C0Stat: the value to set in the C0Stat field of the Status field of subsequently sent Training
Frames; and

m) send_C-1Stat: the value to set in the C-1Stat field of the Status field of subsequently sent Training
Frames.

The term send_CnUpd is used to reference some member of send_C-1Upd, send_C0Upd, or
send_C1Upd, specified by the context of the reference. The term send_CnStat is used to reference some
member of send_C-1Stat, send_C0Stat, or send_C1Stat, specified by the context of the reference.

9.3.4 Training_Sequencer state machine

9.3.4.1 Overview

This state machine starts the concurrent state machines that manage training of individual equalizer
coefficients (see 9.3.5 and 9.3.6), and then conducts the protocol to determine when training has become
stable or failed. A diagram for the Training_Sequencer state machine is given in figure 51.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

137

9.3.4.2 States

9.3.4.2.1 Train_Init

The Train_Init state initializes the variables and watchdog timer used by the state machine that specifies
the process of actively negotiating transmitter capabilities, and then awaits the remote FC_Port indicating
readiness for negotiation.

Figure 51 - Diagram of Training_Sequencer state machine flow

<Initialize variables; start
concurrent machines;
start train_fail_timer>

Train_Init

from transmitter training flow

gain or regain transmis-
sion word synchronization

Train_Lock

conduct training until local
FC_Port is finished train-
ing remote transmitter

Train_Local

conduct training until
remote FC_Port reports
completion

Train_Remote

<start link_wait_timer>
monitor for remote training
restart

Link_Ready

word sync gained and remote
has completed or not used
Speed Negotiation

word
sync
gained

unsuccessful exit to
transmitter training flow

train_fail_timer
expired

local
training
done

word
sync
lost

unsuccessful exit to
transmitter training flow

train_fail_timer
expired

local
training
restart

word
sync
lost

unsuccessful exit to
transmitter training flow

train_fail_timer
expired

remote
training
done

remote
training
restart

successful exit to trans-
mitter training flow

link_wait_timer
expired

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

138

The actions on entry to the Train_Init state are:

1) initialize the variables (see 9.3.3) necessary for the operation of the remaining state machines:

a) set rcv_Preset to zero;

b) set rcv_Initialize to zero;

c) set rcv_FECReq to zero;

d) set all rcv_CnUpd to 00b;

e) set rcv_TC to zero;

f) set rcv_SN to one;

g) set rcv_FECCap to zero;

h) set rcv_TF to one;

i) set all rcv_CnStat to 00b;

j) set send_Preset to zero;

k) set send_Initialize to zero;

l) if the port does not request use of FEC, then set send_FECReq to zero;

m) if the port requests use of FEC, then set send_FECReq to one;

n) set all send_CnUpd to 00b;

o) set send_TC to zero;

p) set send_SN to zero;

q) if the port does not support use of FEC, then set send_FECCap to zero;

r) if the port supports use of FEC, then set send_FECCap to one; and

s) if the FC_Port allows training of transmitter coefficients, then set send_TF to zero;

t) if the FC_Port does not allow training of transmitter coefficients, then set send_TF to one;

u) set all send_CnStat to 00b;

v) for 32GFC and 128GFC set Extended Marker (see table 16) to 11b, other speeds set to 00b;
and

w) for training the Parallel Lane Support (see table 16) field is not meaningful;

2) set all of the transmitter equalizer coefficients to their initialize values (see FC-PI-x);

3) begin or continue transmitting the Transmitter Training Signal (see 5.5);

4) if the FC_Port supports training of transmitter coefficients, then start the Cn_Controller state
machines (see 9.3.5);

5) start the Cn_Responder state machines (see 9.3.6); and

6) start the train_fail_timer (see 9.3.2).

The actions while remaining in the Train_Init state are:

a) transmit and receive the Transmitter Training Signal (see 5.5);

b) monitor rcv_SN; and

c) monitor the train_fail_timer.

The transitions from the Train_Init state are:

a) if the value of rcv_SN is zero, then transition to the Train_Lock state; or

b) if the train_fail_timer expires, then exit from the Training Sequencer state machine indicating
active training is unsuccessful.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

139

9.3.4.2.2 Train_Lock

The Train_Lock state establishes or recovers Transmitter Training Signal Transmission Word
Synchronization (see 6.5) during the process of actively negotiating transmitter equalization.

There are no actions on entry to the Train_Lock state.

The actions while remaining in the Train_Lock state are:

a) transmit the Transmitter Training Signal;

b) monitor Transmitter Training Signal Transmission Word Synchronization (see 6.5); and

c) monitor the train_fail_timer.

The transitions from the Train_Lock state are:

a) if Transmitter Training Signal Transmission Word Synchronization is detected, then transition to
the Train_Local state; or

b) if the train_fail_timer expires, then exit from the Training Sequencer state machine indicating
active training is unsuccessful.

9.3.4.2.3 Train_Local

The Train_Local state establishes or re-establishes stable equalization of the remote transmitter by the
local FC_Port during the process of actively negotiating transmitter capabilities.

The actions on entry to the Train_Local state are:

a) set send_TC to zero.

The actions while remaining in the Train_Local state are:

a) if the value of send_TF is zero, then monitor for completion of the adaptation process in the local
FC_Port, which is not within the scope of this standard;

b) monitor Transmitter Training Signal Transmission Word Synchronization (see 6.5); and

c) monitor the train_fail_timer.

The transitions from the Train_Local state are:

a) if completion of the adaptation process in the local FC_Port is detected, then transition to the
Train_Remote state;

b) if the value of send_TF is one, then transition to the Train_Remote state;

c) if the value of rcv_TF is one, then transition to the Train_Remote state;

d) if loss of Transmitter Training Signal Transmission Word Synchronization is detected, then
transition to the Train_Lock state; or

e) if the train_fail_timer expires, then exit from the Training Sequencer state machine indicating
active training is unsuccessful.

9.3.4.2.4 Train_Remote

The Train_Remote state establishes stable equalization of the local transmitter by the remote FC_Port
during the process of actively negotiating transmitter capabilities.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

140

The actions on entry to the Train_Remote state are:

a) set send_TC to one.

The actions while remaining in the Train_Remote state are:

a) monitor the value of rcv_TC;

b) monitor the value of rcv_TF;

c) if the value of send_TF is zero and rcv_TF is set to zero, then monitor for resumption of the
adaptation process in the local FC_Port, which is not within the scope of this standard;

d) monitor Transmitter Training Signal Transmission Word Synchronization (see 6.5); and

e) monitor the train_fail_timer.

The transitions from the Train_Remote state are:

a) if the value of rcv_TC is one, then transition to the Link_Ready state;

b) if the value of send_TF is zero and the value of rcv_TF is zero and resumption of the adaptation
process in the local FC_Port is detected, then transition to the Train_Local state;

c) if loss of Transmitter Training Signal Transmission Word Synchronization is detected, then
transition to the Train_Lock state; or

d) if the train_fail_timer expires, then exit from the Training Sequencer state machine indicating
active training is unsuccessful.

9.3.4.2.5 Link_Ready

The Link_Ready state confirms stable negotiation between the local and remote FC_Ports during the
process of actively negotiating transmitter equalization.

The actions on entry to the Link_Ready state are:

a) start the link_wait_timer.

The actions while remaining in the Link_Ready state are:

a) monitor the value of rcv_TC; and

b) monitor the link_wait_timer.

The transitions from the Link_Ready state are:

a) if the value of rcv_TC is zero, then transition to the Train_Remote state; or

b) if the link_wait_timer expires, then exit from the Training Sequencer state machine indicating
active training is successful.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

141

9.3.5 Cn_Controller state machines

9.3.5.1 Overview

If the FC_Port supports training of transmitter coefficients, then there is an instance of the Cn_Controller
state machine specific to each of the coefficients of the model transmitter equalizer (i.e., C1_Controller,
C0_Controller and C-1_Controller). Each Cn_Controller controls the setting of its specific send_CnUpd
variable, and acts on the setting of its specific rcv_CnStat variable. CnController state machines are
instantiated at the start of the Training_Sequencer state machine, and terminated when the
Training_Sequencer state machine terminates. When a Cn_Controller state machine is instantiated, it
enters the Tx_Ready state. A diagram for the Cn_Controller state machine is given in figure 52.

Figure 52 - Diagram of Cn_Controller state machine flow

machine instantiated by
Training_Sequencer

wait for local determina-
tion of need to send a
training command

Tx_Ready

send a coefficient com-
mand and wait for
acknowledgement

Command

remove command and
wait for coefficient to be
ready for next command

Clear

change
one coeffi-
cient

ack
arrived

machine
deinstantiated

machine
externally
terminated

A

A

remote is
ready

machine
externally
terminated

A

machine
externally
terminated

A

send a global command
and wait for acknowledge-
ments

GlobalCommand

remove command and
wait for all coefficients to
be ready for next cmnd

GlobalClear

ack
arrived

machine
externally
terminated

A

remote is
ready

machine
externally
terminated

A

change all
coeffi-
cients

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

142

9.3.5.2 States

9.3.5.2.1 Tx_Ready

In the Tx_Ready state, the Cn_Controller state machine has confirmed completion of its prior update
command and does not need to update its coefficient further.

The actions on entry to the Tx_Ready state are:

a) set send_Preset to zero;

b) set send_Initialize to zero; and

c) set send_CnUpd to 00b for the coefficient managed by this Cn_Controller state machine.

The actions while remaining in the Tx_Ready state are:

a) monitor the value of rcv_TF. If the value of rcv_TF is zero, then:

A) monitor for the need to set all coefficients to their initialize values (see FC-PI-x);

B) monitor for the need to set all coefficients to their preset values (see FC-PI-x); and

C) monitor for the need to increment or decrement the coefficient negotiated by this
Cn_Controller state machine.

The processes by which a Cn_Controller determines the need to update the coefficient in the remote
transmitter that it negotiates and reset the negotiation are not within the scope of this standard; however,
these processes shall not indicate the need for more than one command at the same time that affects the
same coefficient.

The transitions from the Tx_Ready state are:

a) if the value of rcv_TF is zero, the values of rcv_CnStat for all coefficients are 00b, and the
Cn_Controller state machine determines the need to set all coefficients to their initialize values,
then transition to the GlobalCommand state;

b) if the value of rcv_TF is zero, the values of rcv_CnStat for all coefficients are 00b, and the
Cn_Controller state machine determines the need to set all coefficients to their preset values, then
transition to the GlobalCommand state; or

c) If the value of rcv_TF is zero and the value of the rcv_CnStat for the coefficient to be adjusted is
00b, and the Cn_Controller state machine determines the need to increment or decrement the
coefficient negotiated by this Cn_Controller state machine, then transition to the Command state.

9.3.5.2.2 Command

In the Command state, the Cn_Controller is sending a command that affects only its coefficient, and is
waiting for acknowledgement that the command was received.

The actions on entry to the Command state are:

a) if the Cn_Controller state machine has determined the need to increment the coefficient
negotiated by this Cn_Controller state machine, then set send_Preset to zero, set send_Initialize
to zero, and set send_CnUpd to 01b for the coefficient negotiated by this Cn_Controller state
machine; or

b) if the Cn_Controller state machine has determined the need to decrement the coefficient
negotiated by this Cn_Controller state machine, then set send_Preset to zero, set send_Initialize

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

143

to zero, and set send_CnUpd to 10b for the coefficient negotiated by this Cn_Controller state
machine.

The actions while remaining in the Command state are:

a) monitor the value of rcv_CnStat for the coefficient negotiated by this Cn_Controller state machine.

The transitions from the Command state are:

a) if the value of rcv_CnStat for the coefficient negotiated by this Cn_Controller state machine is not
00b, then transition to the Clear state.

9.3.5.2.3 Clear

In the Clear state, the Cn_Controller has received acknowledgement for a command that affects only its
coefficient, and is waiting for notification that the remote FC_Port is ready for another command.

The actions on entry to the Clear state are:

a) set send_Preset to zero;

b) set send_Initialize to zero; and

c) set send_CnUpd to 00b for the coefficient managed by this Cn_Controller state machine.

The actions while remaining in the Clear state are:

a) monitor the value of rcv_CnStat for the coefficient negotiated by this Cn_Controller state machine.

The transitions from the Clear state are:

a) if the value of rcv_CnStat for the coefficient negotiated by this Cn_Controller state machine is 00b,
then transition to the Tx_Ready state.

9.3.5.2.4 GlobalCommand

In the GlobalCommand state, the Cn_Controller is sending a command that affects all coefficients, and is
waiting for acknowledgement that the command was received.

The processes by which a Cn_Controller determines the need to update the coefficient in the remote
transmitter that it negotiates and reset the negotiation are not within the scope of this standard; however,
these processes shall not indicate the need for more than one command at the same time that affects the
same coefficient.

The actions on entry to the GlobalCommand state are:

a) if the Cn_Controller state machine determines the need to reset all coefficients to their preset
values, then set send_Preset to one, set send_Initialize to zero, and set send_CnUpd to 00b for all
coefficients; or

b) if the Cn_Controller state machine has determined the need to set all coefficients to their initialize
values, then set send_Preset to zero, set send_Initialize to one, and send_CnUpd to 00b for all
coefficients.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

144

The actions while remaining in the GlobalCommand state are:

a) monitor the values of rcv_CnStat for all coefficients.

The transitions from the GlobalCommand state are:

a) if the values of rcv_CnStat for all coefficients are nonzero, then transition to the GlobalClear state.

9.3.5.2.5 GlobalClear

In the GlobalClear state, the Cn_Controller has received acknowledgement for a command that affects all
coefficients, and is waiting for notification that the remote FC_Port is ready for another command.

The actions on entry to the GlobalClear state are:

a) set send_Reset to zero;

b) set send_Initialize to zero; and

c) set send_CnUpd to 00b for all coefficients.

The actions while remaining in the GlobalClear state are:

a) monitor the values of rcv_CnStat for all coefficients.

The transitions from the GlobalClear state are:

a) if the values of rcv_CnStat for all coefficients are 00b, then transition to the Tx_Ready state.

9.3.6 Cn_Responder state machines

9.3.6.1 Overview

There is an instance of the Cn_Responder state machine specific to each of the coefficients of the model
transmitter equalizer (i.e., C1_Responder, C0_Responder and C-1_Responder). Each Cn_Responder acts
on the setting of its specific rcv_CnUpd variable, and controls the setting of its specific send_CnStat
variable. Cn_Responder state machines are instantiated at the start of the Training_Sequencer state
machine, and terminated when the Training_Sequencer state machine terminates. When a Cn_Responder
state machine is instantiated, it enters the Rx_Ready state. A diagram for the Cn_Responder state
machine is given in figure 53.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

145

9.3.6.2 States

9.3.6.2.1 Rx_Ready

In the Rx_Ready state, the Cn_Responder state machine is ready to process another request to change
the transmitter equalizer coefficient managed by this Cn_Responder state machine.

The actions on entry to the Rx_Ready state are:

a) set send_CnStat to 00b for the coefficient managed by this Cn_Responder state machine.

The actions while remaining in the Rx_Ready state are:

a) monitor the value of rcv_CnUpd for the coefficient managed by this Cn_Responder state machine;

b) monitor the value of rcv_Initialize; and

c) monitor the value of rcv_Preset.

Figure 53 - Diagram of Cn_Responder state machine flow

machine instantiated by
Training_Sequencer

wait for arrival of a training
command

Rx_Ready

update the local transmit-
ter equalizer

Update

acknowledge the results
of the command and wait
for confirmation

Acknowledge

com-
mand
arrived

machine
deinstantiated

machine exter-
nally terminated

uncon-
ditional

machine
deinstantiated

machine exter-
nally terminated

ack
con-
firmed

machine
deinstantiated

machine exter-
nally terminated

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

146

The transitions from the Rx_Ready state are:

a) if the value of rcv_CnUpd is nonzero for the coefficient managed by this Cn_Responder state
machine, then transition to the Update state;

b) if the value of rcv_Initialize is nonzero, then transition to the Update state; and

c) if the value of rcv_Preset is nonzero, then transition to the Update state.

9.3.6.2.2 Update

In the Update state, the Cn_Responder state machine processes a command that affects the coefficient
managed by this Cn_Responder state machine and reports the resulting status to the sender of the
command.

The actions on entry to the Update state are:

a) if the value of send_TF is one, then set send_CnStat to any nonzero value for the coefficient
managed by this Cn_Responder state machine;

b) if:

A) the value of send_TF is zero; and

B) the value of rcv_Preset is one,

then set the coefficient managed by this Cn_Responder state machine to its preset value (see
FC-PI-x) and then:

A) if the coefficient managed by this Cn_Responder state machine is not at its minimum value
and not at its maximum value, then set send_CnStat to 01b for the coefficient managed by this
Cn_Responder state machine;

B) if the coefficient managed by this Cn_Responder state machine is at its minimum value, then
set send_CnStat to 10b for the coefficient managed by this Cn_Responder state machine; or

C) if the coefficient managed by this Cn_Responder state machine is at its maximum value, then
set send_CnStat to 11b for the coefficient managed by this Cn_Responder state machine;

c) if:

A) the value of send_TF is zero;

B) the value of rcv_Preset is zero; and

C) the value of rcv_Initialize is one,

then set the coefficient managed by this Cn_Responder state machine to its initialize value (see
FC-PI-x) and set send_CnStat to 01b for the coefficient managed by this Cn_Responder state
machine;

d) if

A) the value of send_TF is zero;

B) the value of rcv_Preset is zero;

C) the value of rcv_Initialize is zero; and

D) the value of rcv_CnUpd is 01b for the coefficient managed by this Cn_Responder state
machine,

then:

A) if the coefficient managed by this Cn_Responder state machine is at its maximum value, then
set send_CnStat to 11b for the coefficient managed by this Cn_Responder state machine; or

B) if the coefficient managed by this Cn_Responder state machine is not at its maximum value
then increment the coefficient managed by this Cn_Responder state machine by its step size
(see FC-PI-x) and then:

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

147

a) if the coefficient managed by this Cn_Responder state machine is not at its maximum
value, then set send_CnStat to 01b for the coefficient managed by this Cn_Responder
state machine; or

b) if the coefficient managed by this Cn_Responder state machine is at its maximum value,
then set send_CnStat to 11b for the coefficient managed by this Cn_Responder state
machine;

or

e) if

A) the value of send_TF is zero;

B) the value of rcv_Preset is zero;

C) the value of rcv_Initialize is zero; and

D) the value of rcv_CnUpd is 10b for the coefficient managed by this Cn_Responder state
machine,

then:

A) if the coefficient managed by this Cn_Responder state machine is at its minimum value, then
set send_CnStat to 10b for the coefficient managed by this Cn_Responder state machine; or

B) if the coefficient managed by this Cn_Responder state machine is not at its minimum value
then decrement the coefficient managed by this Cn_Responder state machine by its step size
(see FC-PI-x) and then:

a) if the coefficient managed by this Cn_Responder state machine is not at its minimum
value, then set send_CnStat to 01b for the coefficient managed by this Cn_Responder
state machine; or

b) if the coefficient managed by this Cn_Responder state machine is at its minimum value,
then set send_CnStat to 10b for the coefficient managed by this Cn_Responder state
machine.

There are no actions while remaining in the Update state.

The Update state transitions to the Acknowledge state on completing its actions on entry.

9.3.6.2.3 Acknowledge

In the Acknowledge state, the Cn_Responder maintains the status of its most recently processed
command until the sender of the command indicates that the status has been received.

There are no actions on entry to the Acknowledge state.

The actions while remaining in the Acknowledge state are:

a) monitor the value of rcv_Preset;

b) monitor the value of rcv_Initialize; and

c) monitor the value of rcv_CnUpd for the coefficient managed by this Cn_Responder state machine.

The transitions from the Acknowledge state are:

a) If:

A) the value of rcv_Preset is zero;

B) the value of rcv_Initialize is zero; and

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

148

C) the value of rcv_CnUpd is zero for the coefficient managed by this Cn_Responder state
machine,

then transition to the Rx_Ready state.

9.3.7 Link_Qual_Check state machine

9.3.7.1 Overview

This state machine verifies that the FC_Port is able to reliably communicate over the link using 64B/66B
frame transfer transmission protocol (see 5.3). In this state machine, the NOS Primitive Sequence is
transmitted.

9.3.7.2 States

9.3.7.2.1 Link_Test

The Link_Test state is the only state in the Link_Qual_Test state machine. It begins using the 64B/66B
transmission code, delays long enough for both the local and remote FC_Port to synchronize to the 64B/
66B transmission code, and then verifies 64B/66B Transmission Word Synchronization has been
achieved.

The actions on entry to the Link_Test state are:

1) begin transmitting 64B/66B transmission code (see 5.3) with FEC determined by:

A) if either send_FECCap or rcv_FECCap is set to zero, then do not use FEC;

B) if neither send_FECReq nor rcv_FECReq is set to one, then do not use FEC; and

C) if both send_FECCap and rcv_FECCap are set to one and either send_FECReq or
rcv_FECReq is set to one, then use FEC;

and

2) start the link_test_timer (see 9.3.2).

The actions while remaining in the Link_Test state are:

1) continue transmitting 64B/66B transmission code, with use of FEC as determined on entry to the
Link_Test state, until the link_test_timer expires; and

2) Determine if Transmission Word Synchronization (see 6.4.1) is indicated.

The transitions from the Link_Test state are:

a) if Transmission Word Synchronization is indicated, then exit from the Link_Qual_Check state
machine indicating that link quality check was successful; or

b) if Transmission Word Synchronization is not indicated, then exit from the Link_Qual_Check state
machine indicating that link quality check was unsuccessful.

If the Link_Test state exits indicating that link quality check was successful, then the transmission code
selected on entry to the Link_Test state continues to be used in normal operation.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

149

10 Energy Efficient Fibre Channel

10.1 Overview

The Energy Efficient Fibre Channel capability provides a protocol and associated physical layer
capabilities to allow a Fibre Channel link to operate at a lower power level. The goal of the Energy Efficient
Fibre Channel is:

a) provide a protocol to allow transitions to and from a lower power level;

b) allow such transition to occur without changing the link status, dropping, or corrupting frames; and

c) provide a transition time that is small enough such that it is transparent to the upper level protocols
(i.e., minimum impact on link bandwidth and latency).

Energy Efficient operation is negotiated per link using a login bit either in the FLOGI/PLOGI, for N_Ports,
and F_Ports, or in the ELP for E_Ports (see FC-LS-3).

Energy Efficient operation is achieved by entering the Low Power Idle (LPI) mode (see 10.6). During Low
Power Idle mode, the link is still active, but enters periods of lower power level operation. When one of the
link partners has data to transmit, a wake-up signal is sent to indicate that the link should return to a full
power operation.

Energy Efficient operation is not supported on NL_Ports.

10.2 Energy Efficient Negotiation

If supported, Energy Efficient operation shall be negotiated during login according to the following:

a) For N_Ports operating without a fabric, Word 2, Bits 24 and 25 of the Common Service
Parameters in the PLOGI and PLOGI LS_ACC shall be set to indicate Energy Efficient operation
support (see FC-LS-3);

b) For N_Ports connecting to a fabric, Word 2, Bits 24 and 25 of the Common Service Parameters in
the FLOGI and FLOGI LS_ACC shall set to indicate Energy Efficient operation support (see
FC-LS-3). For N_Ports connected to a fabric, the Energy Efficient operation bit in any subsequent
PLOGI or PLOGI LS_ACC shall be ignored; and

c) For E_Ports bits 10 and 11 in the Flags field of the ELP shall be set to indicate Energy Efficient
operation support (see FC-SW-6).

In order for any particular link to support Energy Efficient operation both N_Ports or E_Ports of the link
shall indicate support for Energy Efficient operation.

10.3 Energy Efficient Fibre Channel and FEC

For 16GFC FC_Ports which support FEC (see 5.3.1), a port implementing Energy Efficient Fibre Channel
shall implement the FEC rapid block synchronization as defined in clause 74 of IEEE 802.3-2012. The
Fibre Channel FEC block scrambled with PN-2112 sequence for the wake state in Energy Efficient Fibre
Channel, which uses Idle, and refresh state in FC-EE, which uses LPI, are identical to Annex 74A.5 and
Annex 74A.6 of IEEE 802.3-2012, respectively.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

150

For 32GFC FC_Ports, a port implementing Energy Efficient Fibre Channel shall implement FEC rapid
block synchronization. Table K.11 provides the data stream at the output of the Reed-Solomon encoder
after the data is scrambled with the PN-5280 sequence as described in 5.4.4 when IDLE is sent. The
example shows the stream of data in 257-bit format (20 257b symbols plus 140b parity) generated from the
output of the Reed-Solomon encoder after the PN-5280 scrambler. Table K.12 provides the data stream at
the output of the Reed-Solomon encoder after the data is scrambled with the PN-5280 sequence as
described in 5.4.4 when LPI is sent. The example shows the stream of data in 257-bit format (20 257b
symbols plus 140b parity) generated from the output of the Reed-Solomon encoder after the PN-5280
scrambler.

10.4 Alert Signal

The Alert Signal shall be sent to indicate wake up from quiet mode. The Alert Signal shall be a repeating
FF00h pattern.

NOTE 15 - The ALERT signal is generated to trigger energy_detect.

10.5 Transmitter Turn Off

During the quiet cycle, some transceiver types may not be capable of turning off the transmitter/receiver. In
this case, LPI shall be transmitted during LPI Mode in order to indicate low power operation. This allows
the port to turn off unused capabilities to save power. For ports not capable of turning off their local
transmitter, and/or whose receiver is not capable of supporting a remote transmitter which is turned off, the
lpi_fw variable shall be set to TRUE at both sides of the port.

10.6 LPI Mode

10.6.1 Overview

Energy Efficient operation is accomplished by entering LPI Mode. LPI Mode operation is indicated by a set
of Primitive Signals:

a) The transmitter indicates a request for LPI Mode by transmitting LPI in place of Idle. The process
by which this is accomplished depends on the link encoding (see 5).

b) The receiver is notified of the link partner request for entry into LPI Mode by receipt of a LPI in
place of Idle.

While in LPI Mode, data traffic transmission is disabled if the transmitter/receiver pair supports it (see
10.5), and the link operates in a quiet/refresh cycle until one of the link partners indicates a change back to
full power operation by sending a wake signal for a predetermined amount of time. This wake signal
consists of sending Idle (i.e., not an LPI) across the link. One reason for a return to full power operation
would be the presence of data to transmit.

Figure 54 shows an overview of LPI Mode operation. In LPI Mode, after the sleep time (i.e., Ts), the link
cycles between a quiet time (i.e., Tq) and a wake cycle in order to refresh the link. The sleep time (i.e., Ts),
Quiet time (i.e., Tq), refresh cycle, and wake time (i.e. Tw) are defined in 10.6.3.

10.6.2 LPI Mode Entry

An FC_Port shall enter and exit LPI Mode only from the Active State (see 7.4).

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

151

NOTE 16 - For 64B/66B encoding this means that the only valid code transitions for LPI are Idle to LPI,
LPI to Idle, and EOF to LPI (see 5.3.6).

10.6.3 LPI Mode Timing Parameters

For LPI Mode operation, the Transmitter State Diagram timing parameters shall be as defined in table 23,
and the Receiver State Diagram timing parameters shall be as defined in table 24.

Figure 54 - Overview of LPI Mode operation

Table 23 - Transmitter LPI Mode timing parameters

Parameter Description
16GFC 32GFC

Units
Min Max Min Max

Alert_Timer Time spent in the Alert state 1.1 1.3 1.1 1.3 μs

Bypass_Timer
Time spent in the SCR Bypass
state

0.9 1.1 0.9 1.1 μs

Ts

Sleep Time from entering the
Sleep state to when tx_mode is
set to QUIET

4.9 5.1 0.9 1.1 μs

Tq

Quiet Time from when tx_mode is
set to QUIET to entry into the
Alert state

1.7 1.8 1.7 1.8 ms

Tw Time spent in the Wake state 9.5 9.7 3.9 4.1 μs

A
ctive

A
ctive

S
le

e
p

W
ake

W
ake

W
a

k
e

Quiet Quiet Quiet

Ts Tq

LPI Mode

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

152

10.6.4 Energy Efficient Fibre Channel State Diagrams

10.6.4.1 Energy Efficient State Variables

energy_detect: Set to TRUE if energy detected on port.

lpi_active: Set to TRUE if LPI is being transmitted on the link. FALSE if LPI is not being transmitted on the
link.

lpi_fw: Set to TRUE if fast wake mode is enabled. Set to FALSE if fast wake mode is not enabled. See
10.5.

rx_coded: Current received symbol.

rx_mode: Set to DATA if data is being received on the link. Set to QUIET if data is not being received on
the link.

rx_sync: Set to TRUE if the link has word synchronization. Set to FALSE if the link does not have word
synchronization.

scr_bypass: Set to TRUE if scrambler bypass is active. Set to FALSE if scrambler bypass is not active.
Scrambler bypass turns off 64B/66B scrambling only.

scr_bypass_enable: Indicates to the LPI Mode Transmitter state diagram that the scrambler bypass
option is required. Set to TRUE if the LPI Mode Transmitter is required to bypass scrambling of 64B/66B
transmission words. Set to FALSE if the LPI Mode Transmitter must not bypass 64B/66B scrambling.

tx_mode: Set to DATA if data is being transmitted on the link. Set to QUIET if data is not being transmitted
on the link. Set to ALERT when the ALERT signal is being transmitted (see 10.4)

Table 24 - Receiver LPI Mode timing parameters

Parameter Description
16GFC 32GFC

Units
Min Max Min Max

Tq

The time the receiver waits for
energy_detect to be set to TRUE
while in the Quiet state before
asserting receive fault

2 3 2 3 ms

Tw

Time the receiver waits in the
Wake state before indicating a
wake time fault. (when
scr_bypass_enable = FALSE)

10.1 N/Aa μs

Tw

Time the receiver waits in the
Wake state before indicating a
wake time fault. (when
scr_bypass_enable = TRUE)

12.3 5.7 μs

Twf Wake time fault recovery time 10 10 ms

a For 32GFC this timer has no meaning since FEC is required (i.e., scr_bypass_enable will never be
FALSE).

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

153

tx_raw: Current transmit symbol.

10.6.4.2 LPI Mode Transmitter State Diagram

Figure 55 shows the state diagram for the transmitter in LPI Mode.

State T1 Active: This state is normal Fibre Channel operation. This state is entered upon entry into the
Active state in the FC_Port state machine (see 7). The link is running at full power and data may be
transmitted. tx_mode is set to DATA, and scr_bypass is set to FALSE.

Transition T1:T2: When lpi_fw is set to FALSE, the port transmits LPI in place of Idle to enter LPI Mode
(i.e., .lpi_fw = FALSE * tx_raw = LPI).

Transition T1:T1: The port wishes to stay in Active mode, IDLE is transmitted, or LPI is transmitted when
lpi_fw is set to TRUE (i.e., lpi_fw = TRUE + tx_raw ≠ LPI).

State T2 Sleep: The Ts timer is started.

Transition T2:T1: The port does not transmit LPI, indicating exit from LPI Mode (i.e., tx_raw ≠ LPI).

Transition T2:T3: The Ts timer has expired and LPI continues to be transmitted (i.e. tx_raw = LPI * Ts
timer done).

State T3 Quiet: Local port has entered Quiet mode. The Transmitter is turned off. The tx_mode variable is
set to QUIET. Tq timer is started.

Figure 55 - LPI Mode transmitter state diagram

T1: Active
tx_mode = DATA

scr_bypass = FALSE

T3: Quiet
Start Tq Timer

tx_mode = QUIET

T2: Sleep
Start Ts Timer

scr_bypass = FALSE

T2:T3

T2:T1

T4:T5

T6: SCR Bypass
scr_bypass = TRUE
Start Bypass_Timer

T5: Wake
tx_mode = DATA

Start Tw Timer

T5:T6

T4: Alert
tx_mode = ALERT
Start Alert_Timer

T3:T4
T6:T1

T6:T1

T5:T1T1:T1

T5:T1

T5:T2

T5:T2

T1:T2
T6:T2

T6:T2

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

154

Transition T3:T4: Tq timer has expired, or the port does not transmit LPI (i.e., Tq timer done + tx_raw ≠
LPI).

State T4 Alert: Set tx_mode to ALERT and send Alert Signal (see 10.4) until Alert_Timer expires.

Transition T4:T5: The Alert_Timer has expired.

State T5 Wake: Set tx_mode to DATA and start Tw timer.

Transition T5:T6: Tw timer has expired and scr_bypass_enable is TRUE (i.e., disable 64B/66B
scrambling) (i.e., Tw timer done * scr_bypass_enable = TRUE).

Transition T5:T1: Tw timer has expired and the port does not transmit LPI and scr_bypass_enable is
FALSE indicating an exit from LPI Mode (i.e., tx_raw ≠ LPI * Tw timer done * scr_bypass_enable = FALSE).
LPI is not transmitted to indicate to remote port that it should exit LPI Mode.

Transition T5:T2: Tw timer has expired and the port transmits LPI and scr_bypass_enable is FALSE
indicating that the port stays in LPI Mode. Return to Sleep mode (i.e., tx_raw = LPI * Tw timer done *
scr_bypass_enable = FALSE).

State T6 SCR Bypass: Disable 64B/66B scrambling for time defined by Bypass_Timer. Start
Bypass_Timer.

Transition T6:T2: The Bypass_Timer timer has expired, and the port transmits LPI, then re-enable 64B/
66B scrambling (i.e., tx_raw = LPI * Bypass_Timer done).

Transition T6:T1: The Bypass_Timer timer has expired and the port does not transmit LPI indicating an
exit from LPI Mode. LPI is not transmitted to indicate to remote port that it should exit LPI Mode (i.e.,
tx_raw ≠ LPI * Bypass_Timer done).

10.6.4.3 LPI Mode Receiver State Diagram

Figure 56 shows the state diagram for the receiver in LPI Mode.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

155

State R1 Full Active: This state is normal Fibre Channel operation. This state is entered upon entry into
the Active state in the FC_Port state machine (see 7). The link is running at full power and data may be
received. The variables lpi_active is set to FALSE, and rx_mode is set to DATA.

Transition R1:R1: If rx_sync is not equal to TRUE return to R1 (i.e., rx_sync ≠ TRUE).

Transition R1:R2: The local port receives LPI and rx_sync is TRUE (i.e., rx_sync = TRUE * rx_coded =
LPI).

State R2 Sleep: The local port has received LPI indicating that the remote port wishes to enter LPI Mode.
Set lpi_active to TRUE. Start Tq timer.

Transition R2:R2: If rx_sync is TRUE, and received LPI (i.e., rx_sync = TRUE * rx_coded = LPI).

Transition R2:R1: if rx_sync is TRUE, and received IDLE (i.e., rx_sync = TRUE * rx_coded = IDLE).

Transition R2:R3: When rx_sync is FALSE (i.e., rx_sync = FALSE).

State R3 Quiet: Local port has entered Quiet mode. Remote transmitter has been turned off. Rx_mode is
set to QUIET.

Transition R3:R4: Energy detect on link (energy_detect = TRUE).

Transition R3:R6: Energy not detected, and Tq timer has expired (energy_detect = FALSE * Tq timer
done).

Figure 56 - LPI Mode receiver state diagram

R5: WF
Start Twf Timer

R1: Active
lpi_active = FALSE
rx_mode = DATA

R3: Quiet
rx_mode = QUIET

R2: Sleep
lpi_active = TRUE

Start Tq Timer

R1:R2

R2:R3

R2:R1

R3:R4

R4: Wake
rx_mode = DATA

Start Tw Timer

R4:R1

R4:R1

R4:R5

R6: Link Fail
rx_sync = FALSE

R1:R1

R2:R2

R3:R6

R4:R2

R2:R6

R5:R6

R5:R1

R5:R2

R5:R1

R4:R2
R5:R2

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

156

State R4 Wake: Remote transmitter is turned back on. Rx_mode is set to Data, Tw timer is started.

Transition R4:R1: Tw timer has not expired and rx_sync is TRUE and IDLE received (i.e., Tw timer not
done * rx_sync = TRUE * rx_coded = IDLE).

Transition R4:R2: Tw timer has not expired and rx_sync is TRUE and LPI received (i.e., Tw timer not done
* rx_sync = TRUE * rx_coded = LPI).

Transition R4:R5: Tw timer has expired.

State R5 WF: Start Twf timer.

Transition R5:R1: Twf timer has not expired and rx_sync is TRUE and LPI is not received (i.e., Twf timer
not done * rx_sync = TRUE = rx_coded ≠ LPI).

Transition R5:R2: Twf timer has not expired and rx_sync is TRUE and LPI received (i.e., Twf timer not
done * rx_sync = TRUE * rx_coded = LPI).

Transition R5:R6: Twf time has expired.

State R6 Link Fail: Port is in Link Failure and shall enter the link initialization state machine (see 7).

State R7 Fast Wake: The local port has entered Fast Wake mode. The remote transmitter is actively
transmitting LPI.

Transition R7:R7: The local port receives LPI (i.e., rx_coded = LPI).

Transition R7:R1: The local port does not receive LPI (i.e., rx_coded ≠ LPI).

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

157

11 Frame Transmission and Reception

11.1 Scope

The frame content is a function of the FC-2V sublevel and the FC-2M sublevel, and is common to all Fibre
Channel implementations. Representation of the delimiters is a function of the FC-2P sublevel. FC-2P
sublevels other than that specified in this standard may not use the Ordered Sets specified by this
standard.

11.2 General frame format

All FC-2 frames shall follow the frame format as shown in figure 57. An FC-2 frame is composed of a SOF
delimiter, frame content, and an EOF delimiter. The frame content is composed of 0 or more
Extended_Headers, a Frame_Header, Data_Field, and CRC. Unless otherwise specified, the term frame
refers to a FC-2 frame in this standard.

11.3 Frame transmission and reception

11.3.1 Overview

Frame transmission and reception are functions of the FC-2P sublevel.

11.3.2 Fill Words

Fill Words are Special Functions that shall be transmitted when no frames or other Special Functions (i.e.,
not Fill Words) are being transmitted. Fill Words may be added to or deleted from a data stream without
loss of meaningful content. For point-to-point links valid Fill Words consist of Idle (see 5.2.7.3 and 5.3.6.1),
ARBff (see 5.2.7.3), or LPI (see 5.3.6.1). See FC-AL-2 for Fill Words in a loop topology.

Fill Words as well as Primitive Sequences (see 5.2.7.5 and 5.2.7.3) may be deleted or inserted in the data
stream to adapt between rates as well as for Alignment Marker insertion or deletion.

FC-2 Frame Format

Frame Content

Figure 57 - FC-2 frame format

(0 to 2112)(24) (4) (4)(4) (0 or more)

EOFCRCData_FieldFrame_HeaderExtended_Header(s)SOF

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

158

Only an allowed Special Function (i.e., Primitive Sequence, Idle, ARBff, or LPI) may be inserted in the data
stream. If a Special Function is inserted in the transmit data stream, then it shall be the same as the
Special Function that was last transmitted. If a Special Function is inserted in the receive data stream, then
it shall be the same as the Special Function that was last received.

11.3.3 Frame Transmission

Frame transmission shall be performed by inserting a frame immediately following a series of Fill Words
(see 11.3.2). Fill Words shall be transmitted immediately upon completion of the frame. A minimum of two
Fill Words shall be transmitted consecutively following the EOF of each frame transmitted by any FC_Port
transmitter.

If an FC_Port transmitter is repeating the Transmission Word stream of a receiver that is not capable of
exercising buffer-to-buffer flow control (e.g., L_Ports with REPEAT true), the transmitter may insert or
remove Fill Words from the Transmission Word stream in order to adjust for timing skew between the
receiver and transmitter; however, it shall retain at least two Fill Words consecutively following each EOF.

If an FC_Port transmitter is repeating the Transmission Word stream of a receiver that is capable of
exercising buffer-to-buffer flow control, the FC_Port shall transmit at least six Primitive Signals between
each EOF and the next SOF. Of the six or more Primitive Signals transmitted, at least four shall be Fill
Words.

If an FC_Port transmitter is not repeating the Transmission Word stream of a receiver, the FC_Port shall
transmit at least six Primitive Signals between each EOF and the next SOF, unless Alignment Markers are
being inserted or rate adaptation requires Primitive Signal deletion. Of the six or more Primitive Signals
transmitted, at least four shall be Fill Words. If Alignment Marker insertion or rate adaptation require
deletion of Primitive Signals, then the FC_Port shall retain at least two Fill Words consecutively following
each EOF.

See FC-AL-2 for Arbitrated Loop specific frame transmission requirements. See 11.3.9 for frame reception
requirements.

11.3.4 Frame byte order

The frame content shall be transmitted sequentially following the SOF delimiter as an ordered word stream
within the definition of the frame as specified in figure 57, table 25, and figure 63 until the EOF delimiter is
transmitted.

Table 25 relates the ordered byte stream transferred from the Upper Level Protocol (or FC-4) to the word
stream that is encoded and transmitted onto a link.

A frame shall be assembled into a word stream, encoded, and transmitted in the following byte order:

A0, A1, A2, A3, B0, B1, B2, B3, B4 ...

B32, B33, B34, B35, C0, C1, C2, C3.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

159

If there is one byte of fill and no ESP_Trailer (see 14.3) in the Data_Field of this frame, the fill byte is B31.
With no optional header present, the relative offset (Parameter Field) shall be specified as follows:

a) relative offset + 0 specifies B24;

b) relative offset + 3 specifies B27; and

c) relative offset + 4 specifies B28.

For a relative offset of decimal 1024 (00 00 04 00h) the Parameter Field shall be specified as:

B20, B21, B22, B23 = 00 00 04 00h.

Table 25 - Frame byte order

Bits
Word

31 .. 24 23 .. 16 15 .. 08 07 .. 00

SOF
K28.5

A0
Dxx.x

A1
Dxx.x

A2
Dxx.x

A3

0
R_CTL D_ID

B0 B1 B2 B3

1

CS_CTL/
Priority

S_ID

B4 B5 B6 B7

2
TYPE F_CTL

B8 B9 B10 B11

3
SEQ_ID DF_CTL SEQ_CNT

B12 B13 B14 B15

4
OX_ID RX_ID

B16 B17 B18 B19

5
Parameter

B20 B21 B22 B23

6
Data_Field

B24 B25 B26 B27

7
Data_Field

B28 B29 B30 B31

n-1
CRC

B32 B33 B34 B35

EOF
K28.5

C0
Dxx.x

C1
Dxx.x

C2
Dxx.x

C3

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

160

11.3.5 Emission Lowering Protocol

An FC-0 standard (e.g., FC-PI-3) may specify the use of Emission Lowering Protocol when using the 8B/
10B transmission code.

When Emission Lowering Protocol is used, the Fill Word shall be the ARBff Ordered Set.

When Emission Lowering Protocol is not used, the Fill Word shall be the Idle Ordered Set.

11.3.6 Frame Scrambling

An FC-0 standard (e.g., FC-PI-3) may specify the use of Frame Scrambling when using the 8B/10B
transmission code.

When Frame Scrambling is used, this clause defines how scrambling and descrambling shall be
performed.

Frame Scrambling is used to reduce the probability of long strings of repeated patterns appearing on a link.
Frame Scrambling may not change the probability of long strings of repeated patterns appearing on a link
when the input data pattern is random. A scrambler and descrambler are specified that have
self-synchronizing capabilities.

The Frame Scrambling algorithm has a low probability of creating patterns from random data input that
may have failure modes on particular link technologies. The retry mechanisms specified in clause 19
require different values in the headers of the frames of the retried sequence and therefore will produce a
different scrambled output, avoiding the identical failure mode.

All words transmitted between the Ordered Set used to denote the start of frame (SOF delimiter) and the
Ordered Set used to denote the end of frame (EOF delimiter), including the CRC, shall be scrambled prior
to performing 8B/10B encoding and descrambled after 8B/10B decoding. Ordered Sets shall not be
scrambled.

Frame Scrambling shall be implemented so that its output is equivalent to the following function:

1) Upon transmission of the Ordered Set used to denote a start of frame (SOF delimiter), a 58-bit
wide internal register is reset to an initial value of the low order 58 bits of the value
029438798327338h. The bits of the register are denoted R(n) for some number n in the range 58
.. 1. R(58) denotes the high-order bit of the register and R(1) denotes the low-order bit of the
register; and

2) For each word that is to be scrambled for transmission, XOR it with R(58 .. 27) and XOR the result
with R(39 .. 8). The result of the second XOR operation is transmitted. Then the content of the
register is modified by first replacing R(58 .. 33) with R(26 .. 1) and then replacing R(32 .. 1) with
the scrambled word that was transmitted.

NOTE 17 - This is equivalent to a self-synchronizing scrambler based on a linear feedback shift register

that implements the polynomial G(x) = x58 + x39 + 1.

The scrambled words are transmitted in the same manner as unscrambled words, as defined in this
standard.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

161

Descrambling shall be implemented so that its output is equivalent to the following function:

1) Upon reception of the Ordered Set used to denote a start of frame (SOF delimiter), a 58-bit wide
internal register is reset to an initial value of the low order 58 bits of the value 029438798327338h.
The bits of the register are denoted R(n) for some number n in the range 58 .. 1. R(58) denotes the
high-order bit of the register and R(1) denotes the low-order bit of the register; and

2) For each word that is to be descrambled upon reception, XOR it with R(58 .. 27) and XOR the
result with R(39 .. 8). The result of the second XOR operation is the descrambled word that is
received. Then the content of the register is modified by first replacing R(58 .. 33) with R(26 .. 1)
and then replacing R(32 .. 1) with the scrambled word that was received.

NOTE 18 - This is equivalent to a self-synchronizing descrambler based on a linear feedback shift

register that implements the polynomial G(x) = x58 + x39 + 1.

Annex B contains information on scrambling and descrambling implementations.

11.3.7 Start-of-Frame (SOF) delimiter

11.3.7.1 Introduction

The Start-of-Frame (SOF) delimiter is represented by an Ordered Set that immediately precedes the frame
content. There are multiple SOF delimiters defined for Sequence control. Tables 56 and 60, respectively,
specify allowable delimiters by class for Data and Link_Control frames. The bit encodings for the SOF
delimiters are defined in table 13 and table 7. SOFx is used to represent any SOF. The Ordered Set that
represents each defined SOF delimiter is designated by the same name as the SOF delimiter. In contexts
that do not make the distinction clear, the delimiter is designated by “SOFx delimiter” and the Ordered Set
that represents it is designated by “SOFx Ordered Set”.

11.3.7.2 SOF Initiate (SOFix)

11.3.7.2.1 Applicability

A Sequence shall be initiated and identified by using an SOFi2 Ordered Set or SOFi3 Ordered Set in the
first frame. SOFix is used to represent these two SOF delimiters.

11.3.7.2.2 SOF Initiate Class 2 (SOFi2)

The SOFi2 Ordered Set shall be used on the first frame of a Sequence for Class 2 service.

11.3.7.2.3 SOF Initiate Class 3 (SOFi3)

The SOFi3 Ordered Set shall be used on the first frame of a Sequence for Class 3 service.

11.3.7.3 SOF Normal (SOFnx)

11.3.7.3.1 Applicability

The SOFn2 Ordered Set and SOFn3 Ordered Set identify the start of all frames other than the first frame of
a Sequence based on class of service. SOFnx is used to indicate SOFn2 and SOFn3.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

162

11.3.7.3.2 SOF Normal Class 2 (SOFn2)

The SOFn2 Ordered Set shall be used for all frames except the first frame of a Sequence for Class 2
service.

11.3.7.3.3 SOF Normal Class 3 (SOFn3)

The SOFn3 Ordered Set shall be used for all frames except the first frame of a Sequence for Class 3
service.

11.3.7.4 SOF Fabric (SOFf)

If a PN_Port or Fx_Port receives a Class F frame, indicated by an SOFf Ordered Set, it shall be discarded
by the PN_Port or Fx_Port. The receiving PN_Port or Fx_Port may send an R_RDY.

NOTE 19 - Sending an R_RDY for a Class F frame is optional for a port not internal to the Fabric (i.e., a
PN_Port or non-switch internal port). This allows backwards compatibility with existing implementations.
New Implementations should send an R_RDY for class F frames.

11.3.8 End-of-Frame (EOF) delimiter

11.3.8.1 Introduction

The End-of-Frame (EOF) delimiter is represented by an Ordered Set that immediately follows the CRC.
The EOF Ordered Set shall designate the end of the frame content and shall be followed by Fill Words.
The Ordered Set that represents each defined EOF delimiter is designated by the same name as the EOF
delimiter. In contexts that do not make the distinction clear, the delimiter is designated by “EOFx delimiter”
and the Ordered Set that represents it is designated by “EOFx Ordered Set”.

Table 56 and table 60, respectively, specify allowable delimiters by class for Data and Link_Control frames.
There are three categories of EOF Ordered Sets:

a) the first category shall indicate that the frame is valid from the sender's perspective and potentially
valid from the receiver's perspective;

b) the second category (EOFni) shall indicate that the frame content is invalid. This category shall

only be used by an Fx_Port that receives a complete frame and decodes it before forwarding it;
and

c) the third category (EOFa) shall indicate the frame content is corrupted and the frame was

truncated during transmission. The third category shall be used by FC_Ports to indicate an internal
malfunction (e.g., a transmitter failure that does not allow the entire frame to be transmitted
normally).

The bit encodings for the EOF Ordered Set are defined in table 13 and table 7.

All frames other than the last frame of a Sequence shall be terminated with an EOFn Ordered Set.

Each Sequence shall terminate with an EOFt Ordered Set.

If an Fx_Port detects a frame error, the Fx_Port shall replace either an EOFn Ordered Set or an EOFt
Ordered Set of the frame in error with the EOFni Ordered Set.

EOFx is used to represent any EOF.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

163

11.3.8.2 Valid frame content

11.3.8.2.1 EOF Normal (EOFn)

The EOFn Ordered Set shall identify the end of frame when one of the other EOF Ordered Sets indicating
valid frame content is not required.

11.3.8.2.2 EOF Terminate (EOFt)

The EOFt Ordered Set shall indicate that the Sequence associated with this SEQ_ID is complete. EOFt
shall be used to properly close a Sequence without error.

11.3.8.3 Invalid frame content

11.3.8.3.1 General

There are two EOF Ordered Sets that indicate that the frame content is invalid. If a frame is received by a
facility internal to a Fabric and an error is detected within the frame content, the frame may be forwarded
with a modified EOF to indicate that an error was previously detected. Error detection in the frame content
by the Fabric is optional.

Errors such as code violation or CRC errors are examples of detectable frame errors.

When a frame is received with an EOF Ordered Set that indicates the frame content is invalid, the invalid
frame condition shall be reported by the entity that replaces the EOF Ordered Set that indicates invalid
frame content. The destination PN_Port, at its discretion, may report the event of receiving a frame with
one of these delimiters.

Errors are counted at the point where they are detected. Events may also be reported at the point where
they are recognized.

11.3.8.3.2 End of Frame Abort (EOFa)

The EOFa Ordered Set shall terminate a partial frame due to a malfunction in a link facility during
transmission. The frame shall end on a word boundary and shall be discarded by the receiver without
transmitting a reply. If the transmitter retransmits the aborted frame, it shall transmit the frame with the
same SEQ_CNT.

An invalid EOF (i.e., EOFni) Ordered Set may be changed to an EOFa Ordered Set under the conditions
specified for EOFa.

EOFa Ordered Sets shall not be changed to an invalid EOF Ordered Set under any conditions.

It is also used by the Fabric to replace missing EOF Ordered Sets or to truncate over length frames.

11.3.8.3.3 EOF Invalid (EOFni)

The EOFni Ordered Set shall replace an EOFn Ordered Set or EOFt Ordered Set, indicating that the frame
content is invalid.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

164

The receiver shall process the frame containing the EOFni Ordered Set in the following manner:

a) no response frame shall be transmitted; and

b) the Data_Field may be used at the receiver's discretion (see 11.3.9.3).

11.3.9 Frame reception

11.3.9.1 Rules

The following list specifies frame reception rules:

a) data bytes received outside the scope of a delimiter Ordered Set pair (SOF and EOF) shall be
discarded;

b) frame reception shall be started by recognition of a SOF Ordered Set;

c) detection of a code violation after frame reception is started but before frame reception is
terminated shall be identified as an invalid Transmission Word within the frame;

d) frame reception shall continue until an Ordered Set, or a Link Failure is detected;

e) if the number of bytes in the Data_Field of the frame exceeds the maximum allowable Data_Field
size for the type of frame indicated by the SOF Ordered Set (see clause 17), an FC_Port may
consider the frame invalid and discard Data_Field bytes as received. However, an Ordered Set or
Link Failure shall still terminate frame reception. An FC_Port is also allowed to receive the entire
frame. In acknowledged classes of service, if the frame is valid other than for its length:

A) a PN_Port shall respond with a P_RJT with Reason Code set to Incorrect length (i.e., 13h);
and

B) an Fx_Port shall respond with an F_RJT with Reason Code set to Incorrect length (i.e., 13h);

and

f) in either process or discard policy, if an EOFa terminates frame reception, the entire frame shall be

discarded, including the Frame_Header and Data_Field.

11.3.9.2 Frame validity

A frame is valid at the FC-2P sublevel if it meets all of these conditions:

a) the Ordered Set terminating the frame is one of EOFn or EOFt;

b) the length of the frame content is a multiple of four bytes; and

c) the frame content includes no invalid Transmission Words.

11.3.9.3 Invalid frame processing

A frame is invalid if it does not meet the conditions for validity at the FC-2P sublevel (see 11.3.9.2) and the
FC-2V sublevel (see 11.4.5).

During normal processing of valid frames, errors may be detected that are rejectable in Class 2 using the
P_RJT Link_Response frame (see 15.3.3.4). P_RJT frames shall not be transmitted for invalid frames. If a
rejectable error condition or a busy condition is detected for a valid Class 3 frame, the frame shall be
discarded.

When errors (e.g., invalid Transmission Word and invalid CRC) are detected, the event count in the Link
Error Status Block shall be updated (see 22.4.8). If delimiter usage does not follow allowable delimiters by
class as specified in tables 56 and 60, a valid frame shall be considered rejectable.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

165

If a PN_Port is able to determine that an invalid frame is associated with an Exchange that is designated
as operating under Process policy, the PN_Port may process and use the Data_Field at its discretion,
otherwise, the entire invalid frame shall be discarded.

When a frame is corrupted, it is not known if the Frame_Header is correct. The X_IDs, SEQ_ID,
SEQ_CNT, and Parameter fields may not contain reliable information. The error may cause a misrouted
frame to have a D_ID that appears to be correct. Such a frame may be used under very restricted
conditions.

11.4 Frame Content

11.4.1 Scope

Within the frame content, addressing information supports the functionality of the FC-2M sublevel and the
FC-2V sublevel. All other frame content supports the functionality of the FC-2V sublevel, higher levels, and
ULPs.

11.4.2 Extended_Headers

Extended_Headers, if present, shall immediately follow the SOF delimiter. Each Extended_Header is
identified by a certain value of its first byte (R_CTL, see table 27). Extended_Headers shall be transmitted
on a word boundary. Extended_Headers are defined in clause 13.

11.4.3 Frame_Header

The Frame_Header shall immediately follow the SOF delimiter if no Extended_Headers are present, or
shall follow the last Extended_Header present, for all frames. The Frame_Header shall be transmitted on a
word boundary. The Frame_Header is used by the LCF to control link operations, control device protocol
transfers, and detect missing or out of order frames. The Frame_Header is defined in clause 12.

11.4.4 Data_Field

The Data_Field shall follow the Frame_Header and shall be aligned on a word boundary. The size of the
Data_Field shall be a multiple of four bytes and may be zero.

11.4.5 CRC

The Cyclic Redundancy Check (CRC) is a four byte field that shall immediately follow the Data_Field and
shall be used to verify the data integrity of the data within its scope. The CRC scope shall be the
Extended_Headers, if any, the Frame_Header, and the Data_Field. SOF and EOF delimiters shall not be
included in the CRC scope. The CRC field for a frame shall be calculated prior to encoding and any
scrambling of the frame for transmission and after decoding and any descrambling of the frame upon
reception. The CRC field shall be aligned on a word boundary.

The CRC specified in this standard follows the Frame Check Sequence (FCS) specified in Fiber
Distributed Data Interface – Media Access Control (see FDDI-MAC). The FDDI-MAC FCS is specified as a
binary polynomial arithmetic expression acting on a generator polynomial and a data input polynomial
whose coefficients are the bits of the CRC scope, and producing an FCS polynomial. The CRC scope shall
be mapped to a data polynomial for FDDI-MAC FCS calculation by:

1) reversing the order of the bits in the first byte of the CRC scope;

2) using the most significant bit of the revised first byte in the CRC scope as the most significant
coefficient of the data polynomial;

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

166

3) using successively less significant bits of the revised first byte in the CRC scope as successively
less significant coefficients of the data polynomial; and

4) following steps 1-3 for each successive byte of the CRC scope to generate successively less
significant groups of eight coefficients of the data polynomial.

An informative diagram of this mapping is given in figure 58.

The CRC field value shall be mapped from the FCS polynomial derived from the FDDI-MAC FCS
calculation by:

1) extending the FCS polynomial to 32 coefficients by adding zero value coefficients at the most
significant end;

2) reversing the order of the first eight coefficients of the FCS polynomial;

3) using the most significant coefficient of the revised first eight coefficients in the FCS polynomial as
the most significant bit of the CRC field value;

4) using successively less significant coefficients of the revised first eight coefficients in the FCS
polynomial as successively less significant bits of the CRC field value; and

5) following steps 2-4 for each successive eight coefficients of the FCS polynomial to generate
successively less significant bytes of the CRC field value.

An informative diagram of the mapping of the extended FCS polynomial to the CRC field value is given in
figure 59.

See Annex A for informative extracts from the normative text in FDDI-MAC and an example of the CRC
generation process for a frame.

If the frame CRC for a received frame is not valid, the frame is invalid at the FC-2V sublevel, and it shall be
processed in the same manner as frames that are not valid at the FC-2P sublevel (see 11.3.9.2).

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

167

The bits within each byte of level FC-2V data, including the CRC field itself, are reversed from the order of
the coefficients in each group of eight coefficients of the FDDI-MAC FCS polynomial calculation, but the
order of the bytes within the frame is retained. This reflects the same reversal that is applied by
transmission codes used for Fibre Channel frames.

Figure 58 - Informative diagram of mapping CRC scope to FCS input

31 30 29 28 27 26 25 24
CRC scope
first word
first byte

n n-1 n-2 n-3 n-4 n-5 n-6 n-7
data

polynomial
coefficients

23 22 21 20 19 18 17 16
CRC scope
first word

second byte

n-8 n-9 n-10 n-11 n-12 n-13 n-14 n-15
data

polynomial
coefficients

7 6 5 4 3 2 1 0
CRC scope
last word
last byte

7 6 5 4 3 2 1 0
data

polynomial
coefficients

• • •

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

168

Figure 59 - Informative diagram of mapping FCS coefficients to CRC field

31 30 29 28 27 26 25 24
CRC field
first byte

31 30 29 28 27 26 25 24
FCS

polynomial
coefficients

23 22 21 20 19 18 17 16
CRC field

second byte

23 22 21 20 19 18 17 16
FCS

polynomial
coefficients

7 6 5 4 3 2 1 0
CRC field
last byte

7 6 5 4 3 2 1 0
FCS

polynomial
coefficients

• • •

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

169

12 Frame_Header

12.1 Scope

Within the Frame_Header, addressing information (i.e., the S_ID and D_ID) supports the functionality of
the FC-2M sublevel and the FC-2V sublevel. All other Frame_Header information supports the functionality
of the FC-2V sublevel.

12.2 Introduction

The Frame_Header shall be subdivided into fields as shown in table 26.

The Frame_Header shall immediately follow the SOF delimiter, if no Extended_Headers are present, or
shall follow the last Extended_Header present, and shall be transmitted on a word boundary. The
Frame_Header is used to control link operations and device protocol transfers as well as detect missing or
out of order frames.

12.3 Routing Control (R_CTL)

12.3.1 Introduction

The R_CTL field is a one-byte field in Word 0 Bits 31-24 that contains routing bits and information bits to
categorize the frame function. When the R_CTL field is used in combination with the TYPE field (Word 2,
bits 31-24), it provides an Nx_Port with assistance in frame routing, data routing, or addressing.

The R_CTL field is further subdivided into the ROUTING field (bits 31-28) and the INFORMATION field
(bits 27-24).

Table 26 - Frame_Header

Bits
Word

31 .. 24 23 .. 16 15 .. 08 07 .. 00

0 R_CTL D_ID

1 CS_CTL/Priority S_ID

2 TYPE F_CTL

3 SEQ_ID DF_CTL SEQ_CNT

4 OX_ID RX_ID

5 Parameter

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

170

12.3.2 ROUTING Field

Table 27 shows the frame types associated with the ROUTING field.

12.3.3 INFORMATION Field

The INFORMATION field is included in R_CTL to assist the receiver of a Data frame in directing the
Data_Field content to the appropriate buffer pool.

The R_CTL field for Device_Data frames shall be set according to table 28.

The INFORMATION field value of "Uncategorized information", does not offer assistance in routing.

Table 27 - R_CTL - Type Code Summary

R_CTL
Frame type

ROUTING INFORMATION

0h (see table 28) Device_Data frames (see clause 15)

2h (see FC-LS-3) Extended Link Services (see FC-LS-3)

3h (see table 30) FC-4 Link_Data (see relevant FC-4
standard)

4h (see table 31) Video_Data (see FC-AV and ARINC
818)

5h (see table 46) Extended_Headers (see 13)

8h (see table 69) Basic Link Services (see clause 16)

Ch (see table 59) Link_Control Frame (see 15.3)

Fh (see table 32) Extended Routing (no standard usage
is specified)

Others Reserved Reserved

Table 28 - Device_Data Information Categories

R-CTL
Description

ROUTING INFORMATION

0h

0h Uncategorized information

1h Solicited Data

2h Unsolicited Control

3h Solicited Control

4h Unsolicited Data

5h Data Descriptor

6h Unsolicited Command

7h Command Status

Others Reserved

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

171

When the ROUTING field is 0h and the INFORMATION field is 5h, the Data Descriptor is formatted as
shown in table 29.

The R_CTL field for FC-4 Link_Data frames shall be set according to table 30.

The R_CTL field for Video_Data frames shall be set according to table 31.

The R_CTL field for Extended Routing frames shall be set according to table 32.

Table 29 - Data Descriptor Payload

Item Size-Bytes

Offset of data being transferred 4

Length of data being transferred 4

Reserved 4

Other optional information (FC-4 dependent) max

Table 30 - FC-4 Link_Data Information Categories

R-CTL
Description

ROUTING INFORMATION

3h

0h Uncategorized information

1h Solicited Data

2h Unsolicited Control

3h Solicited Control

4h Unsolicited Data

5h Data Descriptor

6h Unsolicited Command

7h Command Status

Others Reserved

Table 31 - Video_Data Information Categories

R_CTL
Description

ROUTING INFORMATION

4h 4h Unsolicited Data

Others Reserved

Table 32 - Extended Routing Information Categories

R_CTL
Description

ROUTING INFORMATION

Fh 0h Vendor Unique

Others Reserved

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

172

12.4 Address identifiers (D_ID, S_ID)

12.4.1 General

Each Nx_Port shall have a native N_Port_ID that is unique within the address domain of a Fabric.

An N_Port_ID of binary zeros indicates that an Nx_Port is unidentified. When a PN_Port completes link
initialization, it shall be unidentified (i.e., it shall have a single Nx_Port for which the N_Port_ID is 00 00
00h). While a PN_Port is unidentified, it shall

a) accept all frames with any D_ID value;

b) not Reject (P_RJT) any frames with a reason code of “Invalid D_ID”; and

c) Reject (P_RJT) frames other than Basic and Extended Link Service with a reason code of “Login
required”.

An Nx_Port determines its N_Port_ID by performing the Fabric Login protocol (see 4.10.5.2) or the
Additional N_Port_ID protocol (see 4.10.5.3) as specified in FC-LS-3. During either protocol, an Nx_Port
may be assigned an N_Port_ID or it may determine its own N_Port_ID.

12.4.2 Reserved address identifiers

Address identifiers in the range of FF FC 01h to FF FC FEh are reserved for Domain Controllers. Address
identifiers in the range of FF FF F0h to FF FF FEh are reserved for well-known addresses. The address
identifier of FF FF FFh is reserved as a broadcast address. See table 33 for the complete list.

12.4.3 Destination_ID (D_ID)

The D_ID is a three-byte field (Word 0, Bits 23-0) that shall contain the address identifier of the destination
Nx_Port.

12.4.4 Source_ID (S_ID)

The S_ID is a three-byte field (Word 1, Bits 23-0) that shall contain the address identifier of the source
Nx_Port.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

173

12.5 Class Specific Control (CS_CTL)/Priority

12.5.1 Introduction

The meaning of the CS_CTL field is controlled by the CS_CTL/Priority Enable bit (F_CTL, bit 17). When
the CS_CTL/Priority Enable bit is set to zero, word 1, bits 31-24 shall be interpreted to be CS_CTL
information as defined in 12.5.1.1. When the CS_CTL/Priority Enable bit is set to one, word 1, bits 31-24
shall be interpreted to be Priority information as described in 12.5.2.

12.5.1.1 CS_CTL

When bit 17 of F_CTL is set to zero, Word 1, bits 31-24 of the Frame_Header is defined as the CS_CTL
field. The CS_CTL field is defined in table 34.

Table 33 - Domain Controller and Well-known address identifiers

Address Value Description

FF FC 01h to
FF FC FEh

Reserved for Domain Controllers

FF FF F0h N_Port Controller (see FC-LS-3)

FF FF F1h to
FF FF F3h

Reserved

FF FF F4h Event Service (see FC-GS-7)

FF FF F5h Multicast Server - Obsolete

FF FF F6h Clock Synchronization Service (see clause 24)

FF FF F7h Security Key Distribution Service (see FC-GS-7)

FF FF F8h Alias Server - Obsolete

FF FF F9h Reserved

FF FF FAh Management Service (see FC-GS-7)

FF FF FBh Time Service (see FC-GS-7)

FF FF FCh Directory Service (see FC-GS-7)

FF FF FDh Fabric Controller (see FC-SW-6)

FF FF FEh F_Port Controller (see FC-SW-6)

FF FF FFh Broadcast address identifier (see 23.3)

Table 34 - CS_CTL field

Bits Abbr. Meaning

31 PREF 0 = Frame is delivered with no Preference
1 = Frame may be delivered with Preference

30 Reserved for additional Preference function

29-24 DSCP Differentiated Services Code Point

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

174

PREF shall be meaningful in all frames.

Bits 29-24 shall be used to define policies to differentiate traffic flows. The default value shall be 000000b,
that is defined as the best effort QoS. Other values are defined in RFC 2597, “Assured Forwarding PHB
Group”, and RFC 2598, “An Expedited Forwarding PHB”. Values other than 000000b and those defined in
the referenced RFCs are reserved.

12.5.2 Priority

When supported by Nx_Ports (see FC-LS-3), the Priority field shall be used to resolve resource contention
or to determine the order to deliver frames.

Word 1, bits 31-24 of the Frame_Header shall be defined as the Priority field when the CS_CTL/Priority
Enable bit (F_CTL, bit 17) is set to one. The Priority field contains priority information for the class of
service identified by the SOF. A value of 0000000b in word 1, bits 31-25 shall indicate that no priority has
been assigned to the frame. The remaining values shall indicate the relative priority of the frame, where
the relative priority is monotonically increasing within an implemented range. An implementation may
define a subset of contiguous priority values, where all values outside the implemented subset of values
are treated as if no priority has been assigned to the frame.

The Priority field is defined in table 35.

Word 1, bits 31-25 shall be the priority. The priority for a Sequence shall be established by the priority
provided by the Sequence Initiator SOFi2 or SOFi3 frame. The Sequence Initiator should set the Priority to
the same value for all frames in a given Sequence. Changing priority in subsequent frames in a Sequence
may result in out of order delivery of Data frames. However, priority does not in itself guarantee in order
delivery. Both the Fabric and the Nx_Ports shall not be required to validate the consistency of the Priority
field throughout a Sequence.

12.6 Data structure type (TYPE)

The data structure type (TYPE) is a one-byte field (Word 2, Bits 31-24) that shall identify the protocol of the
frame content for Data frames.

When the Routing field (word 0, bits 31-28) indicates a Link_Control frame other than F_BSY, the TYPE
field (word 0, bits 31-24) is reserved. F_BSY frames use the TYPE field to indicate a reason code for the
F_BSY. When the F_BSY is in response to a Link_Control frame, the Information category field (word 0,
bits 27-24) of the busied frame is copied by the Fabric into the TYPE field (word 2, bits 27-24). The bit
encodings are shown in table 59.

NOTE 20 - Copying the Link_Control command code allows a source Nx_Port to easily retransmit the
frame if it is busied by the Fabric (see 15.3.3.2).

Table 35 - Priority field

Word 1, bit(s) Meaning

31-25 Priority

24 Obsolete

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

175

When the Routing bits in R_CTL indicate Basic or Extended Link_Data, TYPE codes are decoded as
shown in table 36.

When the Routing bits in R_CTL indicate Video_Data, the TYPE codes are decoded as shown in table 37.

Table 36 - TYPE codes - Link Service

Encoded Value Word 2, bits 31-24 Description

00h Basic Link Service

01h Extended Link Service

02h to CFh Reserved

D0h to FFh Vendor specific

Table 37 - TYPE codes - Video_Data

Encoded Value Word 2, bits 31-24 Description

02h to 5Fh Reserved

60h FC-AV Container (see FC-AV)

61h ARINC 818 (see ARINC 818)

62h to 63h Reserved for FC-AV

64h to CFh Reserved

D0h to FFh Vendor specific

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

176

When the Routing bits in R_CTL indicate FC-4 Device_Data or FC-4 Link_Data TYPE codes are decoded
as shown in table 38

Table 38 - TYPE codes - FC-4 (Device_Data and Link_Data) (part 1 of 2)

Encoded Value
in Word 2, bits 31-24

Description

00h to 03h Reserved

04h Obsolete

05h IPv4, IPv6, and ARP over Fibre Channel

(see RFC 2625, RFC 3831, RFC 4338 b)

06h to 07h Reserved

08h Fibre Channel Protocol (see SAM-5)

09h Obsolete

0Ah Additional FCP Features (see SAM-5) a

0Bh to 0Fh Reserved - SCSI

10h Reserved

11h to 13h Obsolete

14h Fibre Channel SATA Tunnelling Protocol (see FC-PI-5)

15h to 17h Reserved

18h Allocated for SBCCS (see FC-SB-5)

19h Obsolete

1Ah Obsolete

1Bh SBCCS Channel to Control Unit (see FC-SB-5)

1Ch SBCCS Control Unit to Channel (see FC-SB-5)

1Dh to 1Fh Reserved for SBCCS

20h Fibre Channel Common Transport (see FC-GS-7)

21h Reserved

22h Switch Fabric Internal Link Services (see FC-SW-6)

23h Obsolete

24h Obsolete

25h Inter-Fabric Router Internal Link Services (see FC-IFR)

26h to 27h Reserved - Fabric infrastructure

28h NVMe over Fibre Channel (see FC-NVMe)

29h to 3Fh Reserved

a This TYPE code is used to identify a protocol related feature. It shall not appear in the TYPE field of a
Frame_Header.

b The IETF has published RFC 4338, which obsoletes both RFC 2625 and RFC 3831

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

177

12.7 Frame Control (F_CTL)

12.7.1 Introduction

The Frame Control (F_CTL) field (Word 2, Bits 23-0) is a three-byte field that contains control information
relating to the frame content. The remaining subclauses in 12.7 describe the valid uses of the F_CTL bits.
If an error in bit usage is detected, a reject frame (P_RJT) shall be transmitted in response with an
appropriate reason code (see 15.3.3.4) for Class 2. The format of the F_CTL bits are defined in table 39.

When a bit is designated as meaningful under a set of conditions, that bit shall be ignored if those
conditions are not present (e.g., Bit 18 is only meaningful when bit 19 is set to one; this means that bit 18
shall be ignored unless bit 19 is set to one).

40h HIPPI-FP

41h to 47h Reserved

48h MIL-STD-1553 (see FC-AE-1553)

49h ASM (see FC-AE-ASM)

4Ah to 4Fh Reserved for future use in a standard for the Fibre Channel Avionics
Environment (e.g., a successor to FC-AE-ASM)

50h to 57h Reserved for future use in a standard for the Fibre Channel Backbone (e.g., a
successor to FC-BB-6)

58h Virtual Interface (see FC-VI)

59h to DDh Reserved

DEh Generic Fibre Channel Features (see FC-GS-7) a

DFh Allocated for RNID General Topology Discovery page identification (see

FC-LS-3) a

E0h to FFh Vendor specific

Table 38 - TYPE codes - FC-4 (Device_Data and Link_Data) (part 2 of 2)

Encoded Value
in Word 2, bits 31-24

Description

a This TYPE code is used to identify a protocol related feature. It shall not appear in the TYPE field of a
Frame_Header.

b The IETF has published RFC 4338, which obsoletes both RFC 2625 and RFC 3831

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

178

Table 39 - Exchange/Sequence Control (F_CTL) (part 1 of 2)

Control Field
Word 2

Bits
Description Reference

Exchange Context 23
0 = Originator of Exchange
1 = Responder of Exchange

12.7.2.

Sequence Context 22
0 = Sequence Initiator
1 = Sequence Recipient

12.7.3

First_Sequence 21
0 = Sequence other than first of Exchange
1 = first Sequence of Exchange

12.7.4

Last_Sequence 20
0 = Sequence other than last of Exchange
1 = last Sequence of Exchange

12.7.5

End_Sequence 19
0 = Data frame other than last of Sequence
1 = last Data frame of Sequence

12.7.6

18 Reserved

CS_CTL/Priority Enable 17
0 = Word 1, Bits 31-24 = CS_CTL
1 = Word 1, Bits 31-24 = Priority

12.7.7

Sequence Initiative 16
0 = hold Sequence Initiative
1 = transfer Sequence Initiative

12.7.8

15 Reserved

14 Reserved

ACK_Form 13-12

00b = No assistance provided
01b = Ack_1 Required
10b = reserved
11b = Ack_0 Required

12.7.9

11 Reserved

10 Reserved

Retransmitted Sequence -
Obsolete

9
Shall be set to zero

Unidirectional Transmit -
Obsolete

8
Shall be set to zero

Continue Sequence Condition
- Obsolete

7-6
Shall be set to zero

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

179

12.7.2 Exchange Context

An Exchange shall be started by the Originator Nx_Port (see 19.6.2). The other Nx_Port of the Exchange
shall be known as the Responder (see 19.6.3). If the Exchange Context bit (bit 23) is set to zero, the S_ID
is associated with the Exchange Originator. If the bit is set to one, the S_ID is associated with the
Exchange Responder.

12.7.3 Sequence Context

A Sequence shall be started by a Sequence Initiator facility within an Nx_Port. The destination Nx_Port of
the Sequence shall be known as the Sequence Recipient. If the Sequence Context (bit 22) bit is set to
zero, it indicates that the S_ID is associated with the Sequence Initiator. If the bit is set to one, it indicates
that the S_ID is associated with the Sequence Responder. This indicates the Sequence context.

Knowledge of Sequence context is required for proper handling of Link_Control frames received in
response to Data frame transmission in Class 2. When a Busy frame is received, it may be in response to
a Data frame (Sequence Initiator) or to an ACK frame (Sequence Recipient).

12.7.4 First_Sequence

The First_Sequence bit (bit 21) shall be set to one on all frames in the first Sequence of an Exchange (see
19.4.2). It shall be set to zero for all other Sequences within an Exchange.

Abort Sequence Condition 5-4

ACK frame - Sequence Recipient
00b = Continue sequence
01b = Abort Sequence, Perform ABTS
10b = Stop Sequence
11b - Obsolete

12.7.10Data frame (1st of Exchange) - Sequence
Initiator
00b = Abort, Discard multiple Sequences
01b = Abort, Discard a single Sequence
10b = Process policy with infinite buffers
11b - Obsolete

Relative offset present 3
0 = Parameter field defined for some frames
1 = Parameter Field = relative offset

12.7.11

Exchange reassembly 2 Reserved for Exchange reassembly

Fill Bytes 1-0

End of Payload - bytes of fill
00b = 0 bytes of fill
01b = 1 byte of fill (first byte following Payload)
10b = 2 bytes of fill (first two bytes following
Payload)
11b = 3 bytes of fill (first three bytes following
Payload)

12.7.13

Table 39 - Exchange/Sequence Control (F_CTL) (part 2 of 2)

Control Field
Word 2

Bits
Description Reference

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

180

12.7.5 Last_Sequence

The Last_Sequence bit (bit 20) shall be set to one on the last Data frame in the last Sequence of an
Exchange (see 19.4.13). However, it may be set to one on a Data frame prior to the last frame. Once it is
set to one, it shall be set to one on all subsequent Data frames in the last Sequence of an Exchange. It
shall be set to zero for all other Sequences within an Exchange. This bit shall be set to the same value in
the Link_Control frame as the Data frame to which it corresponds.

NOTE 21 - The early transition of this bit, unlike other F_CTL bits, is permitted as a hardware assist by
providing an advance indication that the Sequence is nearing completion.

12.7.6 End_Sequence

The End_Sequence bit (bit 19) shall be set to one on the last Data frame of a Sequence. In Class 2, the
final ACK with this bit set to one confirms the end of the Sequence, however, the SEQ_CNT shall match
the last Data frame delivered that may not be the last Data frame transmitted. This indication is used for
Sequence termination by the two Nx_Ports involved in addition to EOFt (see 19.4.8). This bit shall be set to
zero for all other frames within a Sequence.

12.7.7 CS_CTL/Priority Enable

When the CS_CTL/Priority Enable bit (bit 17) is set to zero, word 1, bits 31-24 of the Frame_Header shall
be interpreted to be the CS_CTL field as described in 12.5.1.1. When CS_CTL/Priority Enable is set to
one, word 1, bits 31-24 of the Frame_Header shall be interpreted to be the Priority field as described in
12.5.2.

The Sequence Initiator shall set CS_CTL/Priority Enable to the same value for all frames in a given
Sequence.

Both the Fabric and the Nx_Ports shall not be required to validate the constancy of CS_CTL/Priority
Enable throughout a Sequence.

12.7.8 Sequence Initiative

The Originator of an Exchange shall initiate the first Sequence as the Sequence Initiator. If the Sequence
Initiative bit (bit 16) is set to zero, the Sequence Initiator shall hold the initiative to continue transmitting
Sequences for the duration of this Sequence Initiative. The Sequence Recipient gains the initiative to
transmit a new Sequence for this Exchange after the Sequence Initiative has been transferred to the
Recipient (see 19.7.5). This shall be accomplished by setting the Sequence Initiative bit to one in the last
Data frame of a Sequence (End_Sequence set to one). In Class 2, the Sequence Initiator shall consider
Sequence Initiative transferred when the ACK to the corresponding Data frame is received with the
Sequence Initiative bit set to one. Setting bit 16 to one is only meaningful when End_Sequence is set to
one.

12.7.9 ACK_Form

The ACK_Form bits (bits 13-12) provide an optional assistance to the Sequence Recipient by translating
the ACK capability bits in the Nx_Port Class Service Login Parameters into an F_CTL field accompanying
the frame to be acknowledged (see 15.4.4). ACK_Form is meaningful on all Class 2 Data frames of a
Sequence. ACK_Form is not meaningful on Class 2 Link_Control frames, or any Class 3 frames. The
meaning of the ACK_Form bits is given in table 39.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

181

12.7.10 Abort Sequence Condition

The Abort Sequence Condition bits (bits 5-4) shall be set to a value by the Exchange Originator on the first
Data frame of an Exchange to indicate that the Exchange Originator is requiring a specific error policy for
the Exchange. For Class 3 operation between VN_Ports that have negotiated to allow Process with infinite
buffering Error Policy (see 22.5.4.3), the Abort Sequence Condition bits shall be set to indicate the same
error policy on every Data frame within the Exchange. In Class 2 operation, the error policy passed in the
first frame of the first Sequence of an Exchange shall be the error policy supported by both Nx_Ports
participating in the Exchange, and the Abort Sequence Condition bits shall not be meaningful on other
Data frames within the Exchange.

The definition of the Abort Sequence Condition bits by the Sequence Initiator is given in table 40.

An Nx_Port, in the PLOGI sequence shall indicate process policy support. Discard policy shall be
supported.

If the delivery order of Sequences, without gaps, is required by an FC-4 to match the transmission order of
Sequences within an Exchange, then one of the two Discard multiple Sequence Error Policies is required.
In the Discard a Single Sequence Error Policy, out of order Sequence delivery is to be expected and
handled by the FC-4 or upper level.

The Abort Sequence Condition bits shall be set to a value other than zeros by the Sequence Recipient in
an ACK frame to indicate to the Sequence Initiator that the Sequence Recipient has detected an abnormal
condition, malfunction, or error.

The definition of the Abort Sequence Condition bits by the Sequence Recipient is given in table 41.

Table 40 - Abort Sequence Condition Bits Definition by Sequence Initiator

Encoding Meaning

00b

In the Abort, Discard multiple Sequences Error Policy, the Sequence Recipient shall
deliver Sequences to the FC-4 or upper level in the order transmitted under the
condition that the previous Sequence, if any, was also deliverable. If a Sequence is
determined to be non-deliverable, all subsequent Sequences shall be discarded until
the ABTS protocol has been completed. The Abort, Discard multiple Sequences Error
Policy shall be supported.

01b

In the Abort, Discard a single Sequence Error Policy, the Sequence Recipient may
deliver Sequences to the FC-4 or upper level in the order that received Sequences are
completed by the Sequence Recipient without regard to the deliverability of any
previous Sequences. The Abort, Discard a single Sequence Error Policy shall be
supported.

10b
In the Process policy with infinite buffers, frames shall be delivered to the FC-4 or upper
level in the order received. Process policy with infinite buffers shall only be allowed in
Class 3.

11b Obsolete

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

182

12.7.11 Relative offset present

When relative offset present (bit 3) is set to one in a Data frame, the Parameter Field (see 12.13) contains
the relative offset for the Payload of the frame as defined by the FC-4 protocol. Relative offset present is
only meaningful on Data frames of a Sequence and shall be ignored on all other frames. Relative offset
present is not meaningful on Link_Control or Basic Link Service Link Data frames. When relative offset
present is set to zero on a Data frame, the value in the Parameter Field shall be passed to the upper level
(e.g., for SAM-5 Task Retry Identification).

12.7.12 Exchange reassembly

The Sequence Initiator shall set the Exchange reassembly bit (bit 2) to zero to indicate that the Payload in
this Data frame is associated with an Exchange between a single pair of Nx_Ports. Therefore, reassembly
is confined to a single destination Nx_Port.

The Exchange reassembly bit being set to one is reserved for future use to indicate that the Payload in this
Data frame is associated with an Exchange being managed by a single node using multiple Nx_Ports at
either the source, destination, or both.

12.7.13 Fill Bytes

If the value of the Fill Bytes (bits 1-0) is non-zero, it notifies the Data frame receiver (Sequence Recipient)
that one or more of the bytes following the Payload shall be ignored, except for CRC calculation. The
number of fill bytes plus the length of the Payload in bytes shall be a multiple of four. The fill byte value is
not specified by this standard.

Fill Bytes shall only be meaningful on the last Data frame of a series of consecutive Data frames of a single
Information Category within a single Sequence (e.g., if a Sequence contains Data frames of a single
Information Category, non-zero values Fill Bytes shall only be meaningful on the last Data frame of the
Sequence). The Fill Bytes shall not be included in the Payload.

Table 41 - Abort Sequence Condition Bits Definition by Sequence Recipient

Encoding Meaning

00b Continue Sequence

01b

A request by the Sequence Recipient to the Sequence Initiator to terminate this
Sequence using the Abort Sequence protocol and then optionally perform
Sequence recovery. See FC-LS-3 and 22.5.5.2.2 for a description of the Abort
Sequence protocol.

10b

A request by the Sequence Recipient to the Sequence Initiator to stop this
Sequence. This allows for a request for an early termination by the Sequence
Recipient. Some of the data received may have been processed and some of
the data discarded. Aborting the Sequence using the ABTS command is not
necessary and shall not be used. Both the Sequence Initiator and Recipient end
the Sequence in a normal manner. See 22.5.5.3 for a description of the Stop
Sequence protocol.

11b Obsolete

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

183

12.7.14 F_CTL bits on Data frames

Table 42 shows the interactions between specific bits within the F_CTL field. The top part of table 42
describes those bits that are unconditionally meaningful on the first, last, or any Data frame of a Sequence.

NOTE 22 - A control function may become effective when an F_CTL bit is set to one. The locations
where the function is meaningful are indicated in the top part of the table 42.

The bottom part of table 42 describes those bits that are conditionally meaningful (e.g., Bit 19 set to one
(column) is only meaningful on the last Data frame of a Sequence. Bit 16 set to one (column) is only
meaningful on the last Data frame when bit 19 set to one).

12.7.15 F_CTL bits on Link_Control frames

Table 43 shows the interactions with F_CTL bits on ACK, BSY, and RJT frames and should be reviewed
together with table 42. F_CTL bits 19 and 16 in an ACK frame are transmitted to reflect confirmation (1) or
denial (0) of those indications by the Sequence Recipient (e.g., if bits 5-4 are set to 01b in response to a
Data frame in which bit 19 is set one and bit 16 is set to one, setting bits 19 and 16 to zero in the ACK
frame indicates that the Data frame was not processed as the last Data frame and that Sequence Initiative
was not accepted by the Sequence Recipient of the Data frame since the Sequence Recipient is
requesting that the Sequence Initiator transmit an ABTS frame to Abort the Sequence). See 19.4.8,
19.4.10 and 22.5.5.2.2 for additional information on setting the Abort Sequence Condition bits.

Table 42 - F_CTL bit interactions on Data frames

Bits associated
with Data frame

order:
23 22

21
= 1

20
= 1

19
 = 1

17
= 1

16
= 1

9
= 1

8
= 1

5- 4
3

= 1
1- 0

1st frame of Seq
last frame of Seq
any frame of Seq

M
M
M

M
M
M

M
M
M

M
M
M
M

M
M
M

M
M

MF M
M
M

M

First_Sequence
21 = 0
21 = 1 MF

Last_Sequence
20 = 0
20 = 1

End_Sequence
19 = 0
19 = 1 ML ML

Sequence
Initiative
16 = 0
16 = 1

Key: M = Meaningful
MF = Only meaningful on first Data frame of a Sequence
ML = Only meaningful on last Data frame of a Sequence

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

184

A control function may become effective when a F_CTL bit is set to one. The locations where the function
is meaningful are indicated in the top part of the table 43.

12.8 Sequence_ID (SEQ_ID)

The SEQ_ID is a one byte field (Word 3, Bits 31-24) assigned by the Sequence Initiator. If the SEQ_ID
unique per Exchange bit (see FC-LS-3) is set to zero in the PLOGI request or PLOGI LS_ACC, then the
SEQ_ID shall have a value that is unique among all concurrently open Sequences between the Sequence
Initiator and the Sequence Recipient, independent of the X_ID. If the SEQ_ID unique per Exchange bit is
set to one in the PLOGI request and PLOGI LS_ACC, then the SEQ_ID shall have a value that is unique
among all concurrently open Sequences with the same X_ID. Both the Sequence Initiator and the
Sequence Recipient track the status of frames within the Sequence using f ields within the
Sequence_Qualifier. If its X_ID is unassigned, it shall use any other field or fields (e.g., S_ID, D_ID, or the
other Nx_Port's X_ID) for tracking (see 12.4.3, 12.4.4, 12.11 and 12.12).

Table 43 - F_CTL bit interactions on ACK, BSY or RJT

Bits associated with
ACK frame order:

23 22 21 20 19 16
9

= 1
8

= 1
5- 4 3 1- 0

ACK to 1st frame
ACK to last frame
ACK to any frame

V
V
V

V
V
V

E
E
E

M
M
M

M
M
M

Ma
Ma
Ma

Exchange Context
23 = 0
23 = 1

V
V

Sequence Context
22 = 0
22 = 1

V
V

First_Sequence
21 = 0
21 = 1

E
E

Last_Sequence
20 = 0
20 = 1

E
E

End_Sequence
19 = 0
19 = 1

E
ML ML

Sequence Initiative
16 = 0
16 = 1

E
ML

Key: M = Meaningful
Ma = Meaningful only on ACK frames
ML = Meaningful only on last ACK, BSY and RJT frames of a Sequence
E = Echo (meaningful) - contains the same value as the received frame
V = Inverse or invert (meaningful) - contains the inverse of the received frame

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

185

If the Sequence Initiator initiates a new Sequence for an Exchange in any class of service while it already
has Sequences open for that Exchange, it is termed a streamed Sequence. If streamed Sequences occur,
it is the responsibility of the Sequence Initiator to use at least X+1 different SEQ_IDs before reusing a
SEQ_ID, where X is the number of open Sequences per Exchange (see FC-LS-3) (e.g., if X = 2 from
Login, then a series of SEQ_IDs of 11-93-22-11-93 is acceptable).

If consecutive non-streamed Sequences for the same Exchange occur during a single Sequence Initiative,
it is the responsibility of the Sequence Initiator to use a different SEQ_ID for each consecutive Sequence
(e.g., a series of SEQ_IDs of 21-74-21-74 is acceptable for consecutive Sequences. The examples show
when a SEQ_ID is allowed to be repeated). A series of SEQ_IDs for the same Exchange may also be
random and never repeat (see 19.4.4). See 19.7.3 for more discussion regarding reusing and timing out
Recovery_Qualifiers following an aborted or abnormally terminated Sequence, or an aborted Exchange.

The combination of Initiator and Recipient Sequence Status Blocks identified by a single SEQ_ID describe
the status of that Sequence for a given Exchange. See 19.9.2 for a description of the Sequence Status
Block maintained by the Sequence Recipient.

12.9 Data Field Control (DF_CTL)

Data Field Control (DF_CTL) is a one-byte field (Word 3, Bits 23-16) that specifies the presence of optional
headers at the beginning of the Data_Field. Control bit usage is shown in table 44.

The Optional Headers, if present, shall be positioned in the Data_Field in the order specified with the bit 23
header as the first header in the Data_Field, bit 22 header as the second header in the Data_Field, and so
forth, in a left to right manner corresponding to bits 23, 22, 21, and so forth as shown in figure 63 and figure
64.

If either bit 17 or 16 are set to one, then a Device_Header is present. The size of the Device_Header is
specified by the encoded value of bits 17 and 16 as shown.

If an Optional Header is not present as indicated by the appropriate bit in DF_CTL, no space shall be
allocated for the Header in the Data_Field of the frame (e.g., if bits 23 and 22 are zero and bit 21 is one,
the first data byte of the Data_Field contains the first byte of the Network_Header).

Table 44 - DF_CTL bit definition

Word 3, Bit(s) Optional Header Applicability

23 Reserved all frames

22
0 = Neither ESP_Header nor ESP_Trailer
1 = Both ESP_Header and ESP_Trailer

all frames

21
0 = No Network_Header
1 = Network_Header

Device_Data and
Video_Data
frames

20 Obsolete

19-18 Reserved all frames

17-16

00b = No Device_Header
01b = 16 Byte Device_Header
10b = 32 Byte Device_Header
11b = 64 Byte Device_Header

Device_Data and
Video_Data
frames

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

186

See clause 14 for Optional Headers requirements.

12.10 Sequence count (SEQ_CNT)

The sequence count (SEQ_CNT) is a two-byte field (Word 3, Bits 15-0) that shall indicate the sequential
order of Data frame transmission within a single Sequence or multiple consecutive Sequences for the
same Exchange. The SEQ_CNT of the first Data frame of the first Sequence of the Exchange transmitted
by either the Originator or Responder shall be binary zero. The SEQ_CNT of each subsequent Data frame
in the Sequence shall be incremented by one.

If a Sequence is streamed, the SEQ_CNT of the first Data frame of the Sequence shall be incremented by
one from the SEQ_CNT of the last Data frame of the previously sent Sequence (this is termed
continuously increasing SEQ_CNT). If a Sequence is non-streamed, the starting SEQ_CNT may be
continuously increasing or binary zero.

The same SEQ_ID and SEQ_CNT shall identify ACK and Link_Response frames as the frame to which it
is responding. Frames are tracked on a SEQ_ID, SEQ_CNT basis within the scope of the
Sequence_Qualifier for that Sequence.

The SEQ_CNT shall wrap to zero after reaching a value of 65 535. The SEQ_CNT shall then only be
incremented to (but not including) the SEQ_CNT of an unacknowledged frame of the same Sequence.
Otherwise, data integrity is not ensured. Sequences of Data frames and SEQ_CNT values are discussed
in clause 19. In order to ensure frame identification integrity, SEQ_CNT is a 16-bit field while the
End-to-end Credit field of the Login Class Service Parameters (see FC-LS-3) is defined as a 15-bit field.
This ensures that EE_Credit never exceeds one-half of the maximum SEQ_CNT.

12.11 Originator Exchange_ID (OX_ID)

The Originator Exchange_ID is a two-byte field (Word 4, Bits 31-16) that shall identify the Exchange_ID
assigned by the Originator of the Exchange. Each Exchange shall be assigned an identifier unique to the
Originator or Originator-Responder pair. If the Originator is enforcing uniqueness via the OX_ID
mechanism, it shall set a unique value for OX_ID other than FF FFh in the first Data frame of the first
Sequence of an Exchange. An OX_ID of FF FFh indicates that the OX_ID is unassigned and that the
Originator is not enforcing uniqueness via the OX_ID mechanism. If an Originator uses the unassigned
value of FF FFh to identify the Exchange, it shall have only one Exchange (OX_ID set to FF FFh) with a
given Responder.

An Originator Exchange Status Block associated with the OX_ID is used to track the progress of a series of
Sequences that comprises an Exchange. See 19.9.1 for a description of the Exchange Status Block.

NOTE 23 - If FF FFh is used as the OX_ID throughout the Exchange, the Originator uses an alternate
Sequence tracking mechanism. If the OX_ID is unique, it may be used as an index into a control structure
that may be used in conjunction with other constructs to track frames.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

187

12.12 Responder Exchange_ID (RX_ID)

The Responder Exchange_ID is a two byte field (Word 4, Bits 15-0) assigned by the Responder that shall
provide a unique, locally meaningful identifier at the Responder for an Exchange established by an
Originator and identified by an OX_ID. The Responder of the Exchange shall set a unique value for RX_ID
other than FF FFh, if RX_ID is being used, by one of two methods:

a) in an ACK to a Data frame in the first Sequence of an Exchange in Class 2; or

b) in the first Sequence transmitted as a Sequence Initiator, if any, in Class 3.

An RX_ID of FF FFh shall indicate that the RX_ID is unassigned. If the Responder does not assign an
RX_ID other than FF FFh by the end of the first Sequence, then the Responder is not enforcing
uniqueness via the RX_ID mechanism.

When the Responder uses only FF FFh for RX_ID, it shall have the capability to identify the Exchange
through the OX_ID and the S_ID of the Originator of the Exchange. Under all other circumstances, until a
value other than FF FFh is assigned, FF FFh value for RX_ID shall be used indicating that RX_ID is
unassigned. After a value other than FF FFh is assigned, the assigned value shall be used for the
remainder of the Exchange (see 19.4.2 and 19.6.3).

A Responder Exchange Status Block associated with the RX_ID is used to track the progress of a series of
Sequences that compose an Exchange. See 19.9.1 for a description of the Exchange Status Block.

NOTE 24 - If FF FFh is used as the RX_ID throughout the Exchange, the Responder uses an alternate
Sequence tracking mechanism. If the RX_ID is unique, it may be used as an index into a control structure
that may be used in conjunction with other constructs to track frames.

12.13 Parameter

The Parameter field (Word 5, Bits 31-0) has meanings based on frame type. For Link_Control frames, the
Parameter field is used to carry information specific to the individual Link_Control frame. For Data frames
with the relative offset present bit set to 1, the Parameter field specifies relative offset, a four-byte field that
contains the relative displacement of the first byte of the Payload of the frame from the base address as
specified by the ULP. Relative offset is expressed in terms of bytes (see 11.3.4). The use of the relative
offset field is optional and is indicated as a Login Service Parameter. If relative offset is being used, the
number of bytes transmitted relative to the protocol-specific base address shall be less than the maximum
value of the relative offset (Parameter) field (232). For Data frames with the relative offset Present bit set to
zero, the Parameter field shall be set and interpreted in a protocol specific manner that may depend on the
type of Information Unit carried by the frame.

Continuously increasing relative offset is the relationship specified between relative offset values contained
in frame (n) and frame (n+1) of an Information Category within a single Sequence. Continuously increasing
relative offset (ROI) for a given Information Category I is specified by the following:

ROI(n+1) = ROI(n) + Length of PayloadI(n)

where n is 0 and represents the consecutive frame count of frames for a given Information Category
within a single Sequence. ROI(0) is the initial relative offset for the Information Category I.

See clause 21 for relative offset requirements. See clause 15 for requirements for using the Parameter
field in Link_Control frames. See clause 16 for requirements for using the Parameter field in Basic Link
Data frames.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

188

13 Extended_Headers

13.1 Scope

Within the Extended_Headers, addressing information (e.g., the VF_ID in a VFT_Header) supports the
functionality of the FC-2M sublevel and the FC-2V sublevel. All other Extended_Header information
supports the functionality of the FC-2V sublevel.

13.2 Introduction

Extended_Headers, if present, shall immediately follow the SOF delimiter and precede the Frame_Header
(see figure 57). The presence or absence of Extended_Headers in a frame shall not affect the size of the
Data_Field as determined by the Buffer-to-Buffer Receive Data_Field Size negotiated at Fabric Login or
N_Port Login.

Extended_Headers are used to extend the funct ional i ty provided by the Frame_Header.
Extended_Headers may have different lengths, but each Extended_Header is word aligned within the
frame and has a length that is a multiple of four bytes. Extended_Headers follows the general structure
shown in table 45.

Specific Extended_Headers shall be used between FC_Ports only when negotiated. One or more
Extended_Headers may be present in a single FC-2 frame. Each Extended_Header is identified by a
specific value in the R_CTL field (see table 46), that specifies the Extended_Header length.

Devices may be required to add, delete, or modify Extended_Headers in a received FC-2 frame. Such
actions require re-computation of the frame's CRC. The device shall have in place mechanisms to
guarantee the integrity of the frame while the CRC is being recalculated using techniques that are beyond
the scope of this standard. If a received FC-2 frame has an invalid CRC, the CRC recomputation shall not
make the frame valid (e.g., the CRC of the frame may be kept invalid, the EOF may be changed to an
invalid EOF delimiter (i.e., EOFni), or the frame may be discarded).

Table 45 - Extended_Headers General Structure

Bits
Word

31 .. 24 23 .. 0

0 R_CTL

1 .. N
Extended_Header Specific Fields

Table 46 - Extended_Headers Types

R_CTL Description Extended_Header Length

50h VFT_Header (Virtual Fabric Tagging Header, see 13.3) 8 bytes

51h IFR_Header (Inter-Fabric Routing Header, see 13.4) 8 bytes

52h Enc_Header (Encapsulation Header, see 13.5) 24 bytes

53h .. 5Fh Reserved —

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

189

13.3 VFT_Header and Virtual Fabrics

13.3.1 Overview

The Virtual Fabric Tagging Header (VFT_Header) allows Fibre Channel frames to be tagged with the
Virtual Fabric Identifier (VF_ID) of the Virtual Fabric (VF) to which they belong. Tagged frames (i.e., frames
with a VFT_Header) belonging to different Virtual Fabrics may be transmitted over the same physical link
(see figure 60). The VFT_Header may be supported by the Multiplexers associated with PN_Ports,
PF_Ports and PE_Ports.

The use of the VFT_Header between PN_Ports and PF_Ports allows VN_Ports to share the same physical
link while connected to different Virtual Fabrics, as shown in figure 60.

As shown in figure 60, the Multiplexer for PN_Port X supports the VFT_Header and defines two internal
VN_Ports, named A and B, respectively associated with the Virtual Fabrics having VF_ID 1 and 2. The
FC-2 frames sent by VN_Port A are tagged with a VFT_Header carrying VF_ID 1 and sent to the VFT
Tagging PF_Port P. The FC-2 frames sent by VN_Port B are tagged with a VFT_Header carrying VF_ID 2
and sent to the VFT Tagging PF_Port P. The VF_ID carried in the VFT_Header is used by the Multiplexer
for PF_Port P to perform frame forwarding, together with the D_ID carried in the Frame_Header. In this
example, VFT tagged frames are also transmitted to the destination VFT Tagging PN_Port Y by the VFT
Tagging PF_Port Q. The Multiplexer for PN_Port Y uses the VF_ID carried in the VFT_Header to perform
internal demultiplexing among the defined VN_Ports, and delivers the FC-2 frames to VN_Port associated
with the received VF_ID and D_ID.

The use of the VFT_Header on a link shall be negotiated (see FC-LS-3 and FC-SW-6). When VFT_Header
tagging is performed, all FC-2 frames on a link in both directions shall be tagged with the VFT_Header.
When VFT_Header tagging is not performed, then no frame on the link, in either direction, shall contain a
VFT_Header.

NOTE 25 - To maintain compatibility with existing devices, the behavior of a device erroneously receiving
VFT_Header tagged frames is not defined. However, new designs should discard such frames.

When VFT tagging is enabled on a link, a Link Reset shall not change the tagging process, while a link
initialization shall stop the tagging process.

LCF MUXLCFMUX

VN_Port

VF 1

VF 2

Figure 60 - VFT Tagging PN_Ports

VN_Port

VN_Port

VN_Port

VFT Tagging PN_Port X VFT Tagging PN_Port Y

FabricLCF MUX

VFT Tagging PF_Port P

LCFMUX

VFT Tagging PF_Port Q

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

190

Implementations may support a limited number (i.e., less than 4096) of Virtual Fabrics, but shall not limit
the VF_IDs to be used.

13.3.2 VFT Tagging PN_Port Logical Model

A logical model of a VFT Tagging PN_Port is shown in figure 61.

A VFT Tagging PN_Port is logically a collection of multiple VN_Ports communicating through the same
PN_Port. There are one or more VN_Ports per each Virtual Fabric communicating through the PN_Port.

Each VN_Port is identified by a unique N_Port_Name. In addition, an additional VN_Port associated with
the PN_Port is identified by the N_Port Controller N_Port_ID (e.g., FFFFF0h) and a unique Core
N_Port_Name. Each Virtual Fabric is identified by a 12-bit Virtual Fabric Identifier (VF_ID).

NOTE 26 - Implementations may use the Node_Name as Core N_Port_Name, if the Node_Name is not
used as N_Port_Name for any other PN_Port or VN_Port.

Figure 61 - Logical model of a VFT Tagging PN_Port

Multiplexer

VN_Port

N_Port_Name=C

N_Port_ID=13

FDISC VN_Port

N_Port_Name=O

N_Port_ID=13

VN_Port

N_Port_Name=Z

N_Port_ID=13

VN_Port

N_Port_Name=B

N_Port_ID=12

FDISC VN_Port

N_Port_Name=N

N_Port_ID=12

VN_Port

N_Port_Name=Y

N_Port_ID=12

VN_Port

N_Port_Name=A

N_Port_ID=11

VN_Port

N_Port_Name=M

N_Port_ID=11

VN_Port

N_Port_Name=X

N_Port_ID=11

FLOGI

VF_ID = 1 VF_ID = 2 VF_ID = 3

Core N_Port_Name

N_Port_ID=FFFFF0

N_Port Controller

VFT Tagging PN_Port

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

191

The Multiplexer allows sharing of a physical link across multiple Virtual Fabrics using the VFT_Header.
Upon receiving a VFT tagged frame from the PN_Port, the Multiplexer delivers the frame to the appropriate
VN_Port (i.e., the VN_Port associated with the Virtual Fabric whose VF_ID is carried in the VFT_Header
and the D_ID in the Frame_Header).

Each VFT Tagging PN_Port shall have a configurable Port VF_ID. The Port VF_ID shall be associated with
any untagged FC frame received by the VFT Tagging PN_Port. The Port VF_ID is then used by the
Multiplexer to deliver the frame to the appropriate VN_Port.

13.3.3 Tagging Process

If the tagging process is performed on an untagged frame, the VFT_Header shall be applied as shown in
figure 62. The Start Of Frame delimiter shall remain unchanged, and a VFT_Header shall be inserted
between the SOF and the Frame_Header. The remainder of the original frame shall remain unchanged
except the CRC, which shall be recalculated to also cover the VFT_Header.

The removal of a VFT_Header shall be performed by

1) revising the content of the frame:

a) keeping unchanged the SOF delimiter;

b) removing the VFT_Header; and

c) keeping unchanged the remainder of the frame other than as required by Link-by-link
ESP_Header processing (see 14.3.4);

and

2) recomputing the CRC.

The modification of a VFT_Header shall be performed by

1) revising the content of the frame:

a) keeping unchanged the SOF delimiter;

b) modifying the VFT_Header; and

S
O
F

E
O
F

Frame_Header
C
R
C

Data_Field

S
O
F

E
O
F

Frame_Header
C
R
C

Data_FieldVFT_Header

4 24 0 to 2112 4 4

4 24 0 to 2112 4 48

Original
Frame

VFT
tagged
Frame

Figure 62 - The tagging process

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

192

c) keeping unchanged the remainder of the frame other than as required by Link-by-link
ESP_Header processing (see 14.3.4);

and

2) recomputing the CRC.

See 13.2 for how to perform the CRC recomputation.

13.3.4 VFT_Header Format

The format of the VFT_Header is shown in table 47.

R_CTL: shall be set to the value 50h to identify the VFT_Header Extended_Header.

Ver: specifies the version of the VFT_Header. For use according to this standard shall be set to 00b.

Type: specifies the kind of tagged frame. For use with Fibre Channel shall be set to 0h. The use of other
values is beyond the scope of this standard. No device shall send a VFT tagged frame with a Type value in
the VFT_Header other than 0h. A device receiving a VFT tagged frame with a Type value in the
VFT_Header having a non-zero value shall discard the frame.

R: reserved. Shall be set to zero.

E: indicates whether Link-by-link ESP_Header processing is applied to the frame (see 14.3.4). If E is set
to zero, Link-by-link ESP_Header processing is not applied to the frame and the VFT_Header is not
followed by an ESP_Header. If E is set to one, Link-by-link ESP_Header processing is applied to the frame
and the VFT_Header is followed by an ESP_Header.

Priority: specifies an optional QoS associated with the tagged frame. This field has the same format and
meaning of the user_priority parameter defined in IEEE 802.1D.

Table 47 - VFT_Header Format

Bits
Word

31 .. 24 2
3

2
2

21 .. 18 1
7

1
6

15..13 12 .. 01 0

0 R_CTL Ver Type R E Priority VF_ID R

1 HopCt Reserved

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

193

VF_ID: specifies the Virtual Fabric Identifier of the Virtual Fabric to which the tagged frame belongs.
Allowed values for this field are shown in table 48.

HopCt: specifies the number of remaining hops that may be traversed before the frame is discarded. A
value of 00h indicates that the frame shall not be discarded due to number of hops traversed. A Switch
receiving a VFT tagged frame with HopCt = 01h shall discard the frame. Each Switch, on forwarding a VFT
tagged frame, shall decrement the HopCt by 1. The default initial value for the HopCt field is 16 and may
be configured for each tagging port. If a frame passes from a tagging link to a second tagging link through
one or more non tagging links, the HopCt value is reset to the initial value configured for the egress
FC_Port attached to the second tagging link upon egress onto the second tagging link.

13.4 Inter-Fabric Routing Extended Header (IFR_Header)

13.4.1 Overview

The Inter-Fabric Routing Extended Header (IFR_Header) provides the necessary information to support
fabric-to-fabric routing (see FC-IFR). The information includes:

a) the fabric identifier of the destination fabric (DF_ID);

b) the fabric identifier of the source fabric (SF_ID); and

c) information appropriate to determine the expiration time or hop count.

The IFR_Header is used at every Inter-Fabric Router to route the frame toward the destination fabric. For
usage of the IFR_Header, see FC-IFR.

13.4.2 IFR_Header format

The format of the IFR_Header is shown in table 49.

R_CTL: The Routing Control (R_CTL) field shall be set to the value 51h to identify the IFR_Header.

Table 48 - VF_ID Values

Value Description

000h Shall not be used as Virtual Fabric Identifier

001h .. EFFh Available as Virtual Fabric Identifiers

F00h .. FEEh Reserved

FEFh Control VF_ID (see FC-LS-3 and FC-SW-6)

FF0h .. FFEh Vendor Specific

FFFh Shall not be used as Virtual Fabric Identifier

Table 49 - IFR_Header format

Bits
Words

31..30 29..27 26 25 24 23..20 19..8 7..4 3..0

0 R_CTL = 51h R DF_ID Exp_Time

1 Ver Pri R etv hcv R SF_ID R Hop_Cnt

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

194

DF_ID: The Destination Fabric Identifier (DF_ID) field is set as specified in FC-IFR.

Ver: The Version (Ver) field specifies the version of the IFR_Header. For the format specified in table 49,
the Version field shall be set to 00b.

Pri: The Priority (Pri) field specifies the Quality of Service (QoS) value for the frame (see IEEE 802.1D).

ETV: The Expiration Time Valid (ETV) bit shall be set to one if the Exp_Time field is valid. The Expiration
Time Valid bit shall be set to zero if the Exp_Time field is not valid.

HCV: The Hop Count Valid (HCV) bit shall be set to one if the Hop_Cnt field is valid. The Hop Count Valid
bit shall be set to zero if the Hop_Cnt field is not valid.

SF_ID: The Source Fabric Identifier (SF_ID) field is set as specified in SAM-4.

Exp_Time: If the Expiration Time Valid (ETV) bit is set to one, the Expiration Time (Exp_Time) field is
used by Inter-Fabric Routers to enforce frame lifetime requirements across the Inter-Fabric (see FC-IFR).

The Exp_Time value is the equivalent of bits 37 to 30 in the Network Time Protocol 64-bit timestamp field
(see RFC 2030). This range of bits of the local clock is called the Expiration Timestamp (exp_timestamp)
value. Table 50 shows where the exp_timestamp field is extracted from the Network Time Protocol 64-bit
timestamp field. The exp_timestamp value has a resolution of 0.25 seconds.

Hop_Cnt: If the Hop Count Valid (HCV) bit is set to one, the Hop Count (Hop_Cnt) field specifies the
number of hops remaining before the frame is discarded (see FC-IFR).

R: Reserved. Shall be set to zero.

13.5 Encapsulation Extended Header (Enc_Header)

The Encapsulation Extended_Header is used to transmit frames between Inter-Fabric Routers when
connected through intermediate Fabrics that do not support the IFR_Header (e.g., see FC-SW-5). To
preserve backward compatibility, the Inter-Fabric Routers appear as N_Ports to the intermediate Fabrics.

Table 50 - exp_timestamp field

Bits
Words

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

0 exp_timest-

1 amp

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

195

The format of the Enc_Header is shown in table 51. For usage of the Enc_Header, see SAM-4.

The Enc_Header fields, with the exception of the Routing Control field, are identical in definition to the
fields defined for the Fibre Channel Frame_Header (see clause 12).

R_CTL: The Routing Control (R_CTL) field shall be set to the value 52h to identify the Enc_Header.

Table 51 - Enc_Header format

Bits
Word

31 .. 24 23 .. 16 15 .. 08 07 .. 00

0 R_CTL = 52h D_ID

1 CS_CTL/Priority S_ID

2 TYPE F_CTL

3 SEQ_ID DF_CTL SEQ_CNT

4 OX_ID RX_ID

5 Parameter

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

196

14 Optional headers

14.1 Scope

Optional headers are a function of the FC-2V sublevel.

14.2 Introduction

Optional headers defined within the Data_Field of a frame are:

a) ESP_Header and ESP_Trailer;

b) Network_Header; and

c) Device_Header.

Control bits in the DF_CTL field of the Frame_Header define the presence of optional headers (see 12.9).
The sum of the length in bytes of the Payload, the number of fill bytes, and the lengths in bytes of all
optional headers shall not exceed 2 112. The sequential order of the optional headers, Payload, and their
sizes are indicated in figure 63, figure 64, and figure 65.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

197

Figure 63 - Frame structure when ESP_Header is not used

Extended_Headers
(optional)

End_of_Frame
delimiter

Frame_Header

CRC

Network_Header
(optional)

Device_Header
(optional)

Fill Bytes
(as required)

Payload

4 bytes

24 bytes

16 bytes

16, 32, or
64 bytes

0-3 bytes

4 bytes

4 bytes

Data_Field
0 to 2 112

Start_of_Frame
delimiter

0-n bytes.
See clause 13

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

198

Figure 64 - Frame structure with End-to-end ESP_Header and ESP_Trailer

Start_of_Frame
delimiter

End_of_Frame
delimiter

Frame_Header

CRC

4 bytes

24 bytes

12-32 bytes

4 bytes

4 bytes

ESP_Trailer

Encrypted Data

ESP_Header 8 bytes

Extended_Headers
(optional)

0-n bytes.
See clause 13

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

199

Optional headers are provided for use of the FC-4 level. The use of the optional headers is not defined by
this standard.

If the Payload is not a multiple of four bytes, fill bytes shall be appended to the Payload as necessary (see
12.7.13).

Figure 65 - Frame structure with Link-by-link ESP_Header and ESP_Trailer

Start_of_Frame
delimiter

End_of_Frame
delimiter

CRC

4 bytes

12-32 bytes

4 bytes

4 bytes

ESP_Trailer

Encrypted Data

ESP_Header 8 bytes

Extended_Header 0-n bytes.
See clause 13

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

200

14.3 ESP_Header

14.3.1 Overview

The Encapsulating Security Payload (ESP) is defined in the IETF document RFC 4303. It is a generic
mechanism to provide confidentiality, data origin authentication, and anti-replay protection to IP packets.
\FC-SP-2 defines how to use ESP in Fibre Channel, including any negotiation procedure, additional
encryption/authentication algorithm and processing requirements. This clause defines the structure of a
Fibre Channel frame conveying an ESP_Header.

End-to-end ESP_Header processing shall be applied to FC frames in transport mode (see RFC 4303), and
Link-by-link ESP_Header processing shall be applied to FC frames in tunnel mode (see RFC 4303). The
Authentication option shall be used, Confidentiality may be negotiated by the two communicating FC_Ports
(see \FC-SP-2).

ESP_Header processing may be applied End-to-end, Link-by-link, or both. End-to-end ESP_Header
processing is indicated in the Frame_Header of the frame, is applied by the Nx_Port identified in the S_ID
of the frame, and is removed by the Nx_Port identified in the D_ID of the frame. Link-by-link ESP_Header
may be indicated in an Extended_Header of the frame, is applied to a frame at the transmitting end of a
link, and removed at the receiving end of the link.

NOTE 27 - An intended application of Link-by-link ESP_Header processing is to secure a link in a Fabric
or between Fabrics without requiring use of ESP by every Nx_Port.

This specification adheres to RFC 4303 except for the ICV coverage. Variations of ICV coverage are
defined for each header in which a Fibre Channel ESP_Header is indicated.

14.3.2 Application of End-to-end ESP_Header processing

Table 52 shows the format of an FC frame to which End-to-end ESP_Header processing is applied.
Presence of an End-to-end ESP_Header is indicated in the DF_CTL field of the Frame_Header. A sender
shall apply End-to-end ESP_Header processing to an FC frame as follows:

1) Add a fixed length ESP_Header (8 bytes) following the Frame_Header, specifying a Security
Parameter Index (SPI) and an ESP Sequence Number;

2) Pad the concatenation of any other optional headers, the Payload, and any required fill bytes to
the block size required by the negotiated encryption/authentication algorithms. The Pad Length
field shall contain the length of this ESP padding;

3) Apply the negotiated encryption algorithm to the data resulting from item 2);

4) Compute an Integrity Check Value (ICV), using the negotiated authentication algorithm and
parameters, covering:

i) the Frame_Header, with the S_ID, D_ID, and CS_CTL/Priority fields set to zero for the
purpose of the ICV computation;

ii) the ESP_Header; and

iii) the data resulting from item 3);

and

5) Add an ESP_Trailer containing the ICV computed in item 4). The length of the ESP_Trailer shall
be negotiated (see \FC-SP-2) and shall be a multiple of 32 bits.

NOTE 28 - In step 4), the CS_CTL/Priority field is excluded because it is a mutable field, and the S_ID
field and D_ID field are excluded to permit address translation.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

201

A receiver shall apply End-to-end ESP_Header processing to an FC frame as follows:

1) Check the ESP_Header, using the SPI to retrieve the negotiated parameters required to interpret
the received FC frame, and the ESP Sequence Number to avoid replay attacks (see RFC 4303).
The length of the ESP_Trailer is one of the retrieved parameters;

2) Compute an ICV, using the retrieved parameters, covering:

i) the Frame_Header, with the S_ID, D_ID, and CS_CTL/Priority fields set to zero for the
purpose of the ICV computation;

ii) the ESP_Header; and

iii) the encrypted data;

3) Check the computed ICV with the content of the ESP_Trailer. If they are equal the authentication is
successful, otherwise not;

4) Apply the negotiated decryption algorithm to the encrypted data; and

5) Remove the ESP padding and process the resulting optional headers, Payload, and fill bytes that
are present.

Processing of the ESP_Header and ESP_Trailer shall be performed before removing any fill bytes
determined by the F_CTL Fill Bytes field in the Frame_Header.

The End-to-end ESP_Header processing shall be transparent to the FC-4. On the sending side the
End-to-end ESP_Header processing shall be applied to every frame of a sequence to be protected. On the
receiving side, the End-to-end ESP_Header processing shall be applied to every frame that carries an
ESP_Header, and only after that the sequence shall be reassembled and sent to the FC-4.

The ESP_Header and ESP_Trailer, if used, shall be present in every frame of a Sequence. If the receiving
FC_Port does not support the ESP_Header function, it shall discard the FC frame.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

202

14.3.3 Application of Link-by-link ESP_Header processing to a frame with an Enc_Header

Table 53 shows the format of an FC frame with an Enc_Header (see 13.5) to which Link-by-link
ESP_Header processing is applied. In an Enc_Header carrying a Link-by-Link ESP_Header:

a) the D_ID and S_ID fields shall be set to FFFFFDh for an E_Port to E_Port link;
b) the D_ID field shall be set to FFFFFEh and S_ID field shall be set to FFFFF0h for an N_Port to

F_Port link; and

Table 52 - End-to-end ESP_Header and ESP_Trailer

Bits
Word

31 .. 24 23 .. 16 15 .. 08 07 .. 00

0 R_CTL D_ID

1 CS_CTL / Priority S_ID

2 TYPE F_CTL

3 SEQ_ID DF_CTL SEQ_CNT

4 OX_ID RX_ID

5 Parameter

6 Security Parameter Index (SPI)

7 ESP Sequence Number

8 .. M Other Optional Headers (if present)

M+1 .. N

Payload (variable length)

Fill Bytes (if present)

N+1 .. P

ESP Padding (2-254 bytes)

Pad Length Not meaningful

P+1 .. Q
Integrity Check Value

Q+1 CRC

NOTE 1 The D_ID, S_ID, and CS_CTL/Priority fields zeroed for the purposes of ICV computation.
NOTE 2 The ESP_Header consists of words 6 and 7.
NOTE 3 The ESP_Trailer consists of words P+1 through Q.
NOTE 4 Confidentiality covers words 8 through P.
NOTE 5 Authentication covers words 0 through P.
NOTE 6 Other Optional Headers are possibly present in words 8 to M as specified in 12.9.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

203

c) the D_ID field shall be set to FFFFF0h and S_ID field shall be set to FFFFFEh for an F_Port to
N_Port link.

Link-by-link ESP_Header processing is indicated in the DF_CTL field of an Enc_Header. If the ESP bit is
set to one in the DF_CTL field of an Enc_Header, no bits shall be set to one other than the ESP bit. A
sender shall apply Link-by-link ESP_Header processing to an FC frame with an Enc_Header as follows:

1) Add a fixed length ESP_Header (8 bytes) following the Enc_Header, specifying a Security
Parameter Index (SPI) and an ESP Sequence Number;

2) Pad the concatenation of any other Extended_Headers, the Frame_Header, any optional headers
in the frame content, the Payload, and any required fill bytes to the block size required by the
negotiated encryption/authentication algorithms. The Pad Length field shall contain the length of
this ESP padding;

3) Apply the negotiated encryption algorithm to the data resulting from item 2);

4) Compute an Integrity Check Value (ICV), using the negotiated authentication algorithm and
parameters, covering:

i) the Enc_Header, with the S_ID, D_ID, and CS_CTL/Priority fields unchanged for the purpose
of the ICV computation;

ii) the ESP_Header; and

iii) the data resulting from item 3);

and

5) Add an ESP_Trailer containing the ICV computed in item 4). The length of the ESP_Trailer shall
be negotiated (see \FC-SP-2) and shall be a multiple of 32 bits.

A receiver shall apply Link-by-link ESP_Header processing to an FC frame with an Enc_Header as follows:

1) Check the ESP_Header, using the SPI to retrieve the negotiated parameters required to interpret
the received FC frame, and the ESP Sequence Number to avoid replay attacks (see RFC 4303).
The length of the ESP_Trailer is one of the retrieved parameters;

2) Compute an ICV, using the retrieved parameters, covering:

i) the Frame_Header, with the S_ID, D_ID, and CS_CTL/Priority fields unchanged for the
purpose of the ICV computation;

ii) the ESP_Header; and

iii) the encrypted data;

3) Check the computed ICV with the content of the ESP_Trailer. If they are equal the authentication is
successful, otherwise not;

4) Apply the negotiated decryption algorithm to the encrypted data; and

5) Remove the ESP padding and process the resulting other Extended_Headers if any, the
Frame_Header, any optional headers in the frame content, Payload, and fill bytes that are present.

On the sending side the Link-by-link ESP_Header processing shall be applied to every frame to be
protected. On the receiving side, the Link-by-link ESP_Header processing shall be applied to every frame
that carries an ESP_Header in which the presence of an ESP_Header is indicated in the DF_CTL field.
Frames that are not successfully authenticated may be discarded.

If the receiving FC_Port does not support the ESP_Header function, it shall discard the FC frame.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

204

Table 53 - Link-by-link ESP_Header and ESP_Trailer in a frame with an Enc_Header

Bits
Word

31 .. 24 23 .. 16 15 .. 08 07 .. 00

0 R_CTL = 52h D_ID

1 CS_CTL / Priority S_ID

2 TYPE F_CTL

3 SEQ_ID DF_CTL SEQ_CNT

4 OX_ID RX_ID

5 Parameter

6 Security Parameter Index (SPI)

7 ESP Sequence Number

8 R_CTL D_ID

9 CS_CTL / Priority S_ID

10 TYPE F_CTL

11 SEQ_ID DF_CTL SEQ_CNT

12 OX_ID RX_ID

13 Parameter

14 .. M Optional Headers (if present)

M+1 .. N

Payload (variable length)

Fill Bytes (if present)

N+1 .. P

ESP Padding (2-254 bytes)

Pad Length Not meaningful

P+1 .. Q
Integrity Check Value

Q+1 CRC

NOTE 1 The ESP_Header consists of words 6 and 7.
NOTE 2 The ESP_Trailer consists of words P+1 through Q.
NOTE 3 Confidentiality covers words 8 through P.
NOTE 4 Authentication covers words 0 through P.
NOTE 5 Other Extended_Headers are possibly present in words 8 to M as specified in clause 13.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

205

14.3.4 Application of Link-by-link ESP_Header processing to a frame with a VFT_Header

Table 54 shows the format of an FC frame with a VFT_Header (see 13.3) to which Link-by-link
ESP_Header processing is applied. Link-by-link ESP_Header processing is indicated in the E field of a
VFT_Header. A sender shall apply Link-by-link ESP_Header processing to an FC frame with a
VFT_Header as follows:

1) Add a fixed length ESP_Header (8 bytes) following the VFT_Header, specifying a Security
Parameter Index (SPI) and an ESP Sequence Number;

2) Pad the concatenation of any other Extended_Headers, the Frame_Header, any optional headers
in the frame content, the Payload, and any required fill bytes to the block size required by the
negotiated encryption/authentication algorithms. The Pad Length field shall contain the length of
this ESP padding;

3) Apply the negotiated encryption algorithm to the data resulting from item 2);

4) Compute an Integrity Check Value (ICV), using the negotiated authentication algorithm and
parameters, covering:

i) the VFT_Header;

ii) four words of zeros that are not transmitted;

iii) the ESP_Header; and

iv) the data resulting from item 3);

and

5) Add an ESP_Trailer containing the ICV computed in item 4). The length of the ESP_Trailer shall
be negotiated (see \FC-SP-2) and shall be a multiple of 32 bits.

NOTE 29 - In step 4, four words of zeros that are not transmitted are included in the ICV computation to
facilitate common hardware implementations of all applications of Fibre Channel ESP.

A receiver shall apply Link-by-link ESP_Header processing to an FC frame with a VFT_Header as follows:

1) Check the ESP_Header, using the SPI to retrieve the negotiated parameters required to interpret
the received FC frame, and the ESP Sequence Number to avoid replay attacks (see RFC 4303).
The length of the ESP_Trailer is one of the retrieved parameters;

2) Compute an ICV, using the retrieved parameters, covering:

i) the received VFT_Header;

ii) four words of zeros that are not received;

iii) the ESP_Header; and

iv) the encrypted data;

3) Check the computed ICV with the content of the ESP_Trailer. If they are equal the authentication is
successful, otherwise not;

4) Apply the negotiated decryption algorithm to the encrypted data; and

5) Remove the ESP padding and process the resulting other Extended_Headers if any, the
Frame_Header, any optional headers in the frame content, Payload, and fill bytes that are present.

On the sending side the Link-by-link ESP_Header processing shall be applied to every frame to be
protected. On the receiving side, the Link-by-link ESP_Header processing shall be applied to every frame
that carries an ESP_Header in which the E bit is set to one. Frames that are not successfully authenticated
may be discarded.

If the receiving FC_Port does not support the ESP_Header function, it shall discard the FC frame.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

206

Table 54 - Link-by-link ESP_Header and ESP_Trailer in a frame with a VFT_Header

Bits
Word

31 .. 24 2
3

2
2

21 .. 18 1
7

1
6

15..13 12 .. 8 7-1 0

0 R_CTL Ver Type R 1 Priority VF_ID R

1 HopCt Reserved

00 00 00 00h (see NOTE 1)

00 00 00 00h (see NOTE 1)

00 00 00 00h (see NOTE 1)

00 00 00 00h (see NOTE 1)

2 Security Parameter Index (SPI)

3 ESP Sequence Number

4 R_CTL D_ID

5 CS_CTL / Priority S_ID

6 TYPE F_CTL

7 SEQ_ID DF_CTL SEQ_CNT

8 OX_ID RX_ID

9 Parameter

10 .. M
Optional Headers (if present)

M+1 .. N

Payload (variable length)

Fill Bytes (if present)

N+1 .. P
ESP Padding (2-254 bytes)

Pad Length Not meaningful

P+1 .. Q
Integrity Check Value

Q+1 CRC

NOTE 1 Four words of zero are appended to the VFT_Header for the purposes of ICV computation but
are not transmitted or received.

NOTE 2 The ESP_Header consists of words 2 and 3.
NOTE 3 The ESP_Trailer consists of words P+1 through Q.
NOTE 4 Confidentiality covers words 4 through P.
NOTE 5 Authentication covers words 0 through P.
NOTE 6 Other Extended_Headers are possibly present in words 4 to M as specified in clause 13.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

207

14.4 Network_Header

A bridge or a gateway node that interfaces to an external Network may use the Network_Header. The
Network_Header, if present, shall be 16 bytes in size.

The Network_Header, as shown in table 55, is an optional header within the Data_Field content. Its
presence shall be indicated by bit 21 in the DF_CTL field being set to one. The Network_Header may be
used for routing between Fibre Channel networks of different Fabric address spaces, or Fibre Channel and
non-F ib re Channe l ne tworks . The Ne twork_Header con ta ins Name_ Iden t i f i e rs fo r
Network_Destination_Address and Network_Source_Address. See clause 18 for the definition of these
fields.

The Network_Header, if used, shall be present only in the first Data frame of a Sequence. If the receiving
Nx_Port does not support the header function, it shall ignore the header and skip the Data_Field by the
header length (16 bytes) . Dest inat ion Network_Address_Author i ty (D_NAA) or Source
Network_Address_Authority (S_NAA) field indicates the format of the Name_Identifier used for the
network address. See clause 18 for a description of the Name_Identifier formats.

14.5 Device_Header

The Device_Header, if present, shall be 16, 32, or 64 bytes in size. The contents of the Device_Header are
controlled at a level above FC-2 based on the TYPE field (see 12.6).

The Device_Header, if present, shall be present either in the first Data frame or in all Data frames of a
Sequence. ULP types may use a Device_Header, requiring the Device_Header to be supported. The
Device_Header may be ignored and skipped, if not needed. If a Device_Header is present for a ULP that
does not require it, the related FC-4 may reject the frame with the reason code of “TYPE not supported”.

Table 55 - Network_Header

Bits
Word

31 .. 28 23 .. 00

0 D_NAA Network_Destination_Address (high order bits)

1 Network_Destination_Address (low order bits)

2 S_NAA Network_Source_Address (high order bits)

3 Network_Source_Address (low order bits)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

208

15 Data frames and responses

15.1 Scope

Data frames and responses are functions of the FC-2V sublevel.

15.2 Data frames

15.2.1 Introduction

When the term Data frame is used in this standard, it refers to any of the types of Data frames that may be
transmitted.

Data frames may be used to transfer information (e.g., data, control, and status information from a source
Nx_Port to a destination Nx_Port). In Class 2, each Data frame successfully transmitted shall be
acknowledged to indicate successful delivery to the destination Nx_Port. An indication of unsuccessful
delivery of a valid frame shall be returned to the transmitter by a Link_Response frame in Class 2.

Data frames may be streamed, (i.e., a single Nx_Port may transmit multiple frames before a response
frame is received). The number of outstanding, unacknowledged Data frames allowed is specified by a
Class Service Parameter during the Login protocol (see 4.10.5) (Nx_Port End-to-end Credit). See FC-LS-3
for the specification of Login and Service Parameters and clause 20 for the specification of flow control
rules.

A set of one or more Data frames, related by the same SEQ_ID transmitted unidirectionally from one
Nx_Port to another Nx_Port, is called a Sequence.

Regardless of the error policy, a Class 2 Data frame shall be retransmitted, only in response to a
corresponding Busy (F_BSY, P_BSY) frame. Except as above, Data frame recovery shall be by means of
Sequence retransmission under the control of FC-4. See 22.5.4.4, 22.5.4.5 and 22.5.5, respectively, for
Sequence integrity, Sequence error detection, and Sequence recovery requirements.

Each Data frame within a Sequence shall be transmitted within an E_D_TOV timeout period to avoid
timeout errors at the destination Nx_Port.

15.2.2 Frame Delimiters

Table 56 specifies, by class, the allowable frame delimiters for Data frames (see 11.3.7 and 11.3.8).

15.2.3 Addressing

The S_ID field designates the source Nx_Port of the Data frame. The D_ID field designates the destination
Nx_Port of the Data frame.

Table 56 - Allowable Data frame delimiters

Data frame Delimiters

Class 2 SOFi2, SOFn2, EOFn

Class 3 SOFi3, SOFn3, EOFn, EOFt

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

209

15.2.4 Data_Field

The Data_Field is a multiple of four bytes and variable in length. The Data_Field may contain optional
headers whose presence is indicated by the DF_CTL field in the Frame_Header (see clause 14).

In order to accommodate message content within the Payload that is not a multiple of four bytes, fill bytes
shall be appended to the end of the Payload. The number of fill bytes plus the length of the Payload in
bytes shall be a multiple of four. The number of fill bytes is specified by F_CTL bits 1-0 (see 12.7) and shall
only be meaningful on the last frame of an instance of an Information Category. The fill byte value is not
specified by this standard. Any field that follows the fill bytes shall be a multiple of four bytes in length (see
14.3).

15.2.5 Payload size

The Payload size is determined by the number of bytes between the SOF and EOF minus the 24-byte
Frame_Header, any Optional Headers, the fill bytes (0, 1, 2, or 3) and the CRC.

15.2.6 Responses

15.2.6.1 Introduction

Responses to Data frames are called Link_Control response frames (see 15.3). There are two types:

a) ACK frames - ACK_0 and ACK_1; and

b) Link_Response frames - P_BSY, P_RJT, F_BSY, and F_RJT.

All Link_Control response frames shall be transmitted in the same class as the frame to which it is
responding.

15.2.6.2 ACK frames - successful Data frame delivery

Table 57 defines what ACK frames shall be used for each class for successful Data frame delivery.

Table 57 - ACK Frames by Class

Data frame ACK

Class 2 ACK_0, ACK_1

Class 3 No Response

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

210

15.2.6.3 Link_Response frames - Unsuccessful Data frame delivery

Table 58 defines what RJT or BSY frames shall be used for each class for unsuccessful Data frame
delivery.

15.3 Link_Control Frames

15.3.1 Introduction

Link_Control frames (ACK and Link_Response frames) shall be used by the Nx_Port to control Class 2
frame transfers.

ACK and Link_Response frames indicate successful or unsuccessful frame delivery of a valid frame to the
FC-2V sublevel in Nx_Ports. The ACK and Link_Response frames also participate in end-to-end flow
control. ACK frames shall indicate successful delivery to the destination Nx_Port, while Link_Response
frames shall indicate unsuccessful delivery to the Fabric and Nx_Port.

Link_Control frames are identified by the ROUTING field being set to Ch and the INFORMATION field as
shown in table 59.

The Parameter field is reserved except for ACK_1 (see 15.3.2.2.2) and ACK_0 (see 15.3.2.2.3).

Table 58 - Link_Response Frames by Class

Data frame ACK

Class 2

F_BSY (Fabric Busy)
P_BSY (Nx_Port Busy)
F_RJT (Fabric Reject)
P_RJT (Nx_Port Reject)

Class 3 No Response

Table 59 - Link_Control Information Categories

ROUTING INFORMATION Description Abbr.

Ch

0h Acknowledge_1 ACK_1

1h Acknowledge_0 ACK_0

2h Nx_Port Reject P_RJT

3h Fabric Reject F_RJT

4h Nx_Port Busy P_BSY

5h Fabric Busy to Data frame F_BSY

6h Fabric Busy to Link_Control frame F_BSY

7h Link Credit Reset LCR

8h Notify - obsolete NTY

9h End - Obsolete END

others reserved

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

211

The TYPE field for Link_Control frames other than F_BSY shall be reserved.

The DF_CTL field for a Link_Control frame shall be set to 00h or to 40h.

An Nx_Port shall provide sufficient resources to receive Link_Control frames in response to Data frames it
originated. An Nx_Port shall not transmit P_BSY in response to Link_Control frames

NOTE 30 - It is not necessary to save information in order to retransmit a Link_Control frame since
F_BSY to a Link_Control frame contains all information required to retransmit and P_BSY is not allowed
for Link_Control frames.

LCR (see 15.3.4.2) may always be retransmitted in response to an F_BSY. For ACK and RJT frames, see
individual commands for any restrictions on frame retransmission in response to F_BSY. Link_Control
frames shall be transmitted within an E_D_TOV timeout period of the event that causes transmission of the
Link_Control frame.

Table 60 indicates allowable delimiters for Class 2 Link_Control frames.

15.3.2 Link_Continue function

15.3.2.1 Introduction

The Link_Continue function provides a positive feedback mechanism to control the end-to-end flow of Data
frames on the link. A Data frame shall only be transmitted when the applicable Nx_Port has indicated that
a buffer is available for frame reception. The following list specifies flow control elements:

a) ACK_0 - successful or unsuccessful delivery of a Sequence (see 15.3.2.2) between Initiator and
Recipient Nx_Ports, with or without a Fabric present. ACK_0 is only applicable to Class 2 frames;
and

b) ACK_1 - end-to-end flow control for a single Data frame transfer between Initiator and Recipient
Nx_Ports with or without a Fabric present. The ACK_1 frame is transmitted on receipt of a Class 2
frame. An FC_Port should transmit R_RDY and Link_Control frames before Data frames in order
to avoid buffer-to-buffer and end-to-end Credit problems.

15.3.2.2 Acknowledge (ACK)

15.3.2.2.1 General

ACK_0 or ACK_1 may be used for acknowledgment of Data frames between Initiator and Recipient
Nx_Ports for a given Sequence, but usage shall follow the allowable forms based on support defined in
Login. Prior to N_Port Login, ACK_1 shall be used. Following N_Port Login, the decision to use ACK_0 or
ACK_1 shall be made based on the results of N_Port Login.

Table 60 - Link_Control frame delimiters

Frame Delimiters

ACK, BSY, RJT SOFn2, EOFn, EOFt

LCR SOFn2, EOFn

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

212

The ACK frame shall indicate that one or more valid Data frames were received by the destination Nx_Port
for the corresponding Sequence_Qualifier and SEQ_CNT of a valid Exchange as specified in the
Sequence_Qualifier, and that the interface buffers that received the frame or frames are available for
further frame reception. ACK frames shall be used in Class 2, and transmitted in the same class as the
Data frame or frames that are being acknowledged.

When multiple ACK forms are supported by both the Sequence Initiator N_Port Login parameters and the
Sequence Recipient N_Port Login parameters, ACK_0 usage shall take precedence over ACK_1. ACK_1
shall be the default, if both ends support no other ACK form. Mixing ACK forms within a given Sequence is
not allowed (i.e., only one ACK form shall be used within a single Sequence). ACK precedence is
summarized in table 61.

For all forms of ACK, when the History bit (bit 16) of the Parameter Field is set to zero, it shall indicate that
the Sequence Recipient has transmitted all previous ACKs (i.e., lower SEQ_CNT), if any, for this
Sequence. When the History bit (bit 16) of the Parameter Field is set to one, it shall indicate that at least
one previous ACK has not been transmitted (e.g., Data frame not processed, or Data frame not received)
by the Sequence Recipient. Using this historical information allows an Nx_Port to reclaim end-to-end
Credit for a missing ACK frame.

Being able to reclaim end-to-end Credit does not relieve the Nx_Port of accounting for all ACK frames of a
Sequence in Class 2. ACK frames shall not be retransmitted in response to an F_BSY (Class 2). The
F_BSY frame to an ACK shall be discarded.

Support for ACK_0 may not be symmetrical for a single Nx_Port as a Sequence Initiator and Sequence
Recipient (see FC-LS-3).

NOTE 31 - Throughout this standard, ACK refers to one of the two forms (ACK_1 or ACK_0) and
although there are two command codes in R_CTL, the Parameter Field History bit (bit 16) and ACK_CNT
(bits 15-0) are used in a consistent manner.

The ACK frame provides end-to-end flow control for one or more Data frames between Initiator and
Recipient Nx_Ports as defined in ACK_0 or ACK_1. See 20.3.3.3 for usage rules. A specific Data frame
shall be acknowledged once and only once. ACK reception does not imply Data delivery to a higher level.

15.3.2.2.2 ACK_1

All Nx_Ports, as the default, prior to Login shall support ACK_1. The SEQ_CNT of the ACK_1 shall match
the single Data frame being acknowledged. If an Nx_Port only supports ACK_0, it shall Logout any
Nx_Port that attempts to Login that does not support ACK_0. The Parameter Field contains a value of
0001h in ACK_CNT (bits 15-0) to indicate that a single Data frame is being acknowledged. The
INFORMATION field (Word 0, bits 27-24) shall be set to 0h.

Table 61 - ACK precedence

Sequence Recipient
word 1, bit 31

(ACK_0 Capable)

Sequence Initiator
word 0, bit 11

(ACK_0 Capable)
ACK form required

0 0 ACK_1

0 1 ACK_1

1 0 ACK_1

1 1 ACK_0

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

213

15.3.2.2.3 ACK_0

ACK_0 is the designation used when the ACK_CNT (bits 15-0) of the Parameter Field of the ACK_0 frame
contains a value 0000h to indicate that all Data frames of a Sequence are being acknowledged. The
SEQ_CNT of the ACK_0 shall match the SEQ_CNT of the last Data frame received within the Sequence.
The INFORMATION field (Word 0, bits 27-24) shall be set to 1h.

The ACK_0 frame may be used for both Discard and Process Exchange Error Policies. For both policy
types, ACK_0 support as indicated by Login also specifies that infinite buffering shall be used.

When multiple ACK forms are supported by both Sequence Initiator N_Port Login parameters and the
destination Nx_Port Sequence Recipient N_Port Login parameters, ACK_0 usage shall take precedence
over ACK_1. ACK_1 shall be the default, if both ends support no other common ACK form.

If both Sequence Initiator and Sequence Recipient support ACK_0, a single ACK_0 per Sequence shall be
used to indicate successful Sequence delivery or to set Abort Sequence Condition bits. An additional
ACK_0 shall be used within a Sequence to perform X_ID interlock.

ACK_0 shall not participate in end-to-end Credit management. Mixing ACK forms in a Sequence is not
allowed.

Although infinite buffers is indicated at the level specified by this standard within an Nx_Port, individual
FC-4s (e.g., SAM-5) may agree on a maximum Information Unit size that limits the maximum Sequence
size. By further controlling the maximum number of concurrent Sequences, each Nx_Port may limit the
amount of buffering that is actually required.

15.3.2.2.4 Header definition for all ACK forms

15.3.2.2.4.1 Addressing

The D_ID field designates the source of the Data frame (Sequence Initiator) being replied to by the ACK,
while the S_ID field designates the source of the ACK frame (Sequence Recipient).

15.3.2.2.4.2 F_CTL

The F_CTL field is returned with both Sequence and Exchange Context bits inverted in the ACK frame.
Other bits may also be set according to table 43.

15.3.2.2.4.3 SEQ_ID

Equal to the SEQ_ID of the frame being replied to by ACK.

15.3.2.2.4.4 SEQ_CNT

Shall be equal to the SEQ_CNT of the highest Data frame being replied to by the ACK.

15.3.2.2.4.5 Parameter field

The Parameter Field is defined as follows:

a) History Bit (bit 16):

A) 0 = all previous ACKs transmitted; or

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

214

B) 1 = at least one previous ACK not transmitted;

and

b) ACK_CNT (bits 15 - 0):

A) N = 0 All Data frames (ACK_0);

B) N = 1 Data frame (ACK_1); or

C) N > 1 Reserved.

15.3.2.2.5 Responses

The responses to ACK are F_RJT, P_RJT or F_BSY.

15.3.3 Link_Response

15.3.3.1 Introduction

Link_Response frames shall be sent for Class 2. An FC_Port shall only send Link_Response frames in
reply to valid frames (see 11.3.9.2).

A Link_Response frame indicates that the frame identified by the Sequence_Qualifier and SEQ_CNT was
not delivered to or processed by the destination Nx_Port. When an FC_Port generates a Link_Response
frame, it is routed to the Nx_Port indicated by the D_ID in the frame. Link_Response frames may be:

a) Busy - indicates a busy condition was encountered by the FC_Port; or

b) Reject - indicates that delivery of the frame is being denied.

15.3.3.2 Fabric Busy (F_BSY)

15.3.3.2.1 Description

The F_BSY frame shall indicate that the FC_Port generating the F_BSY is temporarily occupied with other
link activity and is unable to deliver the frame. A reason code is identified in the TYPE field (word 2, bits
31-28). In Class 2, any Data frame or ACK frame may receive an F_BSY response. A Busy response shall
not be used in Class 3.

There are two different Link_Control codes defined for F_BSY as shown in table 59. When word 0, bits
27-24 has a value of 5h, the F_BSY is in response to a Data frame. When word 0, bits 27-24 has a value of
6h, F_BSY is in response to a Link_Control frame.

A F_BSY frame shall not be transmitted in response to another busy frame (either F_BSY or P_BSY). If
the Fabric is unable to deliver the F_BSY frame, it shall be discarded.

When an Nx_Port receives an F_BSY frame in response to a Data frame, the Nx_Port shall retransmit the
busied frame if it has not exhausted its ability to retry. Therefore, an Nx_Port shall save sufficient
information for Data frames with a SOFx2 delimiter for retransmission until an ACK or RJT is received or
retry is exhausted.

If an Nx_Port has exhausted its ability to retry Data frames in response to an F_BSY, it shall notify the FC-4
or an upper level. The Nx_Port may perform the Abort Sequence Protocol based on the Exchange Error
Policy.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

215

It is not necessary to save information in order to retransmit a Link_Control frame, since F_BSY to a
Link_Control frame contains all information required to retransmit and P_BSY is not allowed in response to
Link_Control frames. In Class 2, if an Nx_Port receives an F_BSY in response to an ACK frame, it shall
discard the F_BSY frame.

If a Fabric determines it needs to send an F_BSY in response to a frame, it shall set fields in the header as
follows:

a) copy the S_ID and D_ID fields from the busied frame into the D_ID and S_ID fields, respectively
(i.e., interchange them). Thus, the D_ID field designates the source of the frame encountering the
busy condition while the S_ID field designates the destination of the frame encountering the busy
condition;

b) invert the Exchange and Sequence Context bits in the F_CTL field. Other F_CTL bits may also be
set in accordance with table 43;

c) select the correct Link_Control code value for the F_BSY depending on whether it is in response
to a Data frame or Link_Control frame;

d) the SEQ_ID, SEQ_CNT and Parameter fields shall be copied unchanged from the frame being
busied;

e) the Data_Field (if any) shall be discarded;

f) select the most appropriate reason code (see table 62) and place it in the TYPE field (Word 2, bits
31-28); and

g) if the frame being busied is a Link_Control frame, the Link_Control command code (see table 59)
of the busied frame in the INFORMATION field (Word 0, bits 27-24) shall be copied to the TYPE
field (Word 2, bits 27-24) of the F_BSY frame.

The Fabric shall use EOFn for Class 2 F_BSY frames.

15.3.3.2.2 Responses

There is no response to an F_BSY.

15.3.3.3 N_Port Busy (P_BSY)

15.3.3.3.1 Description

The P_BSY shall indicate that the destination Nx_Port is temporarily occupied with other link activity and is
not able to accept the frame. A reason code shall be identified in the Parameter field of a P_BSY frame. In
Class 2, any Data frame may receive a P_BSY response. A Busy response shall not be used in Class 3.

Table 62 - F_BSY Reason Codes

Encoded Value Word 2, bits 31-28 Name Description

1h Fabric busy
The Fabric is unable to deliver the frame to
the destination Nx_Port due to conditions
internal to the Fabric.

3h Obsolete

Others Reserved

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

216

A P_BSY frame shall not be transmitted in response to another Busy frame (either F_BSY or P_BSY). If
the Nx_Port is unable to accept the P_BSY frame, it shall be discarded.

When an Nx_Port receives P_BSY in response to a frame transmission, the Nx_Port shall retransmit the
busied frame if it has not exhausted its ability to retry. Therefore, an Nx_Port shall save sufficient
information for Data frames with a SOFx2 delimiter for retransmission until an ACK or RJT is received or
retry is exhausted.

If an Nx_Port has exhausted its ability to retry Data frame transmission in response to a P_BSY, it shall
notify the FC-4 or an upper level. The Nx_Port may perform the Abort Sequence protocol based on the
Exchange Error Policy.

P_BSY indicates that the Busy was issued by the destination Nx_Port. P_BSY shall not be issued in
response to a Link_Control frame. An Nx_Port shall process a Link_Control frame for each
unacknowledged Data frame transmitted.

If an Nx_Port determines it needs to send a P_BSY in response to a frame, it shall set fields in the header
as follows:

a) copy the S_ID and D_ID fields from the busied frame into the D_ID and S_ID fields, respectively
(i.e., interchange them). Thus, the D_ID field designates the source of the frame encountering the
busy condition while the S_ID field designates the destination of the frame encountering the busy
condition;

b) invert the Exchange and Sequence Context bits in the F_CTL field. Other F_CTL bits may also be
set in accordance with table 43;

c) the SEQ_ID and SEQ_CNT fields shall be copied unchanged from the frame being busied;

d) the four bytes of the Parameter field shall indicate the action and reason code for the P_BSY
response as defined in table 63. Table 64 and table 65 specify the P_BSY action and reason
codes, respectively; and

e) the Data_Field (if any) shall be discarded.

Table 63 - P_BSY code format

Parameter field

Bits Value

31 -24 Action Code (see table 64)

23 - 16 Reason Code (see table 65)

15 - 8 Reserved

7 - 0 Vendor Unique Code

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

217

15.3.3.3.2 Responses

None.

15.3.3.4 Reject (P_RJT, F_RJT)

15.3.3.4.1 Introduction

The Reject Link_Response shall indicate that delivery of a frame is being denied. A four-byte reject action
and reason code shall be contained in the Parameter field. Rejects may be transmitted for a variety of
conditions. For certain conditions retry is possible, whereas other conditions it is not and intervention
beyond the scope of this standard may be required.

In Class 2, if an FC_Port detects an error in a Data frame, it shall transmit a Reject frame with one of the
reason codes specified in table 68. If an error is detected in a Link_Control frame, a Reject frame shall only
be transmitted under specific conditions.

Table 64 - P_BSY action codes

Encoded Value
Word 5, bits 31-24

Description

01h

Action 1: indicates that the Sequence Recipient has busied the Sequence
(EOFt). The Sequence Recipient shall only terminate the Sequence on a Busy

in response to an interlocked Data frame associated with X_ID assignment
(SOFi2). The frame and Sequence are retryable at a later time.

02h
Action 2: indicate that the Sequence Recipient has busied a Class 2 frame and
that the Sequence has not been terminated (EOFn). The frame is retryable at a

later time.

Others Reserved

Table 65 - P_BSY Reason Codes

Encoded Value Word
5, bits 23-16

Definition Description

01h PN_Port busy (P_BSY)
The destination Nx_Port LCF is
currently busy and is unable to accept
of the frame.

03h N_Port Resource busy
The destination Nx_Port is unable to
process the Data frame at the present
time.

07h Obsolete

FFh Vendor specific Busy (See Bits 7-0)
May be used to specify vendor unique
reason codes.

Others Reserved

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

218

A Fabric shall only reject a Link_Control frame for the following reasons:

a) Class not supported;

b) Invalid D_ID;

c) Invalid S_ID;

d) Nx_Port not available-temporary;

e) Nx_Port not available-permanent; or

f) Login required (Fabric).

An Nx_Port shall only reject a Link_Control frame if it is an unexpected ACK. If an Nx_Port rejects an
unexpected ACK, it shall use Reject Action code 2 as specified in table 67.

If an Nx_Port detects an error in a Link_Control frame for a valid Exchange for a reason not listed above, it
shall initiate the Abort Sequence Protocol and not transmit a Reject frame. For an unidentified or invalid
Exchange, if an error is detected in a Link_Control frame, the Nx_Port shall discard the frame and ignore
the Link_Control frame error. If a Class 3 frame satisfies a rejectable condition, the frame shall be
discarded. A Reject frame (F_RJT, P_RJT) shall not be transmitted in response to another Reject frame
(either F_RJT or P_RJT); the received Reject frame in error shall be discarded.

If an Nx_Port determines it needs to send a Reject (either F_RJT or P_RJT) in response to a frame, it shall
set fields in the header as follows:

a) copy the S_ID and D_ID fields from the rejected frame into the D_ID and S_ID fields, respectively
(i.e., interchange them). Thus, the D_ID field designates the source of the frame encountering the
reject condition while the S_ID field designates the destination of the frame encountering the reject
condition;

b) invert the Exchange and Sequence Context bits in the F_CTL field. Other F_CTL bits may also be
set in accordance with table 43;

c) the SEQ_ID and SEQ_CNT shall be copied unchanged from the frame being rejected;

d) the four bytes of the Parameter field shall indicate the action and reason for the Reject response
as defined in table 66. Table 67 and table 68 specify the Reject Action codes and Reject Reason
Codes respectively; and

e) the Data_Field (if any) shall be discarded.

15.3.3.4.2 Parameter field

15.3.3.4.2.1 Reject Code format

The four bytes of this field shall indicate the action code and reason for rejecting the request (see table 66,
table 67 and table 68).

The first error detected shall be the error reported; the order of checking is not specified.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

219

Table 66 - Reject Code format

Parameter field

Bits Value

31 -24 Action Code (see table 67)

23 - 16 Reason Code (table 68)

15 - 8 Reserved

7 - 0 Vendor Unique Code

Table 67 - Reject Action Codes

Encoded Value
Word 5, bits 31-24

Description Action

01h Retryable error

Action 1: indicates that if the condition indicated in
the reject Reason code is changed or corrected,
the sequence may be retryable.
Applicability:
by Fabric when D_ID = Fabric
by Fabric when D_ID = Nx_Port
by Nx_Port when D_ID = Nx_Port

02h
Non-retryable
error

Action 2: indicates that the Sequence is
non-retryable and further recovery (e.g., Abort
Exchange) may be required
Applicability:
by Fabric when D_ID = Fabric
by Nx_Port when D_ID = Nx_Port

Other codes Reserved

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

220

Table 68 - Reject Reason Codes (part 1 of 2)

Encoded Value Word
5, bits 23-16

Description By Action Code

01h Invalid D_ID B R

02h Invalid S_ID B R

03h Nx_Port not available, temporary F R

04h Nx_Port not available, permanent F R

05h Class not supported B R

06h Delimiter usage error B N

07h TYPE not supported B N

08h Invalid Link_Control P N

09h Invalid R_CTL field P N

0Ah Invalid F_CTL field P N

0Bh Invalid OX_ID P N

0Ch Invalid RX_ID P N

0Dh Invalid SEQ_ID P N

0Eh Invalid DF_CTL F N

0Fh Invalid SEQ_CNT P N

10h Invalid Parameter field P N

11h Exchange error P N

12h Protocol error P N

13h Incorrect length B N

14h Unexpected ACK P N

15h Class of service not supported by entity at
FF FF FEh

F R

16h Login Required B R

17h Excessive Sequences attempted P R

18h Unable to Establish Exchange P R

19h Reserved N/A N/A

1Ah Fabric path not available F R

1Bh Invalid VC_ID (Class 4) - Obsolete N/A N/A

Key:
F = F_RJT (Fx_Port)
P = P_RJT (Nx_Port)
B = Both F_RJT and P_RJT
R = Retryable
N = Non-retryable

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

221

If a frame within a Sequence is rejected, the Sequence shall be abnormally terminated or aborted. If an
EOFt ends the RJT frame, the FC_Port transmitting the RJT frame has terminated the Sequence. In Class
2 an FC_Port shall only terminate the Sequence on a Reject in response to an interlocked Data frame
associated with X_ID assignment (SOFi2). If an EOFn ends the RJT frame, the Nx_Port receiving the RJT
frame shall perform the Abort Sequence protocol to abort the Sequence. Rejects shall only be transmitted
in response to valid frames.

15.3.3.4.2.2 Invalid D_ID

F_RJT: The Fabric is unable to locate the destination Nx_Port address.

P_RJT: The Nx_Port that received this frame does not recognize the D_ID as its own Identifier.

15.3.3.4.2.3 Invalid S_ID

F_RJT: The S_ID does not match the N_Port_ID assigned by the Fabric.

P_RJT: The destination Nx_Port does not recognize the S_ID as valid.

15.3.3.4.2.4 Nx_Port not available, temporary

F_RJT: The Nx_Port specified by the D_ID is a valid destination address but the Nx_Port is not
functionally available (e.g., the Nx_Port is online and may be performing a Link Recovery Protocol).

1Ch Invalid CS_CTL field B N

1Dh Insufficient resources for VC (Class 4) -
Obsolete

N/A N/A

1Fh Invalid class of service B N

20h Obsolete N/A N/A

21h Obsolete N/A N/A

22h Obsolete N/A N/A

23h Obsolete N/A N/A

24h Process Login required P R

25h Invalid Attachment F N

FFh Vendor specific reject (See bits 7-0) P R

Others Reserved N/A N/A

Table 68 - Reject Reason Codes (part 2 of 2)

Encoded Value Word
5, bits 23-16

Description By Action Code

Key:
F = F_RJT (Fx_Port)
P = P_RJT (Nx_Port)
B = Both F_RJT and P_RJT
R = Retryable
N = Non-retryable

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

222

15.3.3.4.2.5 Nx_Port not available, permanent

F_RJT: The Nx_Port specified by the D_ID is a valid destination address but the Nx_Port is not
functionally available. The Nx_Port is Offline or Powered Down.

15.3.3.4.2.6 Class not supported

F_RJT or P_RJT: The class specified by the SOF delimiter of the frame being rejected is not supported.

15.3.3.4.2.7 Delimiter usage error

F_RJT or P_RJT: The SOF or EOF is not appropriate for the current conditions. See tables 56 and 60 for
allowable delimiters by class.

15.3.3.4.2.8 TYPE not supported

F_RJT or P_RJT: The TYPE field of the frame being rejected is not supported by the FC_Port replying
with the Reject frame.

15.3.3.4.2.9 Invalid Link_Control

P_RJT: The command specified in the Information Category bits within R_CTL field in the frame being
rejected is invalid or not supported as a Link_Control frame.

15.3.3.4.2.10 Invalid R_CTL field

P_RJT: The R_CTL field is invalid or inconsistent with the other Frame_Header fields or conditions
present.

15.3.3.4.2.11 Invalid F_CTL field

P_RJT: The F_CTL field is invalid or inconsistent with the other Frame_Header fields or conditions
present.

15.3.3.4.2.12 Invalid OX_ID

P_RJT: The OX_ID specified is invalid or inconsistent with the other Frame_Header fields or conditions
present.

15.3.3.4.2.13 Invalid RX_ID

P_RJT: The RX_ID specified is invalid or inconsistent with the other Frame_Header fields or conditions
present.

15.3.3.4.2.14 Invalid SEQ_ID

P_RJT: The SEQ_ID specified is invalid or inconsistent with the other Frame_Header fields or conditions
present.

15.3.3.4.2.15 Invalid DF_CTL

P_RJT: The DF_CTL field is invalid.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

223

15.3.3.4.2.16 Invalid SEQ_CNT

P_RJT: The SEQ_CNT specified is inconsistent with the other Frame_Header fields or conditions present.
A SEQ_CNT reject is not used to indicate out of order or missing Data frames (see 12.7 bits 5-4 (F_CTL
Abort Sequence Condition)).

15.3.3.4.2.17 Invalid Parameter field

P_RJT: The Parameter field is incorrectly specified or invalid.

15.3.3.4.2.18 Exchange Error

P_RJT: An error has been detected in the identified Exchange (OX_ID). This could indicate Data frame
transmission without Sequence Initiative or other logical errors in handling an Exchange.

15.3.3.4.2.19 Protocol Error

P_RJT: This indicates that an error has been detected that violates the rules of FC-2 signaling protocol
that are not specified by other error codes.

15.3.3.4.2.20 Incorrect length

F_RJT or P_RJT: The frame being rejected is an incorrect length for the conditions present.

15.3.3.4.2.21 Unexpected ACK

P_RJT: An ACK was received from:

a) an Nx_Port that is not Logged in (i.e., an unexpected S_ID);

b) an Nx_Port that is Logged-in but not for an open Sequence or Exchange referenced in the ACK; or

c) an Nx_Port that is Logged-in, for an open Sequence or Exchange referenced in the ACK, but that
has no outstanding frames to acknowledge.

The EOF delimiter for the P_RJT shall be EOFn.

15.3.3.4.2.22 Class of service not supported by entity at FF FF FEh

F_RJT: The class specified by the SOF delimiter of the frame being rejected is not supported by the
Fx_Port (FF FF FEh)

15.3.3.4.2.23 Login Required

F_RJT or P_RJT: An Exchange is being initiated before the interchange of Service Parameters (i.e.,
Login) has been performed. The Fabric may issue F_RJT in order to notify an Nx_Port that a Login with
the Fabric is required due to changes within the Fabric. The Fabric shall not issue F_RJT in order to
convey Login status of a destination Nx_Port.

15.3.3.4.2.24 Excessive Sequences attempted

P_RJT: A new Sequence was initiated by an Nx_Port that exceeded the capability of the Sequence
Recipient as specified in the Service Parameters during Login.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

224

15.3.3.4.2.25 Unable to Establish Exchange

P_RJT: A new Exchange was initiated by an Nx_Port that exceeded the capability of the Responder
facilities.

15.3.3.4.2.26 Fabric path not available

F_RJT: The speed of the source and destination PN_Ports do not match. Other Fabric characteristics
related to multiple Fabric domains may also use this reason code.

15.3.3.4.2.27 Invalid CS_CTL Field

F_RJT or P_RJT: The CS_CTL field is invalid.

15.3.3.4.2.28 Invalid class of service

F_RJT or P_RJT: The class of service indicated by the SOF is invalid for the conditions present

15.3.3.4.2.29 Invalid Attachment

F_RJT: The attached Port has failed a security check and become an Invalid Attachment.

15.3.3.4.2.30 Vendor Specific Reject

F_RJT or P_RJT: The Vendor specific Reject bits (bits 7-0) may be used to specify vendor specific reason
codes.

15.3.3.4.3 Responses

The responses to F_RJT or P_RJT are F_BSY or none.

15.3.4 Link_Control commands

15.3.4.1 Introduction

Link_Control commands are Link_Control frames that initiate a low-level action at the destination Nx_Port.
These commands are limited in scope and are normally associated with functions such as reset.
Link_Control commands do not require end-to-end Credit and do not participate in end-to-end flow control
with regard to incrementing or decrementing EE_Credit_CNT. Link_Control commands shall not be
considered to be part of any existing Exchange or Sequence.

15.3.4.2 Link Credit Reset (LCR)

15.3.4.2.1 Description

The LCR frame shall indicate that the Nx_Port specified by the S_ID requests that the Nx_Port specified by
the D_ID reset any buffers containing Data frames from the S_ID in order to allow the S_ID to set its
EE_Credit_Count to zero. Both Nx_Ports abnormally terminate all active Sequences with the S_ID as
Sequence Initiator and the D_ID as Sequence Recipient for all classes of service.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

225

The Nx_Port specified by the S_ID shall perform Exchange and Sequence recovery at the discretion of the
appropriate Upper Level Protocol. After transmitting the LCR frame, the Nx_Port that requested the Credit
Reset shall wait R_A_TOV before initiating Sequences with the destination Nx_Port. The LCR frame shall
not be transmitted as part of an existing Sequence or Exchange. All fields other than R_CTL, D_ID, and
S_ID are reserved and ignored by the receiver except for CRC calculation.

Link Credit Reset shall only be transmitted in Class 2. See 22.5.3.4 for a discussion of end-to-end Credit
loss in Class 2 resulting from Sequence timeout. Any Class 3 Data frames in the destination Nx_Port
buffers with the S_ID equal to the S_ID in the LCR and the D_ID equal to the D_ID in the LCR are also
reset. LCR shall be transmitted with SOFn2 and EOFn.

15.3.4.2.2 Protocol

a) LCR; and

b) no reply frame.

15.3.4.2.3 Request Sequence

Addressing: The S_ID field designates the Nx_Port that is requesting a buffer reset by the destination
Nx_Port or D_ID.

15.3.4.2.4 Responses

The possible responses are:

a) none;

b) F_RJT, P_RJT; or

c) F_BSY.

NOTE 32 - F_RJT may be returned for any of the reasons allowed by the Fabric. P_RJT is only returned
for "Invalid D_ID" or "Class not supported" in order to allow an Nx_Port to avoid special casing LCR in
Class 2. However, the Nx_Port transmitting LCR should be aware of possibility of F_RJT or P_RJT in
order to avoid EE_Credit_CNT problems. In particular, the zero values of OX_ID, RX_ID, SEQ_ID, and
SEQ_CNT should be noted for possible conflict with an existing Exchange.

15.4 ACK generation assistance

15.4.1 Introduction

If a Sequence Recipient supports multiple ACK forms, an indication about the required ACK form by the
Sequence Initiator as indicated during Login may be of assistance to the Sequence Recipient in generating
it. This shall be done in accordance with table 61. See FC-LS-3 for definition of the Login bits referenced in
table 61.

15.4.2 Capability Indication

The ACK generation assistance capability is indicated during N_Port Login in the Nx_Port Class Service
Parameters.

The Initiator Control Flags are specified in FC-LS-3.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

226

15.4.3 Applicability

The ACK precedence determined during Login is applicable to all Class 2 Data frames.

ACK form is meaningful on all Class 2 Data frames of a Sequence. ACK form is not meaningful on Class 2
Link_Control frames or any Class 3 frames.

15.4.4 F_CTL bits

F_CTL Bits 13-12 (ACK_Form bits) are set by Sequence Initiator to provide an optional assistance to the
Sequence Recipient by indicating in this F_CTL field (see table 39) its ACK capability determined during
N_Port Login.

15.4.5 Login rules

Only ACK_1 shall be used during or before the establishment of Login parameters. Additional rules are
specified for ACK_Form bits usage during these conditions:

a) in Class 2, ACK_1 shall be used to acknowledge PLOGI and FLOGI and the corresponding
LS_ACC;

b) if ACK generation assistance is not provided, the ACK_Form bits shall be set to 00b on the FLOGI
or PLOGI frame and the corresponding LC_ACC frame;

c) if ACK generation assistance is provided, the ACK_Form bits shall be set to 01b on the FLOGI or
PLOGI frame and the corresponding LC_ACC frame; and

d) once established, the ability or inability to provide ACK generation assistance shall not change
until logout or Relogin occurs.

15.4.6 ACK_Form errors

If a Sequence Recipient receives an ACK_Form value that it does not support, it shall issue a P_RJT with
the reason code "Protocol error".

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

227

16 Basic Link Services

16.1 Scope

Basic Link Services are FC-3 functions.

16.2 Introduction

Link Services are low-level operations to manage the communications between Fibre Channel devices and
the interaction between a device and the Fabric to which it is attached. There are three Link Service types:

a) Basic Link Services -- single frame, single sequence commands, which may be embedded in an
unrelated exchange;

b) Extended Link Services -- commands sent by means of a dedicated exchange; and

c) FC-4 Link Services -- Link Services performed by a specific FC-4 protocol.

Basic Link Services are specified in this standard. The set of Extended Link Services (ELSs) along with the
frame format and protocol for both ELSs and FC-4 Link Services are described in FC-LS-3. FC-4 Link
Service functions are specified in the applicable FC-4 specification.

Link Service frames and Sequences are composed of Link_Data frames and shall operate according to the
ACK and Link_Response rules specified in clause 15 and the flow control rules specified in clause 20.

Basic Link Service commands consist of only a single Basic Link_Data frame and are interspersed or are
part of a Sequence for an Exchange performing a specific protocol other than Basic Link Service. In such
cases, the Basic Link Service command does not constitute a separate Information Category in specifying
the number of Information Categories in a Sequence as a Login parameter. Basic Link Service commands
support low-level functions (e.g., passing control bit information in a NOP, or aborting a Sequence using
ABTS). Login shall not be required prior to using Basic Link Service commands.

16.3 Basic Link Service commands

16.3.1 Introduction

Nx_Ports shall support all Basic Link Service commands.

The DF_CTL field shall be set to 00h or to 40h.

The R_CTL field shall be set as defined in table 69 to indicate Basic Link Service commands.

The TYPE field (Word 1 bits 31-24) shall be set to zero.

The timeout for a Basic Link Service shall be 2 • R_A_TOV.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

228

16.3.2 Abort Sequence (ABTS)

16.3.2.1 Overview

The ABTS frame shall be used by:

a) the Sequence Initiator to request that the Sequence Recipient abort one or more Sequences (see
16.3.2.2 and 22.5.5.2.2); and

b) the Sequence Recipient to request that the ABTS Recipient abort the entire Exchange (see
16.3.2.3).

The decision to attempt to abort one or more Sequences may be determined by the Sequence Initiator
(Sequence timeout) or the Sequence Recipient (ACK frame Abort Sequence Condition bits 5-4 or P_RJT
frame).

The Sequence Initiator may require that the Sequence Recipient abort one or more sequences by setting
bit 0 in the Parameter field to one. If bit 0 in the Parameter field is set to zero, the Sequence Recipient may
elect to abort one or more Sequences or elect to abort the entire Exchange in a protocol specific manner.

An ABTS Initiator may specify the reason for transmitting the ABTS by providing an abort reason code in
the Parameter field (see table 70).

The Sequence Recipient may request that one or more Sequences in progress be aborted by setting the
Abort Sequence Condition bits to a value of 01b on an ACK frame (see 12.7.10). The ABTS frame may be
transmitted without regard to which Nx_Port holds, or may hold, the Sequence Initiative.

Whether a sequence or exchange is aborted shall be based on the value of bit 0 in the Parameter field.

Table 69 - Basic Link Service Information Categories

R_CTL
Description Abbreviation

ROUTING INFORMATION

8h

0h No Operation NOP (see 16.3.5)

1h Abort Sequence ABTS (see 16.3.2)

2h Obsolete

4h Basic_Accept BA_ACC (see 16.3.3)

5h Basic_Reject BA_RJT (see 16.3.4)

6h Obsolete

Others Reserved

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

229

The Parameter field for an ABTS frame shall be as specified in table 70.

The ABTS abort reason codes are specified in table 71.

Table 70 - ABTS Parameter field

Bit(s) Description Meaning

31 - 16 Reserved

15 to 8 Abort reason code See table 70

7 to 1 Reserved

0 Abort type 0 = Abort Exchange
1 = Abort Sequence

Table 71 - ABTS abort reason codes

Value Description

00h No explanation (i.e., default value)

01h Invalid frame

02h Out of context frame (e.g., Sequence number/count
inconsistency)

03h Non-existent Exchange (e.g., unknown OX_ID, RX_ID)

04h Out of resources

05h Sequence timeout

06h Internal error (e.g., DMA error)

07h Invalid relative offset

08h Command timeout

81h SB protocol timeout (see FC-SB-5) a

8h2 SB Reserved a

83h SB Reserved a

84h SB Reserved a

85h SB Reserved a

86h SB length error (see FC-SB-5) a

87h SB LRC error (see FC-SB-5) a

88h SB CRC error (see FC-SB-5) a

89h SB IU count error (see FC-SB-5) a

8Ah SB link-level protocol error (see FC-SB-5) a

8Bh SB device-level protocol error (see FC-SB-5) a

8Ch SB Receive ABTS (see FC-SB-5) a

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

230

16.3.2.2 Aborting Sequences using ABTS

16.3.2.2.1 Introduction

When aborting sequences using ABTS:

a) none, one or multiple Sequences are aborted;

b) ABTS is transmitted by the Sequence Initiator of the last Sequence; and

c) ABTS is transmitted as part of the open Sequence.

The SEQ_ID of the ABTS frame shall match the SEQ_ID of the last Sequence transmitted by the
Sequence Initiator of the ABTS frame. Since ABTS is a continuation of the last transmitted Sequence, it
shall be transmitted in the same class. Since Sequences shall not be streamed in more than one class, the
class in which the ABTS is transmitted shall be the same class in which an error, if any, occurred. The
RX_ID and OX_ID specified in the ABTS Frame_Header shall be associated with the Exchange in which
the Sequence Initiator has detected a potential error.

F_CTL bits, (e.g., First_Sequence), shall be set to match previous Data frames within this Sequence since
the ABTS frame is part of the Sequence. F_CTL bits for Sequence Initiative (bit 16) and End_Sequence
(bit 19) shall be set to one in order to transfer Sequence Initiative.

16.3.2.2.2 ABTS Initiator

Since ABTS is used for error recovery, the following relaxed behaviors are allowed. An ABTS Initiator may
transmit ABTS, even if:

a) there is no end-to-end Credit available;

8Dh SB Cancel function timeout (see FC-SB-5) a

8Eh SB Abnormal termination of exchange (see FC-SB-5) a

8Fh SB Host storage error (see FC-SB-5) a

90h SB Software termination of exchange due to halt request (see

FC-SB-5) a

91h SB Software termination of exchange due to clear request (see

FC-SB-5) a

92h SB Interrogate operation error (see FC-SB-5) a

93h SB Transport operation error (see FC-SB-5) a

94h SB Transport error (see FC-SB-5) a

95h SB REC error (see FC-SB-5) a

all others Reserved

a Values 81 – 9F are used in association with FC-SB-5

Table 71 - ABTS abort reason codes

Value Description

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

231

b) it does not hold the Sequence Initiative;

c) there is no Sequence open; and

d) maximum number of Concurrent Sequences supported are in use.

After transmitting the ABTS frame, an Nx_Port shall consider the status of the Exchange in which it was
transmitted to be in an indeterminate condition and shall not deliver any Sequences or notification of
Sequence delivery to an upper level until the BA_ACC is received, processed, and recovery, if any, is
performed. Due to out of order delivery and special ACK transmission rules, an ACK to a Data frame within
the range of a Recovery_Qualifier may mislead the Sequence Initiator of the ABTS prior to reception of the
BA_ACC.

NOTE 33 - The ABTS frame may be transmitted after a Sequence timeout. The Sequence Initiator of the
ABTS frame should reset the E_D_TOV and R_A_TOV timers when the ABTS frame is transmitted, just
as any other Data frame transmitted for a Sequence.

16.3.2.2.3 ABTS Recipient

When the ABTS Request frame is received, the Sequence Recipient may abort no Sequences, one
Sequence, or multiple Sequences based on the status of each Sequence within an Exchange and the
Exchange Error Policy (see 22.5.4.3). After receiving the ABTS frame, the Recipient shall determine a
range of SEQ_CNT values found in error, if any, associated with the identified Exchange. Data frames for
any deliverable Sequences (see 19.4.1) may be processed after the ABTS frame is received based on the
policy for the Exchange, but before the BA_ACC is transmitted.

Transmission of the BA_ACC to the ABTS frame is an atomic function in that any Data frames identified in
the range of the Recovery_Qualifier (identified in the BA_ACC Payload) shall be discarded after the
BA_ACC is transmitted to the Sequence Initiator. The BA_ACC provides a synchronization point between
the Sequence Initiator and Sequence Recipient. The ABTS Sequence Recipient is not required to timeout
waiting for any missing frames before transmitting the BA_ACC. The ABTS Sequence Recipient shall set
F_CTL bit 16 to zero in the BA_ACC to indicate that it holds the Sequence Initiative for the Exchange or set
it to one to indicate that the ABTS Sequence Initiator holds the Sequence Initiative.

The format of the BA_ACC Payload is shown in table 72. The SEQ_ID, if indicated as valid, shall be the
last deliverable Sequence transmitted by the Sequence Initiator (of ABTS). If the SEQ_ID is indicated as
invalid, then the Sequence Recipient has no information on the last deliverable Sequence. The low
SEQ_CNT value shall be equal to the SEQ_CNT of the last Data frame of the last deliverable Sequence.
The high SEQ_CNT value shall be equal to the SEQ_CNT of the ABTS frame.

In the BA_ACC Payload, if the low SEQ_CNT equals high SEQ_CNT and the last valid SEQ_ID in the
BA_ACC matches the last Sequence that was transmitted, then no Sequences have been aborted (i.e., all
were deliverable), no Recovery_Qualifier is identified, and no recovery is required. If the low SEQ_CNT is
not equal to the high SEQ_CNT or the last SEQ_ID is not the last Sequence transmitted, then at least one
Sequence is in error.

16.3.2.2.4 Recovery Qualifier

If the ABTS frame was transmitted and and at least one Sequence is in error as indicated by the sequence
counts in the BA_ACC, a Recovery_Qualifier shall be established for both Nx_Ports. A Recovery_Qualifier
range is identified by the S_ID, D_ID, OX_ID and RX_ID in combination with a range of SEQ_CNT values
(low and high). If a Recovery_Qualifier exists, the Sequence Initiator of the ABTS frame shall discard ACK
and Link_Response frames received that correspond to the Recovery_Qualifier between the low and high
SEQ_CNT values. After transmission of the BA_ACC to the ABTS frame the Sequence Recipient of the

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

232

ABTS frame shall discard Data frames received that correspond to the Recovery_Qualifier between the
low and high SEQ_CNT values if a Recovery_Qualifier exists. While the Recovery_Qualifier exists, the
Sequence Initiator shall not transmit Data frames for the Recovery_Qualifier within the specified low and
high SEQ_CNT values.

If a Recovery_Qualifier has been established, based on the BA_ACC Payload, the Sequence Initiator of
the ABTS shall issue a Reinstate Recovery Qualifier (RRQ) ELS Request Sequence (see FC-LS-3) after
waiting an R_A_TOV timeout period after reception of the BA_ACC.

After the BA_ACC has been transmitted and the Sequence status has been posted in the Exchange Status
Block as Aborted, if the Sequence Recipient receives any Data frames for the Aborted Sequence or
Aborted Sequences (based on the range of a Recovery_Qualifier), the frames shall be discarded. See
22.5.5.2 and 22.5.3 for more discussion on abnormal termination of Sequences and Sequence timeout.
See 22.5.5.2.2 for examples of the ABTS protocol that include several special cases (e.g., the start of an
Exchange and Class 3). Additional information regarding Sequence recovery and the effects of ABTS
based on different Exchange Error Policies is also discussed.

Following reception of the BA_ACC to the Abort Sequence frame, the Sequence Initiator may perform
Sequence recovery under guidance from the appropriate FC-4.

16.3.2.2.5 Protocol

a) Abort Sequence Request frame; and

b) BA_ACC or BA_RJT Reply frame.

16.3.2.2.6 Request Sequence

Addressing: The D_ID field designates the Sequence Recipient Nx_Port. The S_ID field designates the
source Sequence Initiator Nx_Port that is requesting that a Sequence or Sequences be aborted.

X_ID: Both the RX_ID and OX_ID shall correspond to the current values as determined by the Sequence
Initiator of the ABTS frame.

SEQ_ID and SEQ_CNT: The SEQ_ID shall be the same as the last Sequence transmitted for this
Exchange by the Nx_Port transmitting ABTS, even if the last Data frame has been transmitted. The
SEQ_CNT shall be set to a value one greater than the previous Data frame transmitted, indicating the
highest SEQ_CNT transmitted for this SEQ_ID and the highest SEQ_CNT for this range of SEQ_CNTs
over multiple Sequences.

Parameter: The Parameter field shall be set as specified in table 70.

Payload: The Abort Sequence Basic Link Service command has no Payload.

16.3.2.2.7 Reply Sequence

BA_RJT: BA_RJT signifies rejection of the ABTS command, however, the Sequence may have been
aborted without Sequence information (see 16.3.4).

The SEQ_ID, if indicated as valid, shall be the last deliverable Sequence transmitted by the Sequence
Initiator. If the SEQ_ID is indicated as invalid, then the Sequence Recipient has no information on the last
deliverable Sequence.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

233

BA_ACC: BA_ACC signifies that the destination Nx_Port has aborted and discarded no Sequences, one
Sequence, or multiple Sequences.

The high SEQ_CNT shall be equal to the SEQ_CNT of the ABTS frame. The low SEQ_CNT value shall be
one of the following:

a) same as SEQ_CNT of the ABTS frame;

b) equal to the SEQ_CNT of the last Data frame of the last deliverable Sequence; or

c) set to 00 00h.

The Payload is specified for each of the permitted cases:

a) to indicate that the current Sequence in which ABTS has been received is the last deliverable
Sequence, and no Sequences are aborted at its end, the Sequence Recipient shall set, in the
BA_ACC Payload:

A) SEQ_ID Validity equal valid (80h);

B) SEQ_ID equal the SEQ_ID of the Sequence in which the ABTS has been received from the
Sequence Initiator; and

C) low SEQ_CNT equal High SEQ_CNT equal SEQ_CNT of the ABTS frame;

b) to indicate that it has the information on the last deliverable Sequence but one or more Sequences
are aborted at its end, the Sequence Recipient shall set, in the BA_ACC Payload:

A) SEQ_ID Validity equal valid (80h);

B) SEQ_ID equal the SEQ_ID of the last deliverable Sequence received from the Sequence
Initiator but is not equal to the SEQ_ID of the Sequence in which ABTS frame has been
received;

C) low SEQ_CNT equal the SEQ_CNT of the last Data frame of the last deliverable Sequence;
and

D) high SEQ_CNT equal the SEQ_CNT of the ABTS frame;

and

c) to indicate that it has no information on the last deliverable Sequence, and one or more
Sequences are aborted at its end, the Sequence Recipient shall set, in the BA_ACC Payload,
independent of continuously increasing SEQ_CNT use:

A) SEQ_ID Validity equal invalid (00h);

B) SEQ_ID equal invalid in this case;

C) low SEQ_CNT equal 00 00h; and

D) high SEQ_CNT equal the SEQ_CNT of the ABTS frame.

16.3.2.3 Aborting Exchanges using ABTS

16.3.2.3.1 Introduction

Using ABTS to abort an Exchange is specified in this section. In this method,

a) an entire Exchange is aborted;

b) ABTS is transmitted by the Sequence Initiator or the Sequence Recipient of the last Sequence;
and

c) ABTS is transmitted as part of the open Sequence or in a new Sequence.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

234

16.3.2.3.2 ABTS sent by the last Sequence Initiator in an open Sequence

If the last Sequence is open and the Sequence Initiator of the last Sequence transmits the ABTS frame,
the SEQ_ID of this ABTS frame shall match the SEQ_ID of the last Sequence transmitted by the last
Sequence Initiator. The SEQ_CNT of the ABTS frame shall be one greater than the SEQ_CNT of the last
Data frame transmitted for this last Sequence.

16.3.2.3.3 ABTS sent by the last Sequence Initiator in a new Sequence

If the last Sequence has been completed and is therefore not open, and the Sequence Initiator of the last
Sequence transmits the ABTS frame, the ABTS shall be transmitted in a new Sequence with a valid
SEQ_ID not in use at that time.

16.3.2.3.4 ABTS sent in an open or new Sequence

Since ABTS is a continuation of the last transmitted Sequence, it shall be transmitted in the same class.
Since Sequences shall not be streamed in more than one class, the class in which the ABTS is transmitted
shall be the same class in which an error, if any, occurred. The RX_ID and OX_ID specified in the ABTS
Frame_Header shall be associated with the Exchange in which the Sequence Initiator has detected a
potential error.

F_CTL bits for Sequence Initiative (bit 16) and End_Sequence (bit 19) shall be set to one in order to
transfer Sequence Initiative. If the ABTS frame is part of the last Sequence, F_CTL bits (e.g.,
First_Sequence) shall be set to match previous Data frames within this Sequence. If the ABTS is
transmitted in a new Sequence, F_CTL bits shall be set to match the new Sequence.

16.3.2.3.5 ABTS by the last Sequence Recipient

If the last Sequence Recipient transmits an ABTS frame, it shall transmit ABTS in a new Sequence with a
SEQ_ID available for use from its Nx_Port as the Sequence Initiator. The new Sequence shall follow
applicable rules for the Sequence. The class in which the ABTS is transmitted shall be the same class in
which an error, if any, occurred. The RX_ID and OX_ID specified for the new Sequence shall be
associated with the Exchange in which the Sequence Recipient has detected a potential error.

If the Sequence Initiator has not transferred the Sequence Initiative or has transferred the Sequence
Initiative but has not received the confirmation, but receives the ABTS frame then the Sequence Initiator
shall abort the Exchange by setting the Last_Sequence bit to one in the BA_ACC.

NOTE 34 - If the Sequence Initiator has transferred the Sequence Initiative, received the confirmation
but receives ABTS, then it is treated as the ABTS sent by the new Sequence Initiator and the
corresponding rules are followed.

16.3.2.3.6 Request Sequence

Addressing: The D_ID field designates the ABTS Recipient Nx_Port. The S_ID field designates the
ABTS Initiator Nx_Port that is requesting that an Exchange be aborted.

X_ID: Both the RX_ID and OX_ID shall correspond to the current values as determined by the Sequence
Initiator of the ABTS frame.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

235

SEQ_ID and SEQ_CNT: If the Sequence Initiator is the ABTS initiator and a Sequence is open, the
SEQ_ID shall be the same as the last Sequence transmitted for this Exchange by the Nx_Port transmitting
ABTS, even if the last Data frame has been transmitted. The SEQ_CNT shall be set to a value one greater
than the previous Data frame transmitted, indicating the highest SEQ_CNT transmitted for this SEQ_ID
and the highest SEQ_CNT for this range of SEQ_CNTs over multiple Sequences.

If the Sequence Initiator is the ABTS Initiator and no Sequence is open, the SEQ_ID shall be a new valid
value unused at that time and the SEQ_CNT shall be either continuously increasing from the latest Data
frame transmitted in the last Sequence or binary zero.

If the Sequence Recipient is the ABTS Initiator, the SEQ_ID shall be a new valid value unused at that time
by that Nx_Port as a Sequence Initiator and the SEQ_CNT shall be either continuously increasing from the
latest Data frame transmitted in the last Sequence or binary zero.

Payload: The Abort Sequence Basic Link Service command has no Payload.

16.3.2.3.7 Reply Sequence

BA_RJT: BA_RJT signifies rejection of the ABTS command, however, the Exchange may have been
aborted without Sequence information (see 16.3.4).

BA_ACC: BA_ACC signifies that the destination Nx_Port has aborted and discarded no Sequences, one
Sequence, multiple Sequences, or the entire Exchange. The BA_ACC Payload is shown in table 72.

The SEQ_ID, if indicated as valid, shall be the last deliverable Sequence received from the Sequence
Initiator. If the SEQ_ID is indicated as invalid, then the Sequence Recipient has no information on the last
deliverable Sequence. To abort an Exchange, the Last_Sequence bit shall be set to 1 and Low SEQ_CNT
shall be 00 00h and High SEQ_CNT FF FFh.

The Payload is specified for each of the permitted cases:

a) to indicate that it has the information on the last deliverable Sequence, and nothing is aborted at its
end, the ABTS Recipient shall set, in the BA_ACC Payload:

A) SEQ_ID Validity = valid (80h);

B) SEQ_ID = the SEQ_ID of the last deliverable Sequence received from the ABTS Initiator; and

C) low SEQ_CNT = High SEQ_CNT = SEQ_CNT of ABTS frame;

b) to indicate that it has no information on the last deliverable Sequence, and it is aborting the entire
Exchange, the ABTS Recipient shall set the Last_Sequence F_CTL bit to one and shall set, in the
BA_ACC Payload:

Table 72 - BA_ACC Payload

Bits
Word

31 .. 24 23 .. 16 15 .. 08 07 .. 00

0
SEQ_ID Validity

80h = valid
00h = invalid

SEQ_ID of last
Sequence deliverable

to ULP
(if valid indicated)

Reserved

1 OX_ID RX_ID

2 Low SEQ_CNT High SEQ_CNT

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

236

A) SEQ_ID Validity = invalid (00h);

B) SEQ_ID = invalid in this case;

C) low SEQ_CNT = 00 00h; and

D) high SEQ_CNT = FF FFh;

and

c) to indicate that it has information on the last deliverable Sequence, but it is aborting the entire
Exchange due to uncertainty (e.g., Sequence Initiative ownership or lack of its capability to resolve
the conflict), the ABTS Recipient shall set the Last_Sequence F_CTL bit to 1 and shall set, in the
BA_ACC Payload:

A) SEQ_ID Validity = valid (80h);

B) SEQ_ID = the SEQ_ID of the last deliverable Sequence received from the ABTS Initiator;

C) low SEQ_CNT = 00 00h; and

D) high SEQ_CNT = FF FFh.

16.3.3 Basic Accept (BA_ACC)

16.3.3.1 Description

BA_ACC is a single frame Link Service Reply Sequence that notifies the transmitter of a Basic Link
Service Request frame that the request has been completed. The BA_ACC Link Service Reply Sequence
shall transfer the Sequence Initiative by setting the Sequence Initiative bit (Bit 16) to one in F_CTL on the
last Data frame of the Reply Sequence if the Sequence Initiative for the Exchange is held by the
transmitter of the ABTS frame. The Sequence Initiative (Bit 16) shall be set to zero to indicate that the
transmitter of the BA_ACC holds the Sequence Initiative for the Exchange. The OX_ID and RX_ID shall be
set to match the Exchange in which the ABTS frame was transmitted. The SEQ_ID shall be assigned
following the normal rules for SEQ_ID assignment.

16.3.3.2 Protocol

BA_ACC is the Reply Sequence to Abort Sequence Basic Link Service command.

16.3.3.3 Request Sequence

Addressing: The D_ID field designates the source of the Link Service frame being accepted while the
S_ID field designates the destination of the request Data frame Sequence being accepted.

Payload: The Payload content is defined within individual Basic Link Service command (ABTS).

16.3.3.4 Reply Sequence

none

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

237

16.3.4 Basic Reject (BA_RJT)

16.3.4.1 Description

BA_RJT is a single frame Link Service Reply Sequence that notifies the transmitter of a Basic Link Service
Request frame that the request has been rejected. A four-byte reason code is contained in the Payload.
Basic Reject may be transmitted for a variety of conditions that may be unique to a specific Basic Link
Service Request. The OX_ID and RX_ID shall be set to match the Exchange in which the Basic Link
Service Request frame was transmitted. The SEQ_ID shall be assigned following the normal rules for
SEQ_ID assignment.

The first error condition detected shall be the error reported.

16.3.4.2 Protocol

BA_RJT may be a Reply Sequence to ABTS.

16.3.4.3 Request Sequence

Addressing: The D_ID field designates the source of the Basic Link Service Request being rejected while
the S_ID field designates the destination of the request Data frame Sequence being rejected.

Payload: The first word of the Payload shall contain four bytes to indicate the reason for rejecting the
request (see table 73, table 74 and table 75).

16.3.4.4 Reply Sequence

none

Table 73 - BA_RJT Payload Format

Bits Description

31 -24 Reserved

23 - 16 Reason Code (see table 74)

15 - 8 Reason Explanation (see table 75)

7 - 0 Vendor Unique Code

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

238

16.3.5 No Operation (NOP)

16.3.5.1 Description

The NOP Basic Link Service frame shall be used with delimiters appropriate to the class in which it is being
used. The Data_Field of a NOP frame shall be of zero size. However, the F_CTL field and the SOF and
EOF delimiters shall be examined and the appropriate action shall be taken by both the Nx_Port and
Fabric, if present. A NOP frame may be used to initiate Sequences or terminate Sequences in place of a
normal Data frame when there is no Data to send.

The OX_ID and RX_ID shall be set to match the Exchange in which the NOP is being transmitted. The
SEQ_ID shall be assigned following the normal rules for SEQ_ID assignment.

Table 74 - BA_RJT reason codes

Encoded Value
(Bits 23-16)

Name Description

01h Invalid command code
The Command code in the Sequence
being rejected is invalid.

03h Logical error
The request identified by the
Command code is invalid or logically
inconsistent for the conditions present.

05h Logical busy
The Basic Link Service is logically
busy and unable to process the
request at this time.

07h Protocol error

This indicates that an error has been
detected that violates the rules of FC-2
protocol that are not specified by other
error codes.

09h Unable to perform command request
The Recipient of a Link Service
command is unable to perform the
request at this time.

FFh Vendor specific error (see bits 7-0)
The Vendor specific error bits may be
used to specify vendor unique reason
codes.

Others Reserved

Table 75 - BA_RJT Reason Code Explanation

Encoded Value
(Bits 15-8)

Description
Applicable
commands

00h No additional explanation ABTS

03h Invalid OX_ID-RX_ID combination ABTS

05h Sequence aborted, no sequence information provided ABTS

Others Reserved

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

239

16.3.5.2 Protocol

a) No Operation Request; and

b) No Reply frame.

16.3.5.3 Request Sequence

Addressing: The D_ID field designates the destination of the frame while the S_ID field designates the
source of the frame.

Payload: The NOP Basic Link Service command has no Payload.

16.3.5.4 Reply Sequence

none

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

240

17 Classes of service

17.1 Scope

Classes of service are functions of the FC-2V sublevel.

17.2 Introduction

Two classes of service are specified in this standard. These classes of service are distinguished primarily
by the level of delivery integrity required for an application.

A given Fabric or Nx_Port may support one or both of the following classes of service:

a) Class 2 - Multiplex; and

b) Class 3 - Datagram.

Class 2 and Class 3 may be supported with any of the three topologies.

In both classes of service, the FC-2V Segmentation and Reassembly function makes available to the
receiving ULP the same image of application data as transmitted by the sending ULP (see clause 21).

In both classes of service, for each frame received, the Fabric shall do one of the following:

a) deliver only one instance of the frame to any single Nx_Port;

b) issue a F_BSY;

c) issue a F_RJT; or

d) discard the frame without issuing any response.

17.3 Class 2 - Multiplex

17.3.1 Function

This class of service provides frame delivery service with notification of non-delivery between two
Nx_Ports. This class of service allows one Nx_Port to transmit consecutive frames to multiple destinations.
Conversely, this class of service also allows one Nx_Port to receive consecutive frames from one or more
Nx_Ports.

A Class 2 service is requested by an Nx_Port on a frame by frame basis. The Fabric, if present, routes
each frame to the Nx_Port indicated by the D_ID of the frame.

NOTE 35 - The Fabric routes a Class 2 frame to its D_ID even if the D_ID is assigned to the same
PN_Port from which the Fabric received the frame.

Class 2 Delimiters are used to indicate the requested service and to initiate and terminate one or more
Sequences as described in 17.3.3.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

241

17.3.2 Rules

To provide Class 2 service, the transmitting and receiving Nx_Ports, and the Fabric shall obey the following
rules:

a) except as explicitly stated in FC-LS-3 for a given Link Service protocol, an Nx_Port supporting
Class 2 service is required to have logged in with the Fabric and the Nx_Ports with which it intends
to communicate, either explicitly or implicitly. To Login explicitly, the requesting Nx_Port shall use
Fabric and N_Port Login protocols;

b) the Fabric routes the frames between communicating Nx_Ports. To obtain Class 2 service from the
Fabric, the Nx_Port shall use the Class 2 Delimiters as specified in 17.3.3;

c) an Nx_Port may send consecutive frames to one or more destinations. This enables an Nx_Port to
demultiplex multiple Sequences to a single or multiple destinations concurrently (see 17.3.3);

d) a given Nx_Port may receive consecutive frames from different sources. Each source may send
consecutive frames for one or more Sequences;

e) a destination Nx_Port shall provide an acknowledgement to the source for each valid Data frame
received. The destination Nx_Port shall use ACK for the acknowledgement (see 17.3.5). If unable
to deliver ACK, the Fabric shall return a F_BSY or F_RJT;

f) the Sequence Initiator shall increment the SEQ_CNT field of each successive frame transmitted
within a Sequence. However, the Fabric may not guarantee delivery to the destination in the same
order of transmission (see 19.4.6);

g) an Nx_Port may originate multiple Exchanges and initiate multiple Sequences with one or more
destination Nx_Ports. The Nx_Port originating an Exchange shall set the OX_ID in accord with
12.11 and the Responder of the Exchange shall set the RX_ID in accord with 12.12. The
Sequence Initiator shall assign a SEQ_ID, for each Sequence it initiates in accord with 19.7.3;

h) if the Fabric is unable to deliver the frame to the destination Nx_Port, the source is notified of each
frame not delivered by an F_BSY or F_RJT frame from the Fabric with corresponding D_ID, S_ID,
OX_ID, RX_ID, SEQ_ID, and SEQ_CNT. The source is also notified of valid frames busied or
rejected by the destination Nx_Port by P_BSY or P_RJT;

i) a busy or reject may be issued by an Fx_Port or the destination Nx_Port with a valid reason code.
(see 15.3);

j) if a Class 2 Data frame is busied, the sender shall retransmit the busied frame up to the ability of
the sender to retry, including zero;

k) the Credit established during Login by interchanging Service Parameters shall be honored (see
20.2.4 for more on Credit). Class 2 may share buffer-to-buffer Credit with Class 3 frames;

l) effective transfer rate between any given Nx_Port pair is dependent upon the number of Nx_Ports
a given Nx_Port is demultiplexing to and multiplexing from;

m) frames within a Sequence are tracked on a Sequence_Qualifier (see 19.7.1) and SEQ_CNT (see
12.10) basis;

n) an FC_Port shall be able to recognize SOF delimiters for both classes of service, whether or not
the FC_Port supports both classes of service, and provide appropriate responses for both classes
of service with appropriate delimiters. An Nx_Port that supports only Class 2 shall discard Class 3
frames, while obeying the buffer-to-buffer flow control rules. An Fx_Port that supports only Class 2
shall discard Class 3 frames, while obeying the buffer-to-buffer flow control rules; and

o) the Class 2 PREF field is a class of service specific use of the CS_CTL field. When PREF is set to
zero, the Fabric shall deliver the frame normally. When PREF is set to one, the Fabric may deliver
the frame to the destination Nx_Port prior to frames that have PREF set to zero. If the Fabric
indicated through Login that it guarantees order-of-delivery, the Fabric shall deliver frames with the
same PREF value to a destination in the same order received from the source.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

242

17.3.3 Delimiters

Sequences are initiated by transmitting a frame started by a SOFi2. A SOFn2 starts subsequent frames
within a Sequence. A Sequence is normally terminated with a frame ended by EOFt. All frames other than
the last frame within the Sequence are ended with an EOFn.

17.3.4 Data_Field size

The number of bytes in the Data_Field of each frame transmitted is limited by the smaller value of the
Buffer-to-Buffer Receive Data_Field Size (see FC-LS-3) of the Fabric or the Receive Data_Field Size (see
FC-LS-3) of the receiving Nx_Port. Each frame is routed through the Fabric, if present, as a separate
entity.

17.3.5 Flow control

All Class 2 frames shall follow both buffer-to-buffer flow control rules (see 20.4) and end-to-end flow control
rules (see 20.3).

ACK frames are used to perform end-to-end flow control. ACK frames shall begin with SOFn2. The ACK
used to terminate a Sequence shall end with EOFt. All ACK frames that do not terminate a Sequence shall
end with EOFn.

17.4 Class 3 - Datagram

17.4.1 Function

This class of service provides frame delivery service without any notification of non-delivery (BSY or RJT),
delivery (ACK), or end-to-end flow control between two communicating Nx_Ports. The Fabric, if present,
and the destination Nx_Port are allowed to discard Class 3 frames without any notification to the
transmitting Nx_Port. This class of service allows one Nx_Port to transmit consecutive frames to multiple
destinations. Conversely, this class of service also allows one Nx_Port to receive consecutive frames from
one or more Nx_Ports.

A Class 3 service is requested by an Nx_Port on a frame by frame basis. The Fabric, if present, routes
each frame to the Nx_Port indicated by the D_ID of the frame.

NOTE 36 - The Fabric routes a Class 3 frame to its D_ID even if the D_ID is assigned to the same
PN_Port from which the Fabric received the frame.

Class 3 Delimiters are used to indicate the requested service and to initiate and terminate one or more
Sequences as described in 17.4.3.

17.4.2 Rules

To provide Class 3 service, the transmitting and receiving Nx_Ports, and the Fabric shall obey the following
rules:

a) except as explicitly stated in FC-LS-3 for a given Link Service protocol specification, an Nx_Port
supporting Class 3 service is required to have logged in with the Fabric or the Nx_Ports, either
explicitly or implicitly. To Login explicitly, the requesting Nx_Port shall use Fabric and N_Port Login
protocols (see FC-LS-3);

b) the Fabric routes the frames between communicating Nx_Ports. To obtain Class 3 service from the
Fabric, the Nx_Port shall use the Class 3 Delimiters as specified in 17.4.3;

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

243

c) a given Nx_Port may send consecutive frames to one or more destinations. This enables an
Nx_Port to demultiplex multiple Sequences to single or multiple destinations concurrently;

d) a given Nx_Port may receive consecutive frames from one or more source Nx_Ports. Each source
Nx_Port may send consecutive frames for one or more Sequences;

e) a destination Nx_Port shall not provide acknowledgement (ACK) to the source for any valid frame
received;

f) the Sequence Initiator shall increment the SEQ_CNT field of each successive frame transmitted
within a Sequence. However, the Fabric may not guarantee delivery at the receiver in the same
order of transmission (see 19.4.6);

g) an Nx_Port may originate Exchanges and initiate Sequences with one or more destination
Nx_Ports. The Nx_Port originating an Exchange shall set the OX_ID in accord with 12.11 and the
Responder of the Exchange shall set the RX_ID in accord with 12.12. The Responder may assign
an RX_ID in the first Sequence it transmits. The Sequence Initiator shall assign a SEQ_ID for each
Sequence it initiates in accord with 19.7.3;

h) the local Fx_Port exercises buffer-to-buffer flow control with the transmitting Nx_Port. The remote
Fx_Port exercises buffer to-buffer flow control with the receiving Nx_Port. R_RDY is used for
buffer-to-buffer flow control;

i) if the Fabric is unable to deliver the frame to the destination Nx_Port, the frame is discarded and
the source is not notified. If the destination Nx_Port is unable to receive the frame, the frame is
discarded and the source is not notified;

j) effective transfer rate between any given Nx_Port pair is dependent upon the number of Nx_Ports
a given Nx_Port is demultiplexing to and multiplexing from;

k) neither the Fx_Port nor Nx_Port shall issue busy or reject to Class 3 frames;

l) frames within a Sequence are tracked on a Sequence_Qualifier (see 19.7.1) and SEQ_CNT (see
12.10) basis;

m) an Nx_Port or Fx_Port shall be able to recognize SOF delimiters of both classes of service,
whether or not the Nx_Port or Fx_Port supports both classes of service, and provide appropriate
responses for both classes of service with appropriate delimiters. An Nx_Port that supports only
Class 3 shall issue a P_RJT for Class 2 frames with appropriate Class 2 delimiters while obeying
the buffer-to-buffer flow control rules. An Fx_Port that supports only Class 3 shall issue a F_RJT
for Class 2 frames with appropriate Class 2 delimiters, while obeying the buffer-to-buffer flow
control rules;

n) an Nx_Port may obtain the delivery status of Class 3 Sequences transferred by using Abort
Sequence protocol (see 22.5.5.2.2) and thus verify the integrity of the delivered Sequences; and

o) the Class 3 PREF field is a class specific use of the CS_CTL field. When PREF is set to zero, the
Fabric shall deliver the frame normally. When PREF is set to one, the Fabric may deliver the frame
to the destination Nx_Port prior to frames that have PREF set to zero. If the Fabric indicated
through Login that it guarantees order-of-delivery, the Fabric shall deliver frames with the same
PREF value to a destination in the same order received from the source.

17.4.3 Delimiters

Sequences are initiated by transmitting a frame started by a SOFi3. A SOFn3 starts subsequent frames
within a Sequence. A Sequence is terminated with a Data frame ended by EOFt. An EOFn terminates all
frames other than the last frame within the Sequence.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

244

17.4.4 Data_Field size

The number of bytes in the Data_Field of each frame transmitted is limited by the smaller value of the
Buffer-to-Buffer Receive Data_Field Size (see FC-LS-3) of the Fabric or the Receive Data_Field Size (see
FC-LS-3) of the receiving Nx_Port. Each frame is routed through the Fabric, if present, as a separate
entity.

17.4.5 Flow control

All Class 3 frames shall follow buffer-to-buffer flow control rules (see 20.4). Class 3 frames are not subject
to end-to-end flow control (see 20.3).

17.4.6 Sequence integrity

With a missing Class 3 Data frame, the Sequence Recipient is capable of detecting the error of non-receipt
of the frame, but has no method to communicate it to the Sequence Initiator due to absence of ACK in
Class 3. However, using Abort Sequence protocol (see 19.4.11 and 22.5.5), the Sequence Initiator may
verify if one or more transmitted Sequences were received without any Sequence error. This usage of
Abort Sequence protocol makes it possible to verify the integrity of Class 3 Sequences delivered.

If a sending ULP relies on the receiving ULP for ensuring Sequence integrity, the Sequence Initiator may
not use the Abort Sequence protocol to confirm Sequence delivery.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

245

18 Name_Identifier Formats

18.1 Scope

Name_Identifier Formats are functions of the FC-2V sublevel.

18.2 Introduction

Name_Identifiers are used to identify entities in Fibre Channel such as an N_Port, node, F_Port, Fabric or
other Fibre Channel objects. The Name_Identifier for an entity shall be unique within the Fibre Channel
interaction space.

The NAA field (bits 31-28 of Word 0) within the Name_Identifier specifies its format and length. A list of
supported formats is given in table 76.

An NAA field value of "Name not present” (0h) indicated that the Name Value field does not contain an
valid Name_Identifier, and shall be ignored.

18.3 IEEE 48-bit Address

When the Name_Identifier format is IEEE 48-bit Address, the name value field shall contain a 48-bit IEEE
Standard 802.1A Universal LAN MAC Address (ULA) (see IEEE 802). The ULA shall be represented as an
ordered string of six bytes numbered from 0 to 5. ULA Bytes 0, 1, and 2 are generated using the IEEE
Company_ID. Reference Annex H for information on obtaining an IEEE Company_ID. ULA Bytes 3, 4, and
5 represent a unique value provided by the identified company.

The least significant two bits of byte 0 are the Individual/Group Address (I/G) bit and the Universally or
Locally Administered Address (U/L) bit. These bits shall be zero when a ULA is used in a Name_Identifier.
Table 77 shows how the bytes of an ULA shall be mapped to two words in the Name_Identifier.

Table 76 - NAA identifiers

Words 0, bits 31 - 28 NAA Length Reference

0h Name not present 18.2

1h IEEE 48-bit Address 64 18.3

2h IEEE Extended 64 18.4

3h Locally Assigned 64 18.5

4h Reserved

5h IEEE Registered 64 18.6

6h IEEE Registered Extended 128 18.7

7h to Bh Reserved

Ch EUI-64 Mapped 64 18.8

Dh EUI-64 Mapped 64 18.8

Eh EUI-64 Mapped 64 18.8

Fh EUI-64 Mapped 64 18.8

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

246

A 48-bit IEEE address Name_Identifier is a Worldwide_Name.

Example -

A company has an IEEE Company_ID value:

AC DE 48h

This value is combined with a unique value generated by the identified company of 00 00 80h to create a
ULA of:

AC DE 48 00 00 80h

Using this ULA, the following 64-bit Fibre Channel IEEE 48-bit identifier format is created:

10 00 AC DE 48 00 00 80h

18.4 IEEE Extended

When the Name_Identifier format is IEEE Extended, the name value field shall contain the 48-bit IEEE
address (see IEEE 802) preceded by a 12 bit value that is an extension to the company assigned address
portion of the 48-bit address that shall form a unique 60-bit value. The 48-bit IEEE address shall be as
defined for the IEEE 48-bit Address Name_Identifier format. This format is described in table 78.

An IEEE Extended Name_Identifier is a Worldwide_Name.

Example -

A company has an IEEE Company_ID value:

AC DE 48h

This value is combined with a unique value generated by the identified company of 00 00 80h to create a
ULA of:

 AC DE 48 00 00 80h

Table 77 - NAA IEEE 48-bit Address Name_Identifier format

 Bits
Word

31 .. 28 27 .. 24 23 .. 16 15 .. 10 9 8 07 .. 00

0 1h 0 00h ULA Byte 0 U/ L I/ G ULA Byte 1

1 ULA Byte 2 ULA Byte 3 ULA Byte 4 ULA Byte 5

Table 78 - NAA IEEE Extended Name_Identifier format

 Bits
Word

31 .. 28 27 .. 24 23 .. 16 15 .. 10 9 8 07 .. 00

0 2h Vendor Specific ULA Byte 0 U/ L I/ G ULA Byte 1

1 ULA Byte 2 ULA Byte 3 ULA Byte 4 ULA Byte 5

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

247

Using this ULA and a vendor specified value of B17h, the following 64-bit Fibre Channel IEEE Extended
identifier format is created:

2B 17 AC DE 48 00 00 80

18.5 Locally Assigned

When the Name_Identifier format is locally assigned, the name value field shall be assigned in a manner
determined by the administration of the Fabric in which it is assigned. This format is described in table 79.

A locally assigned Name_Identifier shall be unique within the Fibre Channel interaction space wherein it is
assigned.

18.6 IEEE Registered

When the Name_Identifier format is IEEE Registered, the name value field shall contain the 24-bit IEEE
Company_ID in canonical form, as specified by IEEE 802, followed by a 36-bit unique vendor specified
identifier (VSID). This format is described in table 80.

An IEEE Registered Name_Identifier is a Worldwide_Name.

Example -

A company has an IEEE Company_ID value:

AC DE 48h

The VSID value selected by the identified company is B 17 34 F6 2Dh.

The resulting Fibre Channel IEEE Registered format is:

5A CD E4 8B 17 34 F6 2Dh

Table 79 - NAA Locally Assigned Name_Identifier format

 Bits
Word

31 .. 28 27 .. 24 23 .. 16 15 .. 08 07 .. 00

0 3h Locally administered value

1 Locally administered value

Table 80 - NAA IEEE Registered Name_Identifier format

Bits

Word
31 .. 28 27 .. 24 23 .. 16 15 .. 8 07 .. 04 03 .. 00

0 5h IEEE Company_ID VSID (35-32)

1 VSID (31-0)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

248

18.7 IEEE Registered Extended

When the Name_Identifier format is IEEE Registered Extended, the name value field shall contain the
24-bit IEEE Company_ID in canonical form, as specified by IEEE 802, followed by a 36-bit unique vendor
specified id (VSID). An additional 64-bit vendor specified identifier extension is defined. Name_Identifiers
that identify Fibre Channel nodes or FC_Ports are limited to 64 bits and therefore shall not use the IEEE
Registered Extended format. Fibre Channel FC-4 applications may extend IEEE Registered format Fibre
Channel Name_Identifiers by concatenating the VSID extension field to construct IEEE Registered
Extended format identifiers specific to the FC-4 application. The format of IEEE Registered Extended is
described table 81.

An IEEE Registered Extended Name_Identifier is a Worldwide_Name.

Example -

A company has an IEEE Company_ID value:

AC DE 48h

The VSID value selected by the identified company is B 17 34 F6 2Dh and the VSID extension is
12 34 56 78 90 AB CD EFh.

The resulting Fibre Channel IEEE Registered Extended format is:

6A CD E4 8B 17 34 F6 2D 12 34 56 78 90 AB CD EFh

18.8 EUI-64 Mapped

18.8.1 General

When the Name_Identifier format is EUI-64 Mapped, The NAA field shall contain either 0Ch, 0Dh, 0Eh, or
0Fh. The name value field shall contain a modified 22-bit IEEE Company_ID, as specified in following
paragraphs, followed by a 40-bit unique VSID.

Table 81 - NAA IEEE Registered Extended Name_Identifier format

Bits

Word

31 .. 28 27 .. 24 23 .. 16 15 .. 8 07 .. 04 03 .. 00

0 6h IEEE Company_ID VSID (35-32)

1 VSID (31-0)

2 VSID Extension (63-32)

3 VSID Extension (31-0)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

249

The EUI-64 name is so mapped to account for the 4 additional bits allocated to the VSID. The general
mapping scheme is to right shift the first byte of the IEEE Company_ID, moving bits 7-2 to positions 5-0 of
the WWN Byte 0. Bits 1-0 of are the Universal/Local and Individual/Group bits, presumed to always be
00b. Bits 7-6 of the WWN Byte 0 are set to 11b, and the byte is prepended to the rest of the name. The
format of EUI-64 Mapped Name_Identifier is described in table 82.

18.8.2 EUI-64 to WWN Mapping Rules

Refer to table 83, Bit Position Map. The following mapping rules apply:

a) WWN.NAA 3 and WWN.NAA 2 are set = 1;

b) EUI.OUI 23-18 are mapped to WWN.OUI 21-16;

c) EUI.OUI 15-0 are mapped one for one to WWN.OUI 15-0; and

d) EUI.VSID 39-0 are mapped one for one to WWN.VSID 39-0.

18.8.3 Encapsulated MAC-48 and EUI-48 translation

Encapsulated MAC-48 and EUI-48 names may be translated using the same rules as the EUI-64 names.
Uniqueness shall be preserved.

Table 82 - NAA EUI-64 Mapped Name_Identifier Format

Bits
Word

31...30 29...24 23...16 15...8 7...0

0 11b IEEE Company_ID (modified) VSID (39-32)

1 VSID (31-0)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

250

Table 83 - Bit Position Map

Byte Position
Bit Position

in Byte
Bit Position

in Name
EUI Values WWN Values

0

7 63 OUI 23 1

6 62 OUI 22 1

5 61 OUI 21 OUI 23

4 60 OUI 20 OUI 22

3 59 OUI 19 OUI 21

2 58 OUI 18 OUI 20

1 57 OUI 17 (i.e., L/U) OUI 19

0 56 OUI 16 (i.e., I/G) OUI 18

1 7-0 55-48 OUI 15-8 OUI 15-8

2 7-0 47-40 OUI 7-0 OUI 7-0

3 7-0 39-32 VSID 39-32 VSID 39-32

4 7-0 31-24 VSID 31-24 VSID 31-24

5 7-0 23-16 VSID 23-16 VSID 23-16

6 7-0 15-8 VSID 15-8 VSID 15-8

7 7-0 7-0 VSID 7-0 VSID 7-0

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

251

19 Exchange, Sequence, and sequence count management

19.1 Scope

Exchange, Sequence, and sequence count management are functions of the FC-2V sublevel.

19.2 Introduction

19.2.1 Data frame transfer

Transfer of information between two Nx_Ports is based on transmission of:

1) a Data frame by a source Nx_Port; and

2) in Class 2 only, an ACK response frame by the Nx_Port receiving the Data frame, to acknowledge
Data frame delivery.

19.2.2 Frame identification

D_ID, S_ID, SEQ_ID, SEQ_CNT, and Sequence Context (see clause 12) uniquely identify a single frame.
The OX_ID and RX_ID fields (collectively defined as X_ID, see 19.6.4) may be used by a Sequence
Initiator or Recipient Nx_Port to provide a locally assigned value that may be used in place of S_ID, D_ID,
and SEQ_ID to identify frames in a non-streamed Sequence or when only one Sequence is open. When
Sequences are streamed, or more than one Sequence is open, the X_ID field may be used in place of the
S_ID and D_ID to identify the Sequence Initiator and Recipient Nx_Ports associated with a specific frame.
The X_ID field may also be used in conjunction with S_ID, D_ID, or SEQ_ID to relate one or more
Sequences to actions initiated by Upper Level Protocols.

19.2.3 Sequence

A Sequence is a set of one or more related Data frames transmitted unidirectionally from one Nx_Port to
another Nx_Port within an Exchange. The relationship between Sequences and Exchanges is shown in
figure 66. In Class 2 an ACK_1 frame is transmitted in response to each Data frame or a single ACK_0 is
transmitted for all Data frames of a Sequence. A Sequence is assigned a SEQ_ID by the Sequence
Initiator. A Sequence shall only be initiated when an Nx_Port holds the Sequence Initiative for a given
Exchange.

19.2.4 Streamed Sequences

This standard allows an Nx_Port to initiate a new Sequence for the same Exchange while it already has
Sequences open for that Exchange. The new Sequence is termed a streamed Sequence. See 12.8 for
more information regarding the assignment of SEQ_IDs for additional rules when streaming Sequences.

19.2.5 SEQ_CNT

Each frame within a Sequence contains a SEQ_CNT that represents the sequential number of each Data
frame within one or multiple Sequences transmitted by an Exchange Originator or Responder. In Class 2,
an ACK response frame contains a SEQ_CNT that is set equal to the Data frame SEQ_CNT to which it is
responding.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

252

19.2.6 Exchange

An Exchange is the fundamental mechanism for coordinating the interchange of information and data
between two Nx_Ports. All Data transmission shall be part of an Exchange. This discusses Exchanges
between Nx_Ports. This standard does not address the means to manage Exchanges across multiple
Nx_Ports within a node.

An Exchange is a set of one or more related Sequences. Sequences for the same Exchange may flow in
the same or opposite direction between a pair of Nx_Ports but not simultaneously (i.e., Data flows in one
direction at a time within an Exchange for a single Nx_Port pair). An Exchange may be unidirectional or
bi-directional. Within a single Exchange only one Sequence shall be active at any given time for a single
initiating Nx_Port (i.e., a Sequence Initiator shall complete transmission of Data frames for a Sequence
before initiating another Sequence for the same Exchange).

Unless stated otherwise by the upper level, Class 3 Sequences shall not be transmitted in the same
Exchange with Class 2 Sequences. The ability to send or receive Class 3 Sequences in the same
Exchange as Class 2 Sequences is not a requirement of this standard. A Sequence Initiator shall not
stream Sequences that are in different classes of service.

NOTE 37 - In Class 2, when Sequences are streamed, a Recipient Nx_Port may see multiple active
Sequences for the same Initiator because of out of order delivery.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

253

The Sequence Initiator shall use continuously increasing SEQ_CNT if Sequences are streamed. If the
Sequence Initiator does not stream Sequences, it may also use continuously increasing SEQ_CNT to
allow the Sequence Recipient to track delivery order.

In the Discard multiple Exchange Policy, the Sequence Recipient shall deliver consecutive Sequences
within an Exchange in the order transmitted. The Sequence Recipient shall preserve transmission order
from one Sequence to the next even if the Sequence Initiator does not use continuously increasing
SEQ_CNT. Should frames arrive out of order, the Sequence Recipient may delay transmission of the last
ACK until the order is re-established.

Figure 66 - Exchange - Sequence relationship

Last Sequence

Unidirectional
Data frames

1st Sequence
of Exchange

Unidirectional
Data frames

2nd Sequence

Unidirectional
Data frames

or

or

Indicates time delay

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

254

An Exchange is assigned an OX_ID by the Originator and an RX_ID by the Responder. When an
Exchange is originated, there is a binding of resources in both the Originator and Responder.

An Exchange Status Block exists throughout the life of an Exchange and is located by using one or more
fields of the Sequence_Qualifier (e.g., an Nx_Port's X_ID).

19.2.7 Sequence Initiative

The Exchange Originator is the Initiator of the first Sequence of the Exchange and holds the initiative to
transmit Sequences. At the end of each Sequence of the Exchange, the Initiator of the Sequence may
transfer the initiative to transmit the next Sequence to the other Nx_Port, or it may retain the initiative to
transmit the next Sequence.

19.3 Applicability

FC-2V manages:

a) activation and deactivation of Exchanges;

b) initiation and termination of Sequences;

c) assignment of X_IDs;

d) Sequence Initiative;

e) assignment of SEQ_IDs;

f) Segmentation and Reassembly;

g) Sequences;

h) SEQ_CNT of frames; and

i) detection of frame Sequence errors.

In addition to the above, for Class 2 FC-2V manages notification of frame Sequence errors.

For Class 2, the Sequence Initiator shall assign SEQ_IDs from 0 to 255. The Sequence Recipient assigns
the SEQ_ID to an available Recipient Sequence Status Block.

For Class 3, the Sequence Initiator shall assign SEQ_IDs from 0 to 255.

19.4 Exchange rules

19.4.1 Exchange management

The following rules apply to Exchange management:

a) over the life of an Exchange, the Sequence Recipient shall deliver Data to FC-4 or an upper level
on a Sequence basis;

b) in the Discard multiple Sequences Error Policy, each Sequence shall be delivered in the order in
which the Sequence was transmitted relative to other Sequences transmitted for the Exchange;

c) in the Discard multiple Sequences Error Policy, a Sequence shall be deliverable if the Sequence
completes normally and the previous Sequence, if any, is deliverable;

d) in the Discard a single Sequence Error Policy, each Sequence shall be delivered in the order in
which the Sequence was received relative to other Sequences received for the Exchange;

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

255

e) in the Discard a single Sequence Error Policy, a Sequence shall be deliverable if the Sequence
completes normally without regard to the deliverability of other Sequences within the same
Exchange;

f) in all discard policies, a Sequence is complete with regard to Data content if all valid Data frames
for the Sequence were received without rejectable errors being detected;

g) in Process policy with infinite buffers in Class 3, a sequence is complete if a frame of another
sequence is received or E_D_TOV expires before the last frame of the current sequence is
received; and

h) the ordering relationship and deliverability of Sequences between two separate Exchanges is
outside the scope of this standard. Certain specific cases of Basic Link Services and Extended
Link Services do, however, specify collision cases (e.g., FLOGI, PLOGI, and RSI).

19.4.2 Exchange origination

The following rules apply to Exchange origination:

a) an Exchange being originated for ELSs before Login is complete or for the purpose of Login shall
follow default Login parameters and special ELSs rules specified in FC-LS-3;

b) a new Exchange, other than ELSs, may be originated if three conditions are met:

A) the originating Nx_Port has performed Login with the destination Nx_Port;

B) the originating Nx_Port has an OX_ID and Exchange resources available for use; and

C) the originating Nx_Port is able to initiate a new Sequence;

c) each frame within the first Sequence of an Exchange shall set the First_Sequence F_CTL bit to
one;

d) the first frame of the first Sequence of the Exchange shall specify the Error Policy for the
Exchange in F_CTL bits 5-4 of the Frame_Header. The Exchange Error Policy shall be consistent
with the error policies supported by both the Originator and Responder;

e) the Originator shall transmit the first Data frame of the Exchange with its assigned OX_ID and an
unassigned RX_ID of FF FFh;

f) if the Responder requires X_ID interlock (Login), the Originator (and Sequence Initiator) shall not
transmit additional Data frames for this Exchange until the ACK to the first frame of the Exchange
is received. The RX_ID in the ACK frame shall be used in subsequent frames of the Exchange;

g) if the Responder (Login) does not require X_ID interlock, the Originator may transmit additional
frames of the Sequence. In Class 2, the Responder shall return its X_ID no later than in the ACK
corresponding to the last Data frame of the Sequence. The next Sequence of the Exchange shall
contain both the OX_ID and RX_ID assigned in the previous Sequence;

h) in Class 2, the Sequence Initiator shall receive at least one ACK from the Recipient before the
Initiator attempts to initiate subsequent Sequences for the Exchange; and

i) the rules specified in Sequence initiation and termination specify the method for assigning X_IDs.

19.4.3 Sequence delimiters

For a more complete description of Data frame and Link_Control delimiters see tables 56 and 60. The
following rules summarize the management of frame delimiters within a Sequence:

a) A Sequence shall be initiated by transmitting the first frame with a SOFix;

b) Intermediate frames within a Sequence shall be transmitted with SOFnx and EOFn; and

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

256

c) The Sequence shall be complete when an EOFt has been transmitted or received for the

appropriate SEQ_ID and all previous Data frames and ACKs (if any) have been accounted for by
the Initiator and Recipient, respectively.

19.4.4 Sequence initiation

The following rules apply to Sequence initiation:

a) a new Sequence may be initiated if three conditions are met:

A) the initiating Nx_Port holds the initiative to transmit (Sequence Initiative);

B) the initiating Nx_Port has a SEQ_ID available for use; and

C) the total number of active Sequences initiated by the initiating Nx_Port with the Recipient
Nx_Port does not exceed any of the following:

a) total concurrent Sequences (see FC-LS-3);

b) concurrent Sequences per class (see FC-LS-3); and

c) open Sequences per Exchange (see FC-LS-3);

b) a SOFix shall start the first Data frame of the Sequence;

c) the Sequence Initiator shall assign a SEQ_ID. If the SEQ_ID unique per Exchange bit (see
FC-LS-3) is set to zero in the PLOGI request or PLOGI LS_ACC, then the SEQ_ID shall have a
value that is unique among all concurrently open Sequences between the Sequence Initiator and
the Sequence Recipient, independent of the X_ID. If the SEQ_ID unique per Exchange bit is set to
one in the PLOGI request and PLOGI LS_ACC, then the SEQ_ID shall have a value that is unique
among all concurrently open Sequences with the same X_ID. The SEQ_ID shall not match the last
SEQ_ID transmitted by the Sequence Initiator for this Exchange for the current Sequence
Initiative. For streamed Sequences for the same Exchange, the Sequence Initiator shall use X+1
different subsequent SEQ_IDs where X is the number of open Sequences per Exchange so that
the Exchange Status Block contains status of the last deliverable Sequence;

d) the Sequence Initiator shall not initiate the (X+1)th streamed Sequence until the first Sequence
status is known (e.g., if X = 3 and the Sequence Initiator transmits SEQ_ID = 3, then 4, then 7, it
shall not initiate another Sequence for the same Exchange until it resolves the completion status of
SEQ_ID = 3, regardless of the completion status of SEQ_ID = 4 or 7);

e) the Sequence_Qualifier shall be unique until an open Sequence is ended normally or until the
Recovery_Qualifier is determined by the Abort Sequence Protocol (ABTS);

f) in Class 2 and 3, each Data frame of the Sequence shall be limited in size to the lesser of the
Fx_Port and destination Nx_Port capabilities as specified by Login;

g) sequence status shall be associated with the Exchange in which the Sequence is being
transmitted; and

h) frame transmission shall follow Flow Control Rules specified in clause 20.

19.4.5 Sequence management

The Sequence Recipient and the Sequence Initiator shall verify that frames received for a Sequence
adhere to the items listed. If the Sequence Recipient determines that one of the following conditions is not
met in Class 2, it shall transmit a P_RJT. If the Sequence Initiator determines that one of the following
conditions is not met, it shall abort the Sequence (Abort Sequence Protocol).

a) each frame shall contain the assigned SEQ_ID, OX_ID, and RX_ID values;

b) FF FFh shall be used for unassigned X_ID values;

c) each frame shall indicate the Exchange context;

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

257

d) each frame shall indicate the Sequence context;

e) each frame shall contain a SEQ_CNT that follow the rules as defined in 19.4.6;

f) frame transmission shall follow Flow Control Rules as defined in clause 20;

g) the Data_Field size of each frame of the Sequence shall be less than or equal to the maximum
allowable Data_Field size for the type of frame indicated by the SOF delimiter (see 17.3.4 and
17.4.4);

h) a Sequence shall be transmitted in one class; or

i) each Data frame in a Sequence shall be transmitted within an E_D_TOV timeout period of the
previous Data frame transmitted within the same Sequence. Otherwise, a Sequence timeout shall
be detected.

19.4.6 SEQ_CNT

Within a Data frame Sequence, SEQ_CNT is used to identify each Data frame for verification of delivery
and transmission order. The following rules specify the SEQ_CNT of each frame of a Sequence:

a) the SEQ_CNT of the first Data frame of the first Sequence of the Exchange transmitted by either
the Originator or Responder shall be binary zero;

b) the SEQ_CNT of each subsequent Data frame within the Sequence shall be incremented by one
from the previous Data frame;

c) the SEQ_CNT of the first Data frame of a streamed Sequence shall be incremented by one from
the last Data frame of the previous sent Sequence;

d) the SEQ_CNT of the first Data frame of a non-streamed Sequence may be incremented by one
from the last Data frame of the previous sent Sequence or may be zero;

e) the SEQ_CNT of each Link_Response in Class 2 shall be set to the SEQ_CNT of the Data frame
to which it is responding;

f) the SEQ_CNT of each ACK_1 frame in Class 2 shall be set to the SEQ_CNT of the Data frame to
which it is responding. See 20.3.3.3 for ACK_1 rules;

g) the SEQ_CNT of each ACK_0 frame in Class 2 shall be set to the SEQ_CNT of the last Data
frame transmitted (End_Sequence = 1) for the Sequence. See 20.3.3.2 for ACK_0 rules;

h) if infinite buffers and ACK_0 is being used for Sequences in which the SEQ_CNT may wrap, frame
uniqueness is not being ensured (See 20.3.3.2 and FC-LS-3 for ACK_0 rules); and

i) within an acknowledged class of service, the SEQ_CNT of any frame shall not be reused until that
frame is acknowledged.

19.4.7 Normal ACK processing

The following rules apply to normal ACK processing:

a) based on N_Port Login parameters (Initiator support indicated in Initiator Control and Recipient
support in Recipient Control in Class Service Parameters), if both Nx_Ports support multiple ACK
forms, ACK_0 usage shall take precedence over ACK_1. ACK_0 use may be asymmetrical
between two Nx_Ports (see FC-LS-3);

b) mixing ACK forms in a Sequence is not allowed;

c) ACK_0 may be used for both Discard and Process Error Policies. A single ACK_0 per Sequence
shall be used to indicate successful Sequence delivery or to set Abort Sequence Condition bits to
a value other than 00b. ACK_0 shall not participate in end-to-end Credit management. An
additional ACK_0 shall be used within a Sequence to perform X_ID interlock;

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

258

d) ACK frames may be transmitted in the order in which the Data frames are processed and need not
be transmitted in SEQ_CNT order, however, the History bit (bit 16) of the Parameter Field shall
indicate transmission status of previous ACK frame transmission for the current Sequence;

e) the final ACK of a Sequence shall be terminated with EOFt and shall be transmitted according to

the rules for normal Sequence completion in the absence of detected errors;

f) ACK_1 or ACK_0 shall be transmitted during X_ID interlock (see 19.6.5);

g) if a Sequence Recipient receives a Data frame in Class 2 that falls within the SEQ_CNT range of a
Recovery_Qualifier, it shall discard the Data_Field of the frame and shall not deliver the Payload.
The Sequence Recipient may transmit an ACK for the corresponding Data frame;

h) if a Sequence Initiator receives an ACK for a Data frame in Class 2 that falls within the SEQ_CNT
range of a Recovery_Qualifier, it shall discard and ignore the ACK frame;

i) see 20.3.3.2 and 20.3.3.3 for the role of acknowledgement frames (ACK) in flow control; and

j) each ACK shall be transmitted within an E_D_TOV timeout period of the event that prompts the
initiative to transmit an ACK frame (i.e., when using ACK_1, it shall be transmitted within
E_D_TOV of the Data frame reception, and when using ACK_0, it shall be transmitted within
E_D_TOV of receiving the last Data frame of the Sequence).

19.4.8 Normal Sequence completion

The following rules apply to normal Sequence completion:

a) the Last Data frame of a Sequence shall be indicated by setting the F_CTL End_Sequence bit
(F_CTL Bit 19) to one;

b) an Exchange Event shall be defined when the End_Sequence bit (Bit 19) = 1, and any of the
following F_CTL bits are set as indicated:

A) Sequence Initiative (Bit 16) = 1; or

B) Last Sequence (Bit 20) = 1;

c) a Sequence Event shall be defined when the End_Sequence bit (Bit 19) = 1 in the absence of an
Exchange Event;

d) in Class 2 the Sequence Initiator shall consider a Sequence as deliverable (to the ULP) and
complete when it receives the final ACK for the Sequence (ACK with EOFt delimiter). However, the

Sequence Initiator shall account for all ACKs before reusing the SEQ_ID for this Exchange;

e) for Class 3 Sequences, this standard provides no deliverability guarantees;

f) a Class 2 Sequence shall be considered complete by the Sequence Recipient if:

A) all Data frames are received;

B) no Sequence errors are detected; and

C) acknowledgements, if any, prior to acknowledgment of the last Data frame received have been
transmitted;

g) a Class 3 Sequence shall be considered complete by the Sequence Recipient if:

A) all Data frames are received;

B) no Sequence errors are detected; and

C) an EOFt terminates the last Data frame;

h) in Class 2, if the last Data frame (End_Sequence = 1) transmitted is the last Data frame received
for the Sequence, or if the last Data frame (End_Sequence = 1) received indicates an Exchange
event (item b), the Sequence Recipient shall transmit an ACK frame (i.e., ACK_1 or ACK_0) with
EOFt in response to the last Data frame of the Sequence (i.e., End_Sequence bit in F_CTL = 1)

when the Sequence is deliverable. The End_Sequence bit in F_CTL of the ACK shall be set to
one. A Sequence is deliverable:

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

259

A) in Discard multiple Sequences Error Policy, when all preceding ACK frames have been
transmitted and the previous Sequence, if any, is deliverable; and

B) in Discard a single Sequence Error Policy, when all preceding ACK frames have been
transmitted without regard to a previous Sequence;

i) in Class 2, if a frame with the End_Sequence bit set to one is received, and this frame causes a
Sequence Event, and not all frames of the Sequence have been received, the Sequence Recipient
may either:

A) withhold transmission of the ACK corresponding to the Data frame with the End_Sequence bit
set to one until all previous ACKs have been transmitted and the Sequence is deliverable; or

B) transmit the ACK corresponding to the Data frame with the End_Sequence bit set to one. This
ACK shall have EOFn and the End_Sequence bit set to zero. When the last missing Data

frame of the Sequence is received and the Sequence is deliverable, the Sequence Recipient
shall transmit an ACK with EOFt, the End_Sequence bit set to one, and the SEQ_CNT and

other fields that match the last missing Data frame of the Sequence;

NOTE 38 - When Sequences are being streamed in Class 2 with out of order delivery, transmission of
ACK (EOFn) in response to the last Data frame of the Sequence (End_Sequence = 1) avoids costing the

Initiator an extra Credit of one for the last Data frame of the Sequence while the Sequence Recipient waits
for the last frame to be delivered.

j) in Class 2, the Sequence Initiator shall transmit the last Data frame with an EOFn;

k) in Class 3 the Sequence Initiator shall transmit the last Data frame with an EOFt;

l) in the last Data frame of a Sequence, the Sequence Initiator shall set the:

A) Sequence Initiative bit in F_CTL to 0 to hold Sequence Initiative; or

B) Sequence Initiative bit in F_CTL to 1 to transfer Sequence Initiative;

m) in Class 2, the Sequence Initiative is considered to be passed to the Sequence Recipient when the
Sequence Initiator receives the final ACK (EOFt) of the Sequence with the Sequence Initiative bit =

1; and

n) Sequence status in the Exchange Status Block is available until X+2 Sequences have been
completed (where X is the number of open Sequences per Exchange supported by the Sequence
Recipient as specified during Login) or the Exchange is terminated.

19.4.9 Detection of missing frames

The following methods of detecting missing frames apply to a non-streamed Sequence or multiple
streamed Sequences with continuously increasing SEQ_CNT:

a) with out of order delivery, a potentially missing Data frame is detected if a frame is received with a
SEQ_CNT that is not one greater than the previously received frame, except when a SEQ_CNT
wrap to zero occurs. If the potentially missing Data frame is not received within the E_D_TOV
timeout period, a missing frame error is detected;

b) in Class 2, with in order delivery, a potentially missing Data frame is detected if a frame is received
with a SEQ_CNT that is not one greater than the previously received frame, except when a
SEQ_CNT wrap to zero occurs. If the potentially missing Data frame is not received within the
E_D_TOV timeout period, a missing frame error is detected;

NOTE 39 - With in order delivery, a Class 2 frame may be delivered with its SEQ_CNT that is not one
greater than the previously received frame, if a Class 2 frame that was transmitted earlier has been issued
F_BSY or F_RJT. This frame is potentially missing, since it may be retransmitted.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

260

c) in Class 3, with in order delivery, a missing Data frame is detected if a frame is received with a
SEQ_CNT that is not one greater than the previously received frame, except when a SEQ_CNT
wrap to zero occurs; and

d) a Sequence Recipient may also detect missing Data frames through the use of a missing frame
window. The size of the missing frame window, W, is set by the Sequence Recipient and is not
specified by this standard. A frame is considered missing by a Sequence Recipient if its SEQ_CNT
is less than the highest SEQ_CNT received for that Sequence minus W. It is suggested that W be
at least equal to End-to-end Credit.

NOTE 40 - Fabric characteristics should be taken into account when attempting to establish a missing
frame window - W. Too small a value may give false errors, whereas too large a value may create out of
Credit conditions.

When a missing frame error is detected, the expected SEQ_CNT is saved in the Error SEQ_CNT field of
the appropriate Sequence Status Block and a Sequence error is posted in the S_STAT field in the same
Sequence Status Block for a given Exchange (OX_ID, RX_ID). Only the first error is saved.

19.4.10 Sequence errors - Class 2

19.4.10.1 Rules common to all discard policies

Either the Sequence Initiator or the Sequence Recipient may detect errors within a Sequence.

In discard policy, the Recipient shall discard the Data_Field portion of Data frames (FC-2 Header is
processed) received after the point at which the error is detected and including the frame in which the error
was detected. In all cases except the Stop Sequence condition, the Sequence Recipient shall discard the
entire Sequence. The following rules apply:

a) the types of Sequence errors that shall be detected by an Nx_Port include:

A) detection of a missing frame based on SEQ_CNT;

B) detection of a missing frame based on a timeout (E_D_TOV);

C) detection of an error within a frame (P_RJT);

D) reception of a Reject frame (F_RJT or P_RJT); or

E) detection of an internal malfunction;

b) if a Recipient receives a Data frame for a Sequence that the Recipient ULP wishes to stop
receiving, the Recipient shall indicate the Stop Sequence condition to the Initiator by using the
Abort Sequence Condition bits (10b) in F_CTL (see 22.5.5.3);

c) if a Recipient detects an error within a valid frame of a Sequence, it shall indicate that error to the
Initiator by transmitting a P_RJT with a reason code;

d) if a Recipient receives a Data frame for an active Sequence that has previously had one or more
Data frames rejected, the Recipient shall indicate that previous error to the Initiator on subsequent
ACK frames using the Abort Sequence Condition bits (01b) in F_CTL in the same manner as it
would if a missing frame were detected;

e) if the Recipient has transmitted an ACK with the Abort Sequence Condition bits set, or a P_RJT in
response to a Data frame, it shall post that information in the Sequence Status;

f) if an Initiator receives an ACK with the Abort Sequence Condition bits in F_CTL requesting Stop
Sequence (10b), it shall end the Sequence by transmitting the End_Sequence bit set to 1 in the
next Data frame. If the last Data frame has already been transmitted, the Sequence Initiator shall
not respond to the Stop Sequence request but shall notify the FC-4;

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

261

g) if an Initiator detects a missing frame, internal error, or receives an ACK with a detected rejectable
condition, it shall abort the Sequence by transmitting an Abort Sequence (ABTS) Basic Link
Service command (see 16.3.2);

h) if an Initiator receives an ACK with the Abort Sequence Condition bits (01b) in F_CTL requesting
that the Sequence be aborted, it shall abort the Sequence by transmitting an Abort Sequence
(ABTS) Basic Link Service command (see 16.3.2);

i) if an Initiator receives a Reject frame (F_RJT, or P_RJT), it shall abort the Sequence by
transmitting an Abort Sequence (ABTS) Basic Link Service command (see 16.3.2) if the Sequence
has not been terminated by the Sequence Recipient or Fabric using an EOFt on the RJT; and

j) if the Sequence Initiator detects a Sequence timeout (see 22.5.3), it shall:

A) abort the Sequence using ABTS; or

B) transmit Link Credit Reset to the Recipient if no end-to-end Credit is available.

End-to-end Credit is not required in order to exercise option A; however, if ABTS is sent in
absence of end-to-end Credit, it is possible that the ABTS frame may be lost, forcing further error
recovery process.

19.4.10.2 Discard multiple Sequences Error Policy

These rules apply to Discard multiple Sequences Error Policy:

a) if a Sequence Recipient detects a missing frame error, transmits a P_RJT, or detects an internal
malfunction for a Sequence within an Exchange that requested Discard multiple Sequences Error
Policy, it shall request that the Sequence be aborted by setting the Abort Sequence Condition bits
to 01b in F_CTL on the ACK corresponding to the Data frame during which the missing frame error
was detected. For detected errors other than missing frame, the Abort Sequence Condition bits
shall be set to 01b in F_CTL for any subsequent ACKs transmitted. The Sequence Recipient may
continue to transmit ACKs for subsequent frames of the Sequence and any subsequent streamed
Sequences until the ABTS frame is received. Any ACKs transmitted for frames in this Sequence or
any subsequent Sequences shall continue to set the Abort Sequence Condition bits to 01b (see
22.5.5.2). If an ACK is transmitted for the last Data frame of a Sequence, F_CTL bit 19
(End_Sequence), F_CTL bit 17 (Priority Enable), and F_CTL bit 16 (Sequence Initiative) settings
on the Data frame shall be ignored, and in the ACK frame those bits shall be set to zero in addition
to setting F_CTL bits 5-4 (Abort Sequence Condition) to 01b.

19.4.10.3 Discard a single Sequence Error Policy

If a Sequence Recipient detects a missing frame error, or detects an internal malfunction for a Sequence
within an Exchange that requested Discard a single Sequence Error Policy, it shall request that the
Sequence be aborted by setting the Abort Sequence Condition bits to 01b in F_CTL on the ACK
corresponding to the Data frame during which the missing frame error was detected. For errors detected
other than missing frame, the Abort Sequence Condition bits 01b in F_CTL shall be transmitted for any
subsequent ACKs transmitted for this Sequence.

The Sequence Recipient may continue to transmit ACKs for subsequent frames of the Sequence until the
ABTS frame is received. However, it shall not continue to set the Abort Sequence Condition bits in any
subsequent streamed Sequences. If the final ACK (EOFt) to the Sequence is transmitted, F_CTL bits 19,
17, 16, and 14 settings on the Data frame shall be ignored and shall be set to zero in the ACK frame, and
bits 5-4 shall be set to 01b in the ACK frame (see 22.5.5.2).

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

262

19.4.10.4 Process with infinite buffers Error Policy

In process policy, the Recipient shall ignore errors detected on intermediate frames, or timeout errors such
that ABTS is not requested. However, such errors shall be reported to an upper level.

If a Recipient detects an internal error related to a Sequence, or it detects that the first or last frame of a
Sequence is missing, it shall request that the Sequence be aborted by setting the Abort Sequence
Condition bits (01b) in F_CTL on subsequent ACK frames. The Recipient shall continue to respond in the
same manner as defined under Discard a single Sequence Error Policy.

NOTE 41 - Missing last Data frame is detected by the Sequence timeout.

If a Sequence Recipient detects an error within a valid frame of a Sequence, it shall indicate that error to
the Initiator by transmitting a P_RJT with a reason code.

19.4.11 Sequence errors - Class 3

19.4.11.1 Rules common to all discard policies

The Sequence Recipient may only detect errors within a Sequence.

In both discard policies, the Sequence Recipient shall discard Sequences in the same manner as in Class
2 with the exception that an ACK indication of Abort Sequence shall not be transmitted. In discard policy,
the Recipient shall discard frames received after the point at which the error is detected. Individual FC-4s
or upper levels may recover the entire Sequence or only that portion after which the error is detected.

a) the types of errors that shall be detected by an Nx_Port are:

A) detection of a missing frame based on timeout; or

B) detection of an internal malfunction;

b) if a Recipient detects an internal error, it shall abnormally terminate the Sequence, post the
appropriate status, and notify the FC-4 or upper level. One or more Sequences shall not be
delivered based on single or multiple Sequence discard Error Policy;

c) if a Recipient detects a missing frame, it shall abnormally terminate the Sequence, post the
appropriate status, and notify the FC-4 or upper level. One or more Sequences shall not be
delivered based on single or multiple Sequence discard Error Policy;

d) in the Discard multiple Sequences Error Policy in Class 3, the Sequence Recipient shall not be
required to utilize a timeout value of R_A_TOV following detection of a missing frame. Therefore,
frames may be discarded for an Exchange forever if the Sequence Initiator does not utilize other
detection mechanisms; and

e) notification of the Sequence error condition to the Initiator is the responsibility of the FC-4 or upper
level.

19.4.11.2 Process with infinite buffers Error Policy

In process Policy, the Recipient shall ignore errors detected on all frames, or timeout errors. However,
such errors shall be reported to an upper level.

NOTE 42 - Ignoring an error on the first frame of a Sequence or an Exchange may cause the frame to be
delivered to the wrong Recipient.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

263

19.4.12 Sequence Status Rules

The following rules summarize Sequence Status Block processing:

a) the Sequence Initiator shall consider a Sequence open and active after transmission of the first
frame of the Sequence. The Sequence shall remain active until the Sequence Initiator has
transmitted the last frame of the Sequence. The Sequence Initiator shall consider the Sequence
open until:

A) it receives the ACK (EOFt);

B) BA_ACC is received to an ABTS frame; or

C) a Logout Link Service request is completed;

b) a Sequence shall be considered open and active, and an Sequence Status Block opened, by the
Sequence Recipient when any frame in a Sequence is received for the first Sequence of a new
Exchange as indicated in F_CTL bit 21. An Exchange Status Block is opened at the same time and
the Exchange becomes active;

c) a Sequence shall be considered open and active, and a Sequence Status Block opened, by the
Sequence Recipient when any frame in a Sequence is received for an open Exchange;

d) if the Sequence Recipient transmits an ACK frame with the Abort Sequence Condition bits other
than 00b, it shall post that status in the Sequence Status Block status;

e) if a Sequence completes normally and is deliverable, its status shall be posted in the Sequence
Status Block;

f) if a Sequence completes abnormally by the Abort Sequence Protocol, its status shall be posted in
the Sequence Status Block; and

g) the Exchange Status Block shall be updated with Sequence Status information when the
Sequence becomes abnormally complete, or normally complete.

19.4.13 Exchange termination

a) the last Sequence of the Exchange shall be indicated by setting the F_CTL Last_Sequence bit to
one in the last Data frame of a Sequence. The Last_Sequence bit may be set to one prior to the
last Data frame. Once it has been set to one, it shall remain set to one for the remainder of the
Sequence;

b) the Exchange shall be terminated when the last Sequence is completed by normal Sequence
completion rules;

c) an Exchange may be abnormally terminated using ABTS-LS. A Recovery_Qualifier timeout may
be required; and

d) an Exchange shall be abnormally terminated following Logout with the other Nx_Port involved in
the Exchange (either Originator or Responder). A Recovery_Qualifier timeout may be required.

19.4.14 Exchange Status Rules

The following rules summarize handling of Exchange Status Block processing:

a) an Exchange shall be considered active, and an Exchange Status Block opened, by the Originator
after transmission of the first frame of the first Sequence;

b) an Exchange shall be considered active, and an Exchange Status Block opened, by the Sequence
Recipient when any frame in the first Sequence is received;

c) an Exchange shall be remain open until:

A) the last Sequence of the Exchange completes normally;

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

264

B) a timeout period of E_D_TOV has elapsed since the last Sequence of the Exchange
completed abnormally; or

C) the Exchange is successfully aborted with ABTS-LS (that includes a Recovery_Qualifier
timeout, if necessary);

and

d) when an Exchange is no longer open, it shall be complete and the Exchange resources associated
with the Exchange, including the Exchange Status Block, are available for reuse. An upper level
may choose to complete an Exchange with an interlocked protocol in order to ensure that both the
Originator and Responder agree that the Exchange is complete. Such a protocol is outside the
scope of this standard.

19.5 Exchange management

An Exchange is managed as a series of Sequences of Data frames. The Originator of the Exchange shall
transmit the initial Sequence. F_CTL bits within the Frame_Header identify and manage Sequences within
an Exchange.

If Priority is in use in an Exchange (see 12.7.7), then all frames of all Sequences of the Exchange should
have the same value of the Priority field (see 12.5.2).

Following the initial Sequence, subsequent Sequences may be transmitted by either the Originator or the
Responder facilities based on which facility holds the Sequence Initiative.

19.6 Exchange origination

19.6.1 Introduction

The key facilities, functions, and events involved in the origination of an Exchange by both the Originator
and Responder are diagrammed in figure 67. An Exchange for Data transfer may be originated with a
destination Nx_Port following N_Port Login. Login provides information necessary for managing an
Exchange and Sequences (e.g., class, the number of Concurrent Sequences, Credit, and Receive
Data_Field Size). An Exchange is originated through the initiation of a Sequence. The rules in 19.4.2
specify the requirements for originating an Exchange.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

265

Figure 67 - Exchange origination

19.6.2 Exchange Originator

When an Exchange is originated by an Nx_Port, that Nx_Port shall assign an OX_ID unique to that
Originator or Originator-Responder pair. An Originator Exchange Status Block is allocated and bound to
the Exchange and other link facilities in that Nx_Port for the duration of the Exchange. All frames
associated with that Exchange contain the assigned OX_ID. The Originator in the Originator Exchange
Status Block shall track the status of the Exchange. See 19.7.3 for more information on unique
Sequence_Qualifiers.

Each frame within the Exchange transmitted by the Originator shall be identified with an Exchange Context
bit in the F_CTL field designating the frame as Originator generated (i.e., set to zero). The OX_ID, together
with Originator-Responder pair information (if required) provides the mechanism for tracking Sequences
for multiple concurrent Exchanges that may be active at the same time.

NOTE 43 - Since the Originator assigns the OX_ID, assignment may be organized to provide efficient
processing within the Nx_Port. The Originator may choose to qualify the OX_ID using the
Originator-Responder pair.

ORIGINATOR
Exchange
Origination

assign OX_ID (RX_ID = FFFFh)

Sequence Initiator assigns SEQ_ID

O E S B
S I S B

O E S B = Originator Exchange Status Block

R E S B = Responder Exchange Status Block

S I S B = Sequence Initiator Status Block

S R S B = Sequence Recipient Status Block

First Sequence of Exchange
First Frame of Sequence

Responder of Exchange

assigns RX_ID based on S_ID ||
OX_ID

associates SEQ_ID

R E S B
S R S B

Sequence Recipient

ACK_1

OX_ID = original value
RX_ID = assigned value

O E S B
update RX_ID

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

266

19.6.3 Exchange Responder

The destination Nx_Port shall be designated as the Responder for the duration of the Exchange. When the
destination Nx_Port receives the first Sequence of the Exchange, that Nx_Port shall assign an RX_ID to
the newly established Exchange. This RX_ID is associated with the OX_ID from a given S_ID to a
Responder Exchange Status Block (S_ID||OX_ID). See 19.7.3 for more information on unique
Sequence_Qualifiers.

In Class 2, the assigned RX_ID shall be transmitted to the Originator on the ACK frame responding to the
last Data frame of the Sequence or earlier, if possible. In a Class 3 bi-directional Exchange, the assigned
RX_ID shall be transmitted to the Originator in the first Data frame transmitted by the Responder. If the
Sequence Recipient has specified X_ID interlock during Login, the RX_ID shall be assigned in the ACK to
the first Data frame of the Sequence. The Originator shall withhold additional frame transmission for the
Exchange until the ACK is received. The Responder Exchange_ID provides the mechanism for tracking
Sequences for multiple concurrent Exchanges from multiple S_IDs or the same S_ID.

NOTE 44 - Since the Responder assigns the RX_ID, assignment may be organized to provide efficient
processing within the Nx_Port.

Each frame within the Exchange transmitted by the Responder is identified with an Exchange Context bit
in the F_CTL field designating the frame as Responder generated (i.e., set to one). Each frame within the
Exchange transmitted by the Responder is identified with the assigned RX_ID. The Responder in the
Responder Exchange Status Block shall track the status of the Exchange.

19.6.4 X_ID assignment

In the first frame of an Exchange, the Originator shall set the OX_ID to an assigned value and the RX_ID
value to FF FFh (unassigned). When the Responder receives the first Sequence of an Exchange, it shall
assign an RX_ID and in Class 2 shall return the RX_ID in the ACK frame sent in response to the last Data
frame in the Sequence, or in an earlier ACK. In a Class 3 bi-directional Exchange, the Responder shall
assign an RX_ID in the first Data frame transmitted.

For all remaining frames within the Exchange, the OX_ID and RX_ID fields retain these assigned values.

A given Exchange Originator may choose to provide frame tracking outside of the signaling protocol of this
standard. Setting the OX_ID to FF FFh indicates this. This implies that the Exchange Originator shall only
have one Exchange active with a given destination Nx_Port. If an Nx_Port chooses an alternative frame
tracking mechanism outside the scope of this standard, it is still responsible for providing proper SEQ_ID
and SEQ_CNT values. In addition, it shall return the RX_ID assigned by the Exchange Responder.

A given Exchange Responder may choose to provide frame tracking outside of the signaling protocol of
this standard. Setting the RX_ID to FF FFh indicates this. If an Nx_Port chooses an alternative frame
tracking mechanism outside the scope of this standard, it is still responsible for providing proper SEQ_ID
and SEQ_CNT values. In addition, it shall return the OX_ID assigned by the Exchange Originator.

19.6.5 X_ID interlock

X_ID interlock is only applicable to Class 2. When an Nx_Port initiates a Sequence with an Nx_Port that
has specified during Login that X_ID interlock is required and the Recipient's X_ID is invalid or unassigned,
the initiating Nx_Port shall transmit the first frame of the Sequence with the Recipient's X_ID set to FF FFh
and shall withhold transmission of additional frames until the corresponding ACK with an assigned X_ID
has been received from the Recipient. The assigned X_ID is then used in all subsequent frames in the
Sequence.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

267

19.7 Sequence management

19.7.1 Sequence identification

The set of IDs S_ID, D_ID, OX_ID, RX_ID, and SEQ_ID is referred to as the Sequence_Qualifier. An
Nx_Port implementation makes use of these IDs in an implementation-dependent manner to uniquely
identify open Sequences.

NOTE 45 - An Nx_Port's freedom to assign a SEQ_ID is based on Sequence context (Initiator or
Recipient). This may affect how an Nx_Port implementation chooses to uniquely identify Sequences. See
19.4.4.

19.7.2 Open and active Sequences

From the standpoint of the Sequence Initiator, a Sequence is active for the period of time from the
allocation of the SSB for the sequence until the end of the last Data frame of the Sequence is transmitted.
In Class 2, the Sequence Initiator considers the Sequence open until the ACK with EOFt is received, the
Sequence is aborted by performing the ABTS Protocol, or the Sequence is abnormally terminated. In
Class 3, the Sequence Initiator considers the Sequence open until the deliverability is confirmed, an FC-4
specific event occurs, a vendor specific event occurs, or an R_A_TOV timeout period has expired. The
determination of deliverability of Class 3 Sequences is beyond the scope of this standard, which provides
no deliverability guarantees for Class 3 Sequences.

In Class 2, from the standpoint of the Sequence Recipient, a Sequence is open and active from the time
any Data frame is received until the EOFt is transmitted in the ACK to the last Data frame, or abnormal
termination of the Sequence. In Class 3, from the standpoint of the Sequence Recipient, a Sequence is
open and active from the time the initiating Data frame is received until all Data frames up to the frame
containing EOFt have been received.

19.7.3 Sequence_Qualifier management

The Sequence Initiator assigns a SEQ_ID (see clause 19.4.4). When the Sequence completes normally or
abnormally, the SEQ_ID is reusable by the Sequence Initiator for any Sequence_Qualifier, including the
same Recipient and Exchange providing that Sequence rules are followed (see 19.4.4). If a Sequence is
aborted using the Abort Sequence Protocol, a Recovery_Qualifier may be specified by the Sequence
Recipient (see 22.5.5.2), however, SEQ_ID shall not be included in the Recovery_Qualifier.

19.7.4 Sequence Initiative and termination

When a Sequence is terminated in a normal manner, the last Data frame transmitted by the Sequence
Initiator is used to identify two conditions:

a) Sequence Initiative; and

b) Sequence termination.

19.7.5 Transfer of Sequence Initiative

The Sequence Initiator controls which Nx_Port shall be allowed to initiate the next Sequence for the
Exchange. The Sequence Initiator may hold the initiative to transmit the next Sequence of the Exchange or
the Sequence Initiator may transfer the initiative to transmit the next Sequence of the Exchange. The
decision to hold or transfer initiative shall be indicated by Sequence Initiative bit in F_CTL.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

268

In Class 2, the Sequence Recipient shall not consider Sequence Initiative to have been passed until the
Sequence that passes the Sequence Initiative is completed successfully and the ACK (EOFt) has been
transmitted with the Sequence Initiative bit (F_CTL bit 16) = 1.

In Class 2, when a Sequence Initiator detects a Data frame from the Recipient for an Exchange in which it
holds the Sequence Initiative, it shall transmit a P_RJT with a reason code of “Exchange error” (excluding
the ABTS frame). In Class 3, when a Sequence Initiator detects a Data frame (excluding the ABTS frame)
from the Recipient for an Exchange in which it holds the Sequence Initiative, it shall abnormally terminate
the Exchange and discard all frames for the Exchange.

When the Sequence Initiator is ending the current Sequence, it shall set the End_Sequence bit in F_CTL
to one on the last Data frame of the Sequence.

19.7.6 Sequence Termination

19.7.6.1 Introduction

Setting the End_Sequence bit in F_CTL to one indicates the last Data frame transmitted by the Sequence
Initiator. The Sequence is terminated by either the Initiator or the Recipient transmitting a frame terminated
by EOFt. The Sequence Initiator is in control of terminating the Sequence. Transmission of the EOFt may
occur in two ways:

a) in Class 2, the Sequence Recipient transmits an ACK frame of ACK_1 or ACK_0 with EOFt in

response to the last Data frame received for the Sequence; or

b) in Class 3, the Sequence Initiator transmits the last Data frame of the Sequence with EOFt.

19.7.6.2 Class 2

Since Class 2 frames may be delivered out of order, Sequence processing is only completed after all
frames (both Data and ACK) have been received, accounted for, and processed by the respective
Nx_Ports.

When the Sequence is completed by each Nx_Port, the appropriate Exchange Status Block associated
with the Sequence shall be updated in each Nx_Port to indicate that the Sequence was completed and
whether the Originator or Responder facility holds the Sequence Initiative. Link facilities associated with
the Sequence (including the Sequence Status Block) are released and available for other use.

NOTE 46 - Since ACKs may arrive out of order, the Sequence Initiator may receive the ACK that
contains EOFt before ACKs for the same Sequence. The Sequence Initiator shall not consider the
Sequence normally terminated until it has received the final ACK (see 22.5.5.4).

19.7.6.3 Class 3

The Sequence Initiator shall terminate the last Data frame of the Sequence with EOFt. Acknowledgment of
Sequence completion is the responsibility of the Upper Level Protocol.

When the Sequence is completed by each Nx_Port, the appropriate Exchange Status Block associated
with the Sequence shall be updated in each Nx_Port to indicate that the Sequence was completed and
whether the Originator or Responder facility holds the Sequence Initiative. Link facilities associated with
the Sequence (including Sequence Status Block) are released and available for other use.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

269

19.7.6.4 End_Sequence

When the Sequence Initiator is ending the current Sequence, it shall set the End_Sequence bit in F_CTL
to one on the last Data frame of the Sequence.

19.8 Exchange termination

19.8.1 Normal termination

Either the Originator or the Responder may terminate an Exchange. The facility terminating the Exchange
shall indicate Exchange termination on the last Sequence of the Exchange by setting the Last_Sequence
bit in F_CTL on the last frame, or earlier, if possible, of the last Sequence of the Exchange.

The Sequence shall be terminated according to normal Sequence termination rules. When the last
Sequence of the Exchange is terminated normally, the Exchange shall also be terminated. The OX_ID and
RX_ID and associated Exchange Status Blocks are released and available for reuse.

19.8.2 Abnormal termination

Either the Originator or the Responder may abnormally terminate an Exchange by using the ABTS-LS
Protocol (see 16.3.2.3) or Sequence timeout of the last Sequence of the Exchange. In general, reception
of a reject frame with an action code of 2 as specified in 15.3.3 is not recoverable at the Sequence level
and aborting of the Exchange is probable. Other reasons to abort an Exchange are FC-4 protocol
dependent and not defined in this standard.

19.9 Status blocks

19.9.1 Exchange Status Block

The Exchange Status Block is a logical collection of information that is required internally for tracking of
Exchanges, but it is not required to be supplied to any other Nx_Port or the FC-4 level. The Exchange
Status Block (see table 84) associates the OX_ID, RX_ID, D_ID and S_ID of an Exchange. The Exchange
Status Block is used throughout the Exchange to track the progress of the Exchange and to identify which
Nx_Port holds the Sequence Initiative. Information equivalent to the Exchange Status Block records
Exchange status information To support error recovery, the Exchange Status Block shall include status for
up to X+2 completed Sequences, where X is the value of the Open Sequences per Exchange Class
Service Parameter negotiated at N_Port Login. When status has been retained for X+2 Sequences, status
for the next completed Sequence shall replace the oldest saved status.

Retained status for completed Sequences shall be equivalent to the following information from the
Sequence Status Block:

a) SEQ_ID;
b) Lowest SEQ_CNT;
c) Highest SEQ_CNT; and
d) S_STAT.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

270

E_STAT: The E_STAT item shall be a set of values as specified in table 85.

Table 84 - Exchange Status Block

Item Reference

CS_CTL/Priority 12.5

OX_ID 12.11

RX_ID 12.12

Originator Address Identifier (High order byte - reserved) 12.4

Responder Address Identifier (High order byte - reserved) 12.4

E_STAT table 85

Service Parameters (i.e., PLOGI payload words 1-28) FC-LS-3

Retained Sequence Status for completed Sequences table 86

Table 85 - E_STAT item in the Exchange Status Block (part 1 of 2)

Item Values

ESB owner
(see 19.6.2 and 19.6.3)

0 = Originator
1 = Responder

Sequence Initiative
(see 19.2.7)

0 = Other port holds initiative
1 = This port holds initiative

Completion
(see 19.4.14)

0 = open
1 = complete

Ending Condition
(see 19.4.13)

0 = normal
1 = abnormal

Recovery Qualifier
(see 16.3.2.2.4)

0 = none
1 = Active

Exchange Error Policy
(see 12.7.10)

00b = Abort, Discard multiple Sequences
01b = Abort, Discard a single Sequence
10b = Process with infinite buffers
11b = Obsolete

Originator X_ID invalid
(see 15.3.3.4.2.12)

0 = Originator X_ID valid
1 = Originator X_ID invalid

X_ID validity status reflects the completion condition of the
newest Sequence Status Block contained in the ESB.

Responder X_ID invalid
(see 15.3.3.4.2.13)

0 = Responder X_ID valid
1 = Responder X_ID invalid

X_ID validity status reflects the completion condition of the
newest Sequence Status Block contained in the ESB.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

271

19.9.2 Sequence Status Block

A Sequence Status Block (see table 86) is a logical collection of information that is required internally for
tracking of Sequences, but it is not required to be supplied to any other Nx_Port or the FC-4 level. The
Sequence Status Block is used to track the progress of a single Sequence by an Nx_Port on a frame by
frame basis. A Sequence Status Block shall be opened and maintained by the Sequence Initiator for each
Sequence transmitted and by the Sequence Recipient for each Sequence received in order to track
Sequence progress internally.

Lowest SEQ_CNT: For a Sequence Initiator, the SEQ_CNT assigned to the first frame transmitted on the
Sequence. For a Sequence Recipient, the SEQ_CNT assigned to the first frame received on the
Sequence.

Highest SEQ_CNT: For a Sequence Initiator, one greater than the SEQ_CNT assigned to the last frame
transmitted on the Sequence. For a Sequence Recipient, one greater than the SEQ_CNT assigned to the
last frame received on the Sequence.

Error SEQ_CNT: For a Sequence Recipient that has detected one or more missing frames, the SEQ_CNT
of the first missing frame, or zero if no missing frames have been detected. For a Sequence Initiator, this
value is unused.

Priority in Use
(see 12.7.7)

0 = Priority not used for this Exchange
1 = Priority in use for this Exchange

Priority not enabled reflects the condition set in F_CTL for
SOFix frames.

Table 86 - Sequence Status Block

Item Reference

SEQ_ID 12.8

Lowest SEQ_CNT this subclause

Highest SEQ_CNT this subclause

S_STAT table 87

Error SEQ_CNT this subclause

CS_CTL/Priority 12.5

OX_ID 12.11

RX_ID 12.12

Table 85 - E_STAT item in the Exchange Status Block (part 2 of 2)

Item Values

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

272

S_STAT: The S_STAT item shall be a set of values as specified in table 87.

Table 87 - S_STAT item of the Sequence Status Block

Item Values

Sequence context
(see 19.2.7)

0 = Initiator
1 = Recipient

Active
(see 19.7.2)

0 = not active
1 = active

Ending Condition
(see 19.4.12)

0 = normal
1 = abnormal

ACK, Abort Sequence
condition
(see 12.7.10)

00b = continue
01b = Abort Sequence requested
10b = Stop Sequence requested
11b = Obsolete

ABTS protocol performed
(see 22.5.5.2.2)

0 = ABTS not completed
1 = ABTS completed by Recipient

Sequence time-out
(see 22.5.3)

0 = Sequence not timed-out
1 = Sequence timed-out by Recipient (E_D_TOV)

P_RJT transmitted
(see 15.3.3.4)

0 = P_RJT not transmitted
1 = P_RJT transmitted

Class
(see clause 17)

00b = reserved
01b = Obsolete
10b = Class 2
11b = Class 3

ACK (EOFt) transmitted
(see 19.7.6.1)

0 = ACK (EOFt) not transmitted
1 = ACK (EOFt) transmitted

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

273

20 Flow control management

20.1 Scope

End-to-end flow control is a function of the FC-2V sublevel. Buffer-to-buffer flow control is a function of the
FC-2P sublevel.

20.2 Introduction

20.2.1 Point-to-point topology

All the flow control models specified in this clause apply to Fabric topology. The flow control model for
Point-to-point topology is represented by the corresponding model for the Fabric topology, without the flow
of F_BSY(DF), F_BSY(LC), and F_RJT.

20.2.2 End-to-end and Buffer-to-buffer flow control

Flow control is the FC-2 control process to pace the flow of frames to prevent overrun at the receiver. Flow
control is managed using end-to-end Credit, end-to-end Credit_CNT, ACK_0, ACK_1, buffer-to-buffer
Credit, buffer-to-buffer Credit_CNT, and R_RDY along with other frames.

End-to-end flow control is managed between Nx_Ports (see 20.3) and buffer-to-buffer flow control is
managed between FC_Ports (see 20.4).

20.2.3 Flow control dependencies on class of service

Flow control management has variations dependent upon the class. Class 2 frames use both end-to-end
and buffer-to-buffer flow controls. Class 3 uses only buffer-to-buffer flow control. Table 88 shows the
applicability of the flow control mechanisms to each class.

Table 88 - Flow control applicability

Flow Control
methodology

and mechanism
Class 2 Class 3

end-to-end Yes No

buffer-to-buffer Yes Yes

ACK_1 Yes No

ACK_0 One per
Sequence

No

R_RDY Yes Yes

F_BSY Yes No

F_RJT Yes No

P_BSY Yes No

P_RJT Yes No

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

274

The physical flow control model is illustrated in figure 68. The model consists of following physical
components:

a) each PN_Port, with its receive buffers; and

b) each PF_Port to which a PN_Port is attached, with its receive buffers.

Class 2 frames and Class 3 frames shall share receive buffers. End-to-end flow control buffers are used
only for Class 2.

20.2.4 Credit and Credit_Count

The method of credit accounting specified in this standard is a model, not an implementation. Any
implementation with the same observable behavior is consistent with this standard.

Credit is the number of buffers allocated by a receiving FC_Port to a transmitting FC_Port. Two types of
Credits used in flow control are:

a) End-to-end Credit (EE_Credit) - between communicating Nx_Ports; and
b) buffer-to-buffer Credit (BB_Credit) - between adjacent FC_Ports.

Corresponding to the two types of Credits are two types of Credit_Counts:

a) End-to-end Credit_Count (EE_Credit_CNT); and
b) buffer-to-buffer Credit_Count (BB_Credit_CNT).

Figure 68 - Physical flow control model for Class 2 and Class 3

T

R

PN_Port

R

T

PF_Port

Receive
Buffers

Receive
Buffers

T

R

PF_Port

R

T

PN_Port

Receive
Buffers

Receive
Buffers

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

275

Credit_Counts represent the amount of a Credit that is in use. A transmitting FC_Port has no Credit
available with a receiving FC_Port if its Credit_Count equals its Credit. The transmitting FC_Port manages
the Credit_Count (see table 89, table 90, and table 91). The Credit_Count management is internal to the
transmitting FC_Port and is transparent to the receiving FC_Port.

The Nx_Port transmitting Class 2 Data frames shall use the EE_Credit allocated by the receiving Nx_Port
for end-to-end flow control and manage the corresponding EE_Credit_Count (see 20.3). Class 3 Data
frames do not participate in end-to-end flow control. When an FC_Port is transmitting Data frames or
Link_Control frames, it shall use BB_Credit allocated by the receiving FC_Port for buffer-to-buffer flow
control and manage the corresponding BB_Credit_Count (see 20.4).

20.3 End-to-end flow control

20.3.1 End-to-end management rules

End-to-end flow control is an FC-2V control process to pace the flow of frames between Nx_Ports. An
Nx_Port pair in Class 2 uses end-to-end flow control.

End-to-end flow control is performed with EE_Credit_CNT and EE_Credit as the controlling parameter.

End-to-end management rules are given in following subclauses for those cases where no error occurs.
Management of EE_Credit_CNT is summarized in table 89. The EE_Credit recovery is specified in 20.3.8.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

276

20.3.2 Sequence Initiator

The following rules apply to the Sequence initiator:

a) the Sequence Initiator is responsible for managing EE_Credit_CNT across all active Sequences;

b) the Sequence Initiator shall not transmit a Data frame other than the ABTS Basic Link Service
unless the allocated EE_Credit is greater than zero and the EE_Credit_CNT is less than this
EE_Credit;

c) in Class 2, the value of the EE_Credit_CNT = 0 at the end of N_Port Login, N_Port Relogin, or
Link Credit Reset (see 15.3.4);

d) the EE_Credit_CNT is incremented by one for each Class 2 Data frame transmitted. In the case of
ACK_0 usage, EE_Credit_CNT management is not applicable;

Table 89 - End-to-end flow control management

Activity
EE_Credit_CNT
(Nx_Port only)

Nx_Port transmits a Class 2 Data frame Increment EE_Credit_CNT by
one

Nx_Port transmits an LCR Set EE_Credit_CNT for the
destination Nx_Port to zero.

Nx_Port receives F_BSY (DF), F_RJT, P_BSY, or P_RJT Decrement EE_Credit_CNT by
one

Nx_Port receives F_BSY (LC) N/A

Nx_Port receives ACK_1 (Parameter field: History bit = 1, ACK_CNT = 1 Decrement EE_Credit_CNT by
one

Nx_Port receives ACK_1 (Parameter field: History bit =0, ACK_CNT =1) subtract 1 for current
SEQ_CNT of the ACK_1 and
also subtract all
unacknowledged lower
SEQ_CNTs (see 15.3.2.2)

Nx_Port receives ACK_0 (Parameter field: History bit = 0, ACK_CNT =
0)

N/A (see 15.3.2.2)

Nx_Port receives Data frame N/A

Nx_Port receives an LCR N/A a

Nx_Port transmits a Class 3 Data frame N/A

Nx_Port transmits P_BSY or P_RJT N/A

Nx_Port transmits ACK N/A

Notes:
 N/A = Not applicable

a On receipt of LCR, the Sequence Recipient frees all end-to-end flow control buffers in use by the
Sequence Initiator for reuse by the Sequence Initiator (see 15.3.4)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

277

e) the Sequence Initiator decrements the EE_Credit_CNT by a value of one for each ACK_1
(parameter field: History bit = 1, ACK_CNT = 1), F_BSY(DF), F_RJT, P_BSY, or P_RJT received;

f) for an ACK_1 (parameter field: History bit = 0, ACK_CNT = 1) received, the Sequence Initiator
shall decrement the EE_Credit_CNT by one for the current SEQ_CNT in the ACK_1 and by one
for each unacknowledged Data frame with lower SEQ_CNT. If any of these ACKs with lower
SEQ_CNT is received later, it is ignored and Credit_Count is not decremented;

g) for an ACK_0 (parameter field: History bit = 0, ACK_CNT = 0) received, the Sequence Initiator
recognizes that the Sequence has been received successfully or unsuccessfully, or that the
interlock is being completed (see 15.3.2), but does not perform any EE_Credit_CNT management;
and

h) for an ACK_1 received with EOFt and either value of the History bit, the Sequence Initiator shall

recover the Credit for the Sequence by decrementing the EE_Credit_CNT by one for each
unacknowledged Data frame with lower SEQ_CNT of the Sequence. If any of these ACKs with
lower SEQ_CNT is received later, it is ignored and Credit_Count is not decremented.

20.3.3 Sequence Recipient

20.3.3.1 General

The Sequence Recipient is responsible for acknowledging valid Data frames received (see 15.3.2.2).

The Sequence Recipient may use ACK_0 and ACK_1 as determined during N_Port Login (see FC-LS-3).
The Sequence Recipient rules for using ACK_0 and ACK_1 are different and are listed for a non-streamed
Sequence first, followed by additional rules for streamed Sequences.

20.3.3.2 ACK_0

If ACK_0 is used (see 15.3.2), the following rules apply to the Sequence Recipient:

a) ACK_0 shall not participate in end-to-end flow control;

b) a single ACK_0 per Sequence shall be used to indicate successful or unsuccessful Sequence
delivery at the end of the Sequence except under specified conditions;

c) both the History bit and the ACK_CNT of the Parameter field shall be set to zero; and

d) the ACK_0 used at the end of a Sequence shall have the End_Sequence bit set to 1. The ACK_0
used at the end of a Sequence shall be ended with EOFt in Class 2.

20.3.3.3 ACK_1

If ACK_1 is used, the following rules apply to the Sequence Recipient:

a) for each valid Data frame acknowledged an ACK_1 shall be sent with ACK_CNT set to 1;

b) the History bit of the Parameter field shall be set to 1 if at least one ACK is pending for a previous
SEQ_CNT for the Sequence, or shall be set to zero if no ACK is pending for any previous
SEQ_CNT for the Sequence (see 15.3.2.2); and

c) in Class 2, the last ACK_1 shall be issued by the Sequence Recipient in one of the two ways
specified:

A) in Class 2 the Sequence Recipient shall withhold transmission of the last ACK_1 until all
preceding Data frames with lower SEQ_CNTs have been received, processed, and
corresponding ACK_1s transmitted (see 19.4.7). In this case, the last ACK_1 transmitted by
the Sequence Recipient shall have the End_Sequence bit set to 1, History bit set to zero and
shall contain EOFt; or

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

278

B) in Class 2, in response to the last Data frame (End_Sequence bit = 1) transmitted by the
Sequence Initiator, if any of the Data frame is pending for the Sequence, the Sequence
Recipient may transmit ACK_1 (with End_Sequence bit set to zero) but with EOFn in lieu of

EOFt. In this case, the last ACK_1 transmitted by the Sequence Recipient shall have the

End_Sequence bit set to 1, History bit set to 1 and shall contain EOFt.

20.3.3.4 Last ACK timeout

If a Sequence error is detected or the E_D_TOV expires when the Sequence Recipient is withholding the
last ACK for a Sequence and waiting to send other ACKs for that Sequence, the Sequence Recipient
supporting discard policy shall set Abort Sequence bits and transmit the last ACK. The Sequence
Recipient supporting the Process Policy shall transmit the last ACK without setting the Abort Sequence bits
(see 19.4.10.4).

20.3.3.5 Streamed Sequences

Each of the streamed Sequences shall follow all the rules for a non-streamed Sequence as defined in
20.3.3.1 and 20.3.3.3 above. In addition, in the case of multiple Sequence discard policy, the last ACK for
the succeeding Sequence shall be withheld until all the previous Sequences are complete and deliverable.
This additional withholding, for previous Sequences to complete and be deliverable, is not applicable to the
case of Single Sequence discard policy.

20.3.4 EE_Credit

EE_Credit is the number of end-to-end flow control buffers in the Sequence Recipient that have been
allocated to a given Sequence Initiator. EE_Credit represents the maximum number of unacknowledged or
outstanding frames that may be transmitted without the possibility of overrunning the receiver at the
Sequence Recipient. EE_Credit is defined for Class 2 per Sequence Recipient and managed by the
Sequence Initiator. EE_Credit represents the number of end-to-end flow control buffers allocated to the
Sequence Initiator. The value of EE_Credit allocated to the Sequence Initiator is conveyed to this Nx_Port
through the Nx_Port End-to-end Credit field of the PLOGI Class Service Parameters (see FC-LS-3). The
minimum or default value of EE_Credit is one.

The sum of allocated Class 2 EE_Credit may exceed the total number of Class 2 end-to-end flow control
buffers supported at the Sequence Recipient. This excess buffer allocation shall not result in overrun.
Class 2 EE_Credit allocation depends upon system requirements, which are outside the scope of this
standard.

EE_Credit is used as a controlling parameter in end-to-end flow control.

EE_Credit is not applicable to Class 3.

20.3.5 EE_Credit_CNT

EE_Credit_CNT is defined as the number of unacknowledged or outstanding frames awaiting a response
and represents the number of end-to-end flow control buffers that are occupied at the Sequence Recipient.
To track the number of frames transmitted and outstanding, the Sequence Initiator uses the
EE_Credit_CNT variable.

20.3.6 EE_Credit management

EE_Credit management involves an Nx_Port establishing and revising EE_Credit with the other Nx_Port it
intends to communicate with using Class 2.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

279

Since Class 2 supports demultiplexing to multiple Sequence Recipients, the Sequence Initiator manages
an EE_Credit_CNT for each Sequence Recipient currently active, with the EE_Credit for that Sequence
Recipient as the upper bound.

N_Port Login is used to establish and optionally revise these EE_Credit values. The Estimate Credit
procedure may be used to estimate and revise end-to-end Credit for streaming. The Advise Credit
Sequence and associated LS_ACC Sequence may also be used as a stand-alone procedure to revise the
EE_Credit. The Service Parameters interchanged during N_Port Login provide the Class 2 EE_Credit.

A Sequence Initiator, during N_Port Login obtains EE_Credit from the Nx_Port to which it is logging in.
EE_Credit allocated by the Sequence Recipient forms the maximum limit for the EE_Credit_CNT value.
The EE_Credit_CNT value shall be set to zero upon leaving the Active link state, Login, or Relogin. The
EE_Credit_CNT is incremented, decremented or left unaltered as specified by the flow control
management rules (see 20.3.1). The EE_Credit_CNT shall not exceed the EE_Credit value to avoid
possible overflow at the receiver except that the EE_Credit_CNT may exceed the EE_Credit value as a
result of transmitting an ABTS Basic Link Service.

The Sequence Initiator shall allocate the total EE_Credit associated with a Sequence Recipient among all
active Sequences associated with that Sequence Recipient. The Sequence Initiator function may
dynamically alter the EE_Credit associated with each active Sequence as long as the total EE_Credit
specified for the Sequence Recipient is not exceeded. In the event of an abnormal termination of a
Sequence using the Abort Sequence Protocol, the Sequence Initiator may reclaim the Sequence
EE_Credit allocation when the BA_ACC response has been received to the Abort Sequence frame.

The Nx_Port is responsible for managing EE_Credit_CNT using EE_Credit as the upper bound on a per
Nx_Port basis except that the EE_Credit_CNT may exceed the EE_Credit value as a result of transmitting
an ABTS Basic Link Service.

20.3.7 End-to-end flow control model

The end-to-end flow control model is illustrated in figure 69. The model includes flow control parameters,
control variables and resources for a Data frame from a Sequence Initiator and ACK_1 or BSY/RJT in
response from the Sequence Recipient.

a) the Sequence Recipient provides a number of end-to-end flow control receive buffers;

b) the Sequence Initiator obtains the allocation of Class 2 end-to-end flow control buffers, as Class 2
EE_Credits. That allocation is distributed among all the open Sequences for a specific Sequence
Recipient; and

c) the Sequence Initiator manages the end-to-end flow by managing Class 2 EE_Credit_CNT(s).
That management is distributed among all the active Sequences for a specific Sequence
Recipient.

The model illustrates all possible replies to the Data frame. The EE_Credit_CNT is decremented by one
when the ACK_1 frame is received.

For more details on incrementing and decrement EE_Credit_CNT see table 89.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

280

20.3.8 EE_Credit recovery

See 20.3.2 and 20.3.3 for EE_Credit management rules. The rules provide for EE_Credit recovery in the
following circumstances:

a) the Sequence Initiator recovers EE_Credit within the Sequence by detection of SEQ_CNT
discontinuity in ACK, if the ACK received contains zero in the History bit of the Parameter field;

b) the Sequence Initiator recovers EE_Credit for any unacknowledged Data frames associated with a
Sequence when the Sequence is terminated. Termination may be normal or abnormal;

c) EE_Credit is recovered by Link Credit Reset (see 15.3.4.2); and

d) All EE_Credit is recovered by N_Port Login (see FC-LS-3).

20.3.9 Procedure to estimate end-to-end Credit

20.3.9.1 Introduction

An estimate of the minimum end-to-end Credit between an Nx_Port pair for a given distance helps achieve
the maximum bandwidth utilization of the channel, by continuously streaming data. The procedure to
estimate end-to-end Credit is defined to accomplish this purpose.

Key:
+1 / -1 indicates action on end-to-end Credit_CNT (i.e., for Class 2)

Figure 69 - End-to-end flow control model

Sequence
Initiator

local
F_Port

remote
F_Port

Sequence
Recipient

F
A
B
R
I
C

+1

-1
P_BSY /

ACK1

F_BSY (LC)

F_BSY(DF)
F_RJT

Class 2 Data Frame

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

281

Link Service Sequences that support this procedure are optional. This procedure shall be performed after
Login between this Nx_Port pair. Login determines a number of Service Parameters (e.g., the maximum
Data_Field size that each Nx_Port is capable of receiving).

The procedure and the continuous streaming function may also be limited by the buffer-to-buffer Credit.

The procedure shall be invoked by the Link Service support of the source Nx_Port and responded to by the
Link Service support of the destination Nx_Port. Since the ELS requests used to perform this procedure
are optional, LS_RJT (see FC-LS-3) may be received to any request (except ESTC which has no reply)
with a reason code of “Command not supported”.

20.3.9.2 Procedure steps

20.3.9.2.1 General

This procedure is optional and consists of following three request Sequences:

a) Establish Streaming Sequence;

b) Estimate Credit Sequence; and

c) Advise Credit Sequence.

The procedure is illustrated with these request Sequences and their respective reply Sequences in figure
70.

The procedure shall be performed in Class 2 with respective delimiters, as specified in 17.3.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

282

20.3.9.2.2 Establish Streaming Sequence

The ESTS ELS (see FC-LS-3) shall be used to obtain an end-to-end Credit large enough to perform
continuous streaming from a source Nx_Port to a destination Nx_Port. This Sequence provides an
opportunity for the destination Nx_Port to communicate the maximum end-to-end Credit it shall provide for
the purposes of streaming. This temporary allocation is termed Streaming Credit (L).

a If M reaches L, N_Port_A stops streaming and completes the ESTC ELS Sequence after receiving the
ACK_1

Figure 70 - Procedure to estimate end-to-end Credit

N_Port_A N_Port_B

Request
Sequence

ESTS ELS

ESTS LS_ACC (Streaming Credit = L a)

ESTC ELS (SEQ_CNT = 0)

ESTC ELS (SEQ_CNT = 1

ESTC ELS (SEQ_CNT = M+1)

ADVC LS_ACC (Revised Credit)

ADVC ELS (Estimated Credit = M+1)

•
•
•

Request
Sequence

Request
Sequence

Reply
Sequence

Reply
Sequence

ACK_1
(SEQ_CNT

= 0)
ESTC ELS (SEQ_CNT = M a)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

283

This Sequence shall be used between an Nx_Port pair after the Nx_Port pair have logged in with each
other. This Sequence shall be initiated as a new Exchange. The Originator of the Exchange shall initiate
the Sequence.

1) the source shall transmit the ESTS ELS;

2) the destination shall reply with a LS_ACC frame;

3) the Class Validity bit for Class 2 service shall be set to one (see FC-LS-3); and

4) the Payload of LS_ACC shall have the same format as the Service Parameters for N_Port Login.
The Payload shall contain Streaming Credit (L) allocated in the end-to-end Credit field of the Class
2 Service Parameters (word 2, bits 14-0 of the class group). The receiver shall ignore the other
fields.

20.3.9.2.3 Estimate Credit Sequence

The Estimate Credit (see FC-LS-3) ELS shall be performed immediately following the completion of the
Establish Streaming Sequence. This Sequence requires the use of ACK_1 and may not be executed by all
Nx_Ports.

a) the source Nx_Port shall stream ESTC (see FC-LS-3) frames consecutively until it receives the
first ACK (ACK_1) from the destination Nx_Port with the Abort Sequence bits (F_CTL bits 5-4) set
to 10b. The source shall not exceed the Streaming Credit obtained during the Establish Streaming
Sequence;

b) if the source does not receive ACK_1 after it has reached the limit imposed by the Streaming
Credit value, it shall stop streaming and wait for the first ACK to be received with the Abort
Sequence bits (F_CTL bits 5-4) set to 10b;

c) the size of the Data_Field of the ESTC frame shall be the normal size frames transmitted by a
FC-4 based on the Service Parameters from N_Port Login;

d) the Payload shall contain data bytes;

e) the SEQ_CNT shall follow the normal rules for Sequence transmission;

f) the destination Nx_Port shall respond with ACK for Data frames received;

g) if the highest SEQ_CNT transmitted by the source Nx_Port at the time it receives the first ACK is
M, the number of outstanding frames (i.e., Credit estimated for continuous streaming) shall equal
M+1. If ACK is received within the Streaming Credit limit (L > M), this value of M+1 represents the
minimum Credit required to utilize the maximum bandwidth of the fibre. If the ACK is received after
reaching the Streaming Credit limit, this value is less than the optimal Credit required to utilize the
maximum bandwidth of the fibre; and

h) the source Nx_Port shall follow all the rules in closing the Sequence, by sending the last Data
frame of the Sequence and waiting for corresponding ACK to be received.

20.3.9.2.4 Advise Credit Sequence

The Advise Credit (see FC-LS-3) shall be performed immediately following completion of the Estimate
Credit Sequence. The source Nx_Port that performed the Estimate Credit Sequence shall advise the
destination Nx_Port of the Estimated Credit in ADVC Data_Field. The destination Nx_Port shall reply using
a LS_ACC frame, with a revised end-to-end Credit value in its Payload. This value is determined by the
destination Nx_Port based on its buffering scheme, buffer management, buffer availability and Nx_Port
processing time. This is the final value to be used by the source Nx_Port for revised end-to-end Credit.

This Sequence provides a complementary function to Login. In contrast to the Login frame, the ADVC
frame contains the end-to-end Credit it would like to be allocated for continuous streaming.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

284

If the Estimated Credit (M+1) is less than or equal to the Streaming Credit, the destination may choose to
reallocate the estimated end-to-end Credit. If the Streaming Credit is smaller than needed for continuous
streaming, the source Nx_Port is bound to run short of end-to-end Credit and the source Nx_Port may
advise the reallocated estimated end-to-end Credit value as the Estimated Credit.

a) the source Nx_Port shall transmit Advise Credit frame with the Estimated Credit (M+1);

b) the Payload of the ADVC shall have the same format as the Service Parameters for Login. The
Payload shall contain the Estimated Credit (M+1) in end-to-end Credit field of the Class 2 Service
Parameters. The Class Validity bit for Class 2 service shall be set to one (see FC-LS-2). The
receiver shall ignore the other fields. The destination Nx_Port shall determine the revised
end-to-end Credit value. The destination shall determine the value based on its buffer
management, buffer availability and port processing time and may add a factor to the Estimated
Credit value. This is the final value to be used by the source Nx_Port for end-to-end Credit; and

c) the destination Nx_Port replies with a LS_ACC frame that successfully completes the Protocol.
The LS_ACC Sequence shall contain the end-to-end Credit allocated to the source Nx_Port. The
Payload of LS_ACC shall have the same format as the Service Parameters for Login. The Payload
shall contain the final end-to-end Credit in end-to-end Credit field of the Class 2 Service
Parameters. The receiver shall ignore the other fields.

Since the maximum Data_Field size, and thus the maximum frame size, is permitted to be unequal in
forward and reverse directions, the Estimate Credit procedure may be performed separately for each
direction of transfer. Credit modification applies only to the direction of the transfer of Estimate Credit
frames.

The Estimate Credit procedure provides an approximation of the distance involved on a single path. If
there are concerns that in a Fabric in which the length (and time) of the paths assigned may vary, the
procedure may be repeated several times to improve the likelihood that the Estimated end-to-end Credit
value is valid.

Alternatively, a source may accept the Estimated end-to-end Credit value. If, at a later time, data transfers
are unable to stream continuously, the source may re-initiate the Estimate Credit Procedure, or arbitrarily
request an increase in Estimated end-to-end Credit by using an ADVC Link request Sequence.

20.4 Buffer-to-buffer flow control

20.4.1 Introduction

Buffer-to-buffer flow control is an FC-2P staged control process to pace the flow of frames. The
buffer-to-buffer control occurs in both directions between:

a) Sequence Initiator and the local Fx_Port;

b) remote Fx_Port and the PN_Port of the Sequence Recipient Nx_Port;

c) E_Ports within the Fabric; and

d) the PN_Ports of the Sequence Initiator and Sequence Recipient Nx_Ports in point to-point
topology.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

285

20.4.2 Buffer-to-buffer management rules

Buffer-to-buffer flow control rules are as follows:

a) each FC_Port is responsible for managing its own BB_Credit_CNT;

b) the sending FC_Port shall not transmit a frame unless the allocated BB_Credit is greater than zero
and the BB_Credit_CNT is less than this BB_Credit. To avoid possible overrun at the receiver,
each FC_Port is responsible for maintaining BB_Credit_CNT less than BB_Credit;

c) each FC_Port shall set the BB_Credit_CNT value to zero at the end of Login or Relogin in a
point-to-point topology, at the end of Login or Relogin to the Fabric in a Fabric topology, or upon
recognition of any Primitive Sequence Protocol;

d) each FC_Port increments BB_Credit_CNT by one for each SOFx2 or SOFx3 transmitted and

decrements by one for each R_RDY received; and

e) recognition of SOFx2 or SOFx3 shall be responded to by a transmission of an R_RDY when the

buffer becomes available.

Managing BB_Credit_CNT is given in table 90. BB_Credit_CNT for E_Ports and B_Ports is specified in
FC-SW-6.

20.4.3 BB_Credit

BB_Credit represents the number of receive buffers supported by an FC_Port for receiving frames.
BB_Credit values of the attached FC_Ports are mutually conveyed to each other during the Fabric Login
through the Buffer-to-buffer Credit field of the FLOGI Common Service Parameters. The minimum or
default value of BB_Credit is one.

BB_Credit is used as the controlling parameter in buffer-to-buffer flow control.

20.4.4 BB_Credit_CNT

BB_Credit_CNT is defined as the number of unacknowledged or outstanding frames awaiting R_RDY
responses from the directly attached FC_Port. It represents the number of receive buffers that are
occupied at the attached FC_Port. To track the number of frames transmitted for which R_RDY responses
are outstanding, the transmitting FC_Port uses the BB_Credit_CNT.

Table 90 - Buffer-to-buffer flow control management

Activity BB_Credit_CNT

FC_Port transmits any frame (including F_BSY(DF), F_BSY(LC),
F_RJT, P_BSY, P_RJT or LCR)

Increment BB_Credit_CNT by
one

FC_Port receives R_RDY Decrement BB_Credit_CNT by
one

FC_Port receives any frame (including F_BSY(DF), F_BSY(LC),
F_RJT, P_BSY, P_RJT or LCR)

N/A

FC_Port transmits R_RDY N/A

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

286

20.4.5 BB_Credit management

BB_Credit management involves an FC_Port receiving the BB_Credit value from the FC_Port to which it is
directly attached. Fabric Login is used to accomplish this. The Common Service Parameters interchanged
during Fabric Login provide these values (see FC-LS-3).

The transmitting FC_Port is responsible to manage BB_Credit_CNT with BB_Credit as its upper bound.

20.4.6 Buffer-to-buffer flow control model

The buffer-to-buffer flow control model is illustrated in figure 71. The model includes flow control variables
for a frame and R_RDY as its response, and the buffers for receiving frames. All possible responses to a
Data frame are illustrated.

Key:

B: Columns showing changes in BB_Credit_CNT
R: Columns showing changes in buffers available for receiving frames

Solid lines with arrow heads denote frame flow.
Dotted lines indicate frame originations resulting from frame reception.

Figure 71 - Buffer-to-buffer flow control model

F
A
B
R
I
C

BR RBRB BR

Sequence
Initiator

local
F_Port

remote
F_Port

Sequence
Recipient

+1 -1

Data Frame

R_RDY
-1 +1+1-1

+1 -1

Data Frame

R_RDY

F_BSY (LC)

R_RDY

 +1-1

 -1 +1

+1 -1

 +1 -1

P_BSY / P_RJT/
ACK

R_RDY

P_BSY / P_RJT / ACK

R_RDY

-1 +1

+1 -1

F_BSY(DF) / F_RJT
+1 -1

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

287

Each FC_Port provides a number of receive buffers. Each PN_Port obtains the allocation of receive
buffers from the Fx_Port (or PN_Port in case of point-to-point topology) to which it is attached, as
BB_Credit. Each Fx_Port obtains the allocation of receive buffers from the PN_Port to which it is attached,
as total BB_Credit.

20.4.7 Class dependent frame flow

The class dependent flow of frames accomplishing buffer-to-buffer flow control for the following cases are
illustrated in the figures referenced:

a) Class 2 with delivery or non-delivery to the Fabric (see figure 72). Possible responses from the
Fx_Port or an Nx_Port within the Fabric (i.e., a Well-known address) to a Class 2 Data frame are
illustrated;

b) Class 2 with delivery or non-delivery to a PN_Port (see figure 73). Possible responses from the
Fx_Port and the destination PN_Port to a Class 2 Data frame are illustrated; and

Key:

Solid lines with arrow heads denote frame flow.
Dotted lines indicate frame originations resulting from frame reception.

Figure 72 - Buffer-to-buffer - Class 2 frame flow with delivery or non-delivery to a Fabric

Sequence
Initiator

local
F_Port

remote
F_Port

Sequence
Recipient

F
A
B
R
I
C

Class 2 Data frame

R_RDY

F_BSY (DF) or F_RJT

R_RDY

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

288

Key:

Solid lines with arrow heads denote frame flow.
Dotted lines indicate frame originations resulting from frame reception.

Figure 73 - Buffer-to-buffer - Class 2 frame flow with delivery or non-delivery to a PN_Port

Sequence
Initiator

local
F_Port

remote
F_Port

Sequence
Recipient

F
A
B
R
I
C

Class 2 Data frame

R_RDY

F_BSY (LC)

R_RDY

Class 2 Data frame

P_BSY, P_RJT,
ACK_0, or ACK_1

R_RDY

P_BSY, P_RJT,
ACK_0, or ACK_1

R_RDY

R_RDY

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

289

c) Class 3 (see figure 74). Possible responses from the Fx_Port and the destination PN_Port to a
Class 3 Data frame are illustrated.

20.4.8 R_RDY

For any frames received at an FC_Port, an R_RDY is issued when a receive buffer is available. Validity of
the frame is not implied by R_RDY.

20.4.9 BB_Credit Recovery

BB_Credit recovery as described in this clause shall only be performed when two FC_Ports, not operating
in Arbitrated Loop mode, have logged in with each other and have agreed to a non-zero BB_SC_N value.

BB_Credit Recovery uses the BB_SCs primitive and the BB_SCr primitive to account for exchange of
frames and R_RDY primitives:

a) the BB_SCs Primitive Signal shall indicate that a predetermined number (2BB_SC_N) of frames
were sent since the previous BB_SCs was sent. See FC-LS-3 for requirements for determining
BB_SC_N. If the BB_SCs Primitive Signal is received by an Fx_Port, it shall be processed but
shall not be passed through the Fabric; and

b) the BB_SCr Primitive Signal shall indicate that a predetermined number (2BB_SC_N) of R_RDY
Primitive Signals were sent since the previous BB_SCr was sent. See FC-LS-3 for requirements
for determining BB_SC_N. If the BB_SCr Primitive Signal is received by an Fx_Port, it shall be
processed but shall not be passed through the Fabric.

Key:

Solid lines with arrow heads denote frame flow.
Dotted lines indicate frame originations resulting from frame reception.

Figure 74 - Buffer-to-buffer - Class 3 frame flow

Sequence
Initiator

local
F_Port

remote
F_Port

Sequence
Recipient

F
A
B
R
I
C

Class 3 Data frame

R_RDY

Class 3 Data frame

R_RDY

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

290

An FC_Port that supports BB_Credit Recovery, shall maintain the following BB_Credit Recovery counters:

a) BB_SC_N is the log2 of BB_Credit Recovery modulus;

b) BB_RDY_N counts the number of R_RDY primitives received modulo 2BB_SC_N; and

c) BB_FRM_N counts the number of frames received modulo 2BB_SC_N.

After having transmitted or received an LS_ACC during the processing of an appropriate Login, whether
the first Login after reset or a Relogin:

a) if the BB_SC_N value communicated by the other FC_Port in the Login is zero, then the FC_Port
shall set BB_SC_N, BB_RDY_N, and BB_FRM_N to zero; or

b) if the BB_SC_N value communicated by the other FC_Port is not zero, then the FC_Port shall set
BB_SC_N to the greater of the BB_SC_N value from the other FC_Port's Login parameters or
BB_SC_N value from its own Login parameters, and set BB_RDY_N and BB_FRM_N to zero.

An FC_Port capable of supporting BB_Credit Recovery shall:

a) if an appropriate Login has successfully completed, then set BB_SC_N to the Login value upon
recognition of the Link Reset Protocol;

b) set BB_RDY_N and BB_FRM_N to zero upon recognition of the Link Reset Protocol; and

c) set BB_SC_N, BB_RDY_N, and BB_FRM_N to zero upon recognition of the Link Initialization
Protocol or Link Failure Protocol.

BB_SC_N, BB_RDY_N, and BB_FRM_N shall be set to zero after explicit or implicit logout.

To recover any lost BB_Credit, each FC_Port shall perform the following operations. Each operation shall
be processed atomically (i.e., each operation shall be completed before any other BB_Credit recovery
operation):

a) transmit a BB_SCs primitive if 2BB_SC_N number of frames that require BB_Credit have been sent
since the completion of Login, link reset, or since the last time a BB_SCs primitive was sent;

b) transmit a BB_SCr primitive if 2BB_SC_N number of R_RDY primitives have been sent since the
completion of Login, link reset, or since the last time a BB_SCr primitive was sent;

c) after receiving each R_RDY, increment BB_RDY_N by one. If BB_RDY_N equals 2BB_SC_N, set
BB_RDY_N to zero;

d) after receiving each frame, increment BB_FRM_N by one. If BB_FRM_N equals 2BB_SC_N, set
BB_FRM_N to zero;

e) when a BB_SCr primitive is received, the number of BB_Credits lost may be calculated using the
following equation:

BB_Credits lost = (2BB_SC_N - BB_RDY_N) modulo 2BB_SC_N.

The BB_Credit_CNT shall then be decremented by the number of BB_Credits lost. BB_RDY_N is
then set to zero, before the next R_RDY is received; and

f) when a BB_SCs primitive is received, the number of BB_Credits the other FC_Port has lost may
be calculated using the following equation:

BB_Credits lost by other FC_Port = (2BB_SC_N - BB_FRM_N) modulo 2BB_SC_N.

One R_RDY shall be resent for each BB_Credit that is lost. BB_FRM_N shall be set to zero before
the next frame is received.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

291

When the two FC_Ports performing Login specify different non-zero values of BB_SC_N, the larger value
shall be used. If either FC_Port specifies a BB_SC_N value of zero, the BB_Credit recovery process shall
not be performed and no BB_SCx primitive shall be sent.

NOTE 47 - If all frames or R_RDY primitives sent between two BB_SCx primitives are lost, 2BB_SC_N

number of BB_Credits are lost, and are not recovered by the scheme outlined in 20.4.9. Therefore

BB_SC_N should be chosen so that the probability of loosing 2BB_SC_N number of consecutive frames
or R_RDY primitives is deemed negligible. The recommended value of BB_SC_N is 8.

20.4.10 Alternate buffer-to-buffer Credit management

An alternate buffer-to-buffer Credit management may be used instead of the one described in 20.4.

NOTE 48 - Alternate buffer-to-buffer Credit management is specified in FC-AL-2, and is currently used
only in Arbitrated Loop topologies.

The use of alternate buffer-to-buffer Credit management shall be indicated by the PN_Port through an
N_Port Login Service Parameter during Fabric Login and N_Port Login (see FC-LS-3).

Alternate BB_Credit management rules are summarized (see FC-AL-2 for additional details):

a) each Port is responsible for managing the Alternate BB_Credit;

b) during Login, BB_Credit shall be set to a value that represents the number of receive buffers that a
FC_Port shall guarantee to have available as soon as a circuit is established. If this value is
greater than zero, the FC_Port may start transmitting a frame without waiting for R_RDYs. If this
value is equal to zero, the sending FC_Port shall wait to receive at least one R_RDY, before
transmitting a frame;

c) the receiving FC_Port shall transmit at least one R_RDY, representing the number of additional
receive buffers available, before, during, or after the reception of frames;

d) the transmitting FC_Port shall decrement BB_Credit by one for each frame transmitted and
increment by one for each R_RDY received; and

e) for transmitting frames, the Available Credit shall be greater than zero. The Available Credit at any
given time is expressed by the following equation:

Available Credit = Login_BB_Credit + (Number of R_RDYs received - Login_BB_Credit)
- Number of frames transmitted

where

A) number of R_RDYs received Login_BB_Credit; and

B) the parenthetical expression is applicable only if it is positive, otherwise it is zero.

20.5 Combined flow control considerations

20.5.1 BSY / RJT in flow control

In Class 2 end-to-end flow control, F_BSY, F_RJT, P_BSY or P_RJT may occur for any Data frame. Each
of these responses contributes to end-to-end and buffer-to-buffer flow controls.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

292

End-to-end Class 2 buffers at the Sequence Recipient Nx_Port are shared by multiple source Nx_Ports
that may be multiplexing Data frames. This Class 2 multiplexing requires the distribution of Class 2
EE_Credit to each source Nx_Port to be honored to prevent BSY or RJT. Unless an adequate number of
end-to-end Class 2 buffers are available and EE_Credit distribution is honored, a BSY or RJT may occur in
Class 2. If buffer-to-buffer flow control rules are not obeyed by the transmitter, the results are unpredictable
(e.g., if a Class 2 frame is received with no BB_Credit available and the receiver does not have a buffer to
receive it, the receiver may discard the frame without issuing a P_BSY or P_RJT).

20.5.2 LCR in flow control

LCR does not need EE_Credit and does not participate in end-to-end flow control. LCR participates only in
buffer-to-buffer flow control as Class 2. (see figure 75). In response to an LCR, the Fabric shall issue an
R_RDY and may issue a F_BSY or F_RJT. The destination PN_Port shall issue an R_RDY and may issue
a P_RJT (see 15.3.3.4). The destination Nx_Port shall not issue a P_BSY to an LCR.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

293

Key:

Solid lines with arrow heads denote frame flow.
Dotted lines indicate frame originations resulting from frame reception.

Figure 75 - LCR frame flow and possible responses

Sequence
Initiator

local
F_Port

remote
F_Port

Sequence
Recipient

F
A
B
R
I
C

F_BSY (LC)

R_RDY

LCR

P_RJT

R_RDY

P_RJT

R_RDY

R_RDY

 F_BSY/F_RJT

R_RDY

LCR

R_RDY

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

294

Flow control model for an LCR frame is illustrated in figure 76 that covers the buffer-to-buffer flow control
for all possible responses to an LCR.

After issuing the LCR, the Sequence Initiator shall set its EE_Credit_CNT to zero for the destination
Nx_Port. The Sequence Initiator shall not wait for any response before setting EE_Credit_CNT to zero
(see 20.3.1).

Key:

B: Columns showing changes in BB_Credit_CNT
R: Columns showing changes in buffers available for receiving frames

Solid lines with arrow heads denote frame flow.
Dotted lines indicate frame originations resulting from frame reception.

Figure 76 - LCR flow control model

F
A
B
R
I
C

BR RBRB BR

Sequence
Initiator

local
F_Port

remote
F_Port

Sequence
Recipient

+1 -1
LCR

R_RDY
-1 +1+1-1

+1 -1

LCR

R_RDY

F_BSY (LC)

R_RDY

 +1-1

-1 +1 +1 -1

+1 -1

P_RJT

R_RDY

P_RJT

R_RDY

-1 +1

+1 -1

-1 +1
F_BSY(LC) / F_RJT

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

295

20.5.3 Integrated Class 2 flow control

Integrated buffer-to-buffer and end-to-end flow controls applicable to Class 2 is illustrated in figure 77 for a
Data frame from the Sequence Initiator and its response from the Sequence Recipient.

Integrated Class 2 flow control management is summarized in table 91.

Key:

B: Columns showing changes in BB_Credit_CNT
E: Columns showing changes in EE_Credit_CNT

Solid lines with arrow heads denote frame flow.
Dotted lines indicate frame originations resulting from frame reception.

Figure 77 - Integrated Class 2 flow control

F
A
B
R
I
C

BE EBB B

Sequence
Initiator

local
F_Port

remote
F_Port

Sequence
Recipient

+1+1 0
Class 2 Data Frame

R_RDY
0 0 +10-10

0 0 -1

Class 2 Data Frame

R_RDY

F_BSY (LC)

R_RDY

 +1 0

-1 0 +1 -1 0

0 0 -1

F_BSY(DF) / F_RJT
P_BSY / P_RJT

ACK

R_RDY

P_BSY / P_RJT / ACK

R_RDY

0 0 +1

0 0 -1

Class 2 Data Frame

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

296

Table 91 - Integrated Class 2 flow control management

Activity
Nx_Port

EE_Credit_CNT
PN_Port

BB_Credit_CNT
Fx_Port

BB_Credit_CNT

Port transmits a Class 2 Data
frame

Increment by one Increment by one Increment by one

Port transmits an LCR Set to zero Increment by one Increment by one

Port receives R_RDY N/A Decrement by one Decrement by one

Port receives F_BSY(DF),
F_RJT, P_BSY, or P_RJT

Decrement by one N/A N/A

Port receives F_BSY(LC) N/A N/A N/A

Port receives ACK_1
(Parameter field: History bit =
1, ACK_CNT = 1)

Decrement by one N/A N/A

Port receives ACK_1
(Parameter field: History bit =
0, ACK_CNT = 1)

a) subtract 1 for
current SEQ_CNT
of the ACK_1; and

b) subtract one for
each
unacknowledged
lower SEQ_CNT
(see 15.3.2.2).

N/A N/A

Port receives ACK_0
(Parameter field: History bit =
0, ACK_CNT = 0)

N/A (see 15.3.2.2) N/A N/A

Port receives an LCR N/A (see a)) N/A N/A

Port receives a Class 2 Data
frame

N/A N/A N/A

Port transmits R_RDY N/A N/A N/A

Port transmits F_BSY, F_RJT,
P_BSY, P_RJT, or ACK

N/A +1 +1

Key: N/A - Not Applicable

a) On receipt of LCR, the Sequence Recipient resets buffer (see 15.3.4)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

297

21 Segmentation and reassembly

21.1 Scope

Segmentation and reassembly are functions of the FC-2V sublevel.

21.2 Introduction

Mapping application data to Upper Level Protocol (ULP) data blocks is outside the scope of this standard.
Mapping ULP data blocks to FC-4 Information Units (IUs) is specified in FC-4 level standards (e.g., SAM-5,
FC-SB-5). FC-4 IUs are mapped to Sequences. The transport of Sequences using Fibre Channel frames is
specified in this standard. This subclause introduces several features of the FC-2V sublevel that support
efficient mapping of IUs onto frames:

a) identifying and classifying IUs (see 21.3);

b) multiplexing IUs within a Sequence (see 21.4);

c) relative offset of Data_Frames in an IU (see 21.5); and

d) transporting portions of an IU out of relative offset order (see 21.6).

Together, the rules for these features control the segmentation of IUs into transmitted frames and the
reassembly of IUs from received frames.

21.3 Identifying and classifying IUs

FC-2V defines the R_CTL field in the Frame_Header (see 12.3) that may be used to classify frames for
different treatment by the Nx_Port that receives them. All FC-4 IUs are transported in frames with the
ROUTING subfield of the R_CTL field set to Device_Data (see 12.3.2). The INFORMATION subfield of the
R_CTL field (i.e., the Information Category) may be used at the discretion of individual FC-4 protocols to
further classify how IUs are treated. Each FC-4 IU shall be transported over Fibre Channel as Device_Data
frames within a single Sequence that have the same value of the R_CTL field. Within a single Sequence,
all Device_Data frames with the same Information Category shall be part of the same IU. Device_Data
frames with different Information Categories shall not be part of the same IU. Frames in different
Sequences shall not be part of the same IU.

21.4 Multiplexing IUs within a Sequence

An Nx_Port indicates the extent of its ability to multiplex IUs of different Information Categories in the same
Sequence by setting the Categories per Sequence subfield of the Class Service Parameters during N_Port
Login (see FC-LS-3). The FC-4 shall follow the Categories per Sequence ability of the Sequence Initiator
and the Sequence Recipient. If the Sequence Initiator and the Sequence Recipient permit more than one
Information Category per Sequence, the FC-4 may direct the FC-2 to combine IUs of different Information
Categories in a single Sequence. If frames of different Information Categories are received within a single
Sequence consistent with the abilities indicated by the Sequence Recipient during N_Port Login, the
Sequence Recipient shall reassemble each Information Category into a different IU.

NOTE 49 - An FC-4 may require support for more than one Information Category per Sequence.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

298

21.5 Relative offset of Data_Frames in an IU

Each IU is mapped to a relative offset space that is arbitrarily defined by the FC-4. Any relationship
between the relative offset spaces of different IUs is outside the scope of this standard, even if the IUs are
multiplexed into a single Sequence by using different Information Categories. Each IU presented by an
FC-4 to FC-2 for transmission shall be transmitted within a single Sequence and may be divided into
frames by FC-2. Received frames with the same Information Category within a single Sequence shall be
reassembled into a single IU for delivery to the FC-4.

An Nx_Port may be able to use the Parameter field in the Frame_Header (see 12.13) of each frame that
carries an IU to specify the relative offset of the Payload of the frame within the relative offset space of the
IU. An Nx_Port indicates its ability to send and receive relative offset information by setting the relative
offset by category subfield of the Common Service Parameters during N_Port Login (see FC-LS-3). A
Sequence Initiator shall follow the relative offset by category capability indicated by the Sequence
Recipient.

If the Parameter field of the Frame_Header of a transmitted frame is used to specify relative offset, the
Parameter field of the frame shall be set to the relative offset of the first byte of the Payload of the frame
within the IU. If the Parameter field of the Frame_Header of a received frame is used to specify relative
offset, the first byte of the Payload of the frame shall be placed within the IU at the relative offset specified
by the Parameter field.

If the Parameter field of the Frame_Header of a frame is not used to indicate relative offset, the first byte of
the Payload of the frame shall be located within the IU following the last byte of the Payload of the frame
with the next lesser SEQ_CNT among frames of the same Information Category. If the SEQ_CNT wraps to
zero from FF FFh within a Sequence, the reassembly shall be continued according to modulo 65 536
arithmetic (i.e., SEQ_CNT = 00 00h follows SEQ_CNT = FF FFh).

NOTE 50 - An FC-4 may require the ability to use the Parameter field in the Frame_Header for relative
offset.

21.6 Transporting portions of an IU out of relative offset order

An Nx_Port that is able to specify the relative offset of frames may be able to accept, transport, and deliver
portions of an IU in an order other than increasing relative offset address order (i.e., random relative
offset). An Nx_Port indicates its ability to accept, transport, and deliver portions of an IU in an order other
than increasing relative offset order by setting the random relative offset bit of the Common Service
Parameters during N_Port Login (see FC-LS-3). An Nx_Port indicates its inability to accept, transport, and
deliver portions of an IU in an order other than byte order by setting the continuously increasing relative
offset bit and resetting the random relative offset bit of the Common Service Parameters during N_Port
Login. The Sequence Initiator shall follow the random relative offset and continuously increasing relative
offset capabilities indicated by the Sequence Recipient.

If an Nx_Port supports random relative offset, an FC-4 at that Nx_Port may request transmission of an IU
in portions to another Nx_Port that supports random relative offset. Each portion of the IU shall specify its
beginning relative offset, and the beginning relative offset of each portion of the IU may be independent of
the relative offset of other portions.

If an Nx_Port does not support random relative offset, an FC-4 shall request transmission of an IU in a
single portion to or from that Nx_Port. The first frame of the IU shall specify its beginning relative offset,
and the relative offset of each successive frame of the IU shall be the first byte following the last byte of the
prior frame of the IU.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

299

NOTE 51 - An FC-4 may require support for either random relative offset or continuously increasing
relative offset or both.

By appropriate use of relative offset, an IU may occupy all, part, or multiple noncontiguous portions, of the
relative offset space into which it is mapped.

21.7 Login

The following Service Parameters related to segmentation and reassembly are exchanged during N_Port
Login (see FC-LS-3):

a) Categories per Sequence;

b) relative offset by Information Category;

c) continuously increasing relative offset; and

d) random relative offset.

Through the exchange of these Login parameters, the Nx_Port indicates its segmentation and reassembly
requirements as a Sequence Recipient. The Nx_Port indicates its requirement for Categories per
Sequence separately for each class of service it supports. The Nx_Port indicates relative offset support or
non-support for each Information Category independent of class of service. For the Information Categories
that support relative offset, the Nx_Port collectively indicates its requirement for continuously increasing or
random relative offset independent of class of service.

The Sequence Initiator shall follow the segmentation and reassembly requirements of the Sequence
Recipient.

21.8 Segmentation rules

Segmentation summary rules are listed and referred to table 92:

a) the Sequence Initiator shall segment each Information Category within the relative offset space
specified by the sending upper level. The Sequence Initiator shall follow the relative offset
requirements of the Sequence Recipient for Information Categories;

b) an upper level at the sending end shall specify to the sending FC-2 one or more IUs to be
transferred as a Sequence, the Information Category for each IU, an relative offset space, and the
initial relative offset for each Information Category. The initial relative offset value may be zero or
non-zero;

c) the Sequence Initiator shall use the specified relative offset space for each Information Category
and transfer one or more IUs specified in a single Sequence;

d) if the Sequence Recipient does not support relative offset for one or more Information Categories,
the Sequence Initiator shall transmit each of these Information Categories as a contiguous IU. The
Sequence Initiator shall set the relative offset present bit in F_CTL to zero, indicating that the
parameter field is not meaningful to FC-2 and shall be passed to the upper level;

e) if the Sequence Recipient supports relative offset for one or more Information Categories and has
specified during Login this support as continuously increasing relative offset, the Sequence
Initiator shall transmit each of these Information Categories with continuously increasing relative
offset:

A) the Sequence Initiator shall set the relative offset present F_CTL bit to one;

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

300

B) the Sequence Initiator shall use the initial relative offset specified by the upper level for the
relative offset ROi in the first frame of each IU, namely, ROi(0) = initial relative offset for the

Information Category i;

C) the Sequence Initiator shall use for all other frames of the IU, the relative offset computed as
follows: ROi(n+1) = ROi(n) + Length of Payloadi(n) where n is 0 and represents the

consecutive frame count of frames for a given Information Category within a single Sequence;
and

D) above steps A) through C) shall be repeated independently for each IU within the Sequence;

and

f) if the Sequence Recipient supports relative offset for one or more Information Categories and has
specified during Login this support as random relative offset, the Sequence Initiator is permitted to
transmit each of these Information Categories with random relative offset:

A) the Sequence Initiator shall set the relative offset present F_CTL bit to one;

B) the Sequence Initiator shall use for all frames of the IU a relative offset within the relative offset
space of the Information Category; and

C) above steps A) and B) shall be repeated independently for each IU within the Sequence.

21.9 Reassembly rules

Reassembly rules are listed and referred to table 92.

a) the Sequence Recipient shall reassemble each Information Category received within the
Sequence. The Sequence Recipient shall use relative offset or SEQ_CNT field, as specified, to
perform the reassembly and make the IUs available to the receiving upper level as sent by the
sending upper level;

b) the Sequence Recipient shall reassemble each Information Category within its relative offset
space specified by the sending upper level;

c) if the Sequence Recipient receives a frame in an Information Category for which the Sequence
Recipient has specified during Login non support of relative offset, and the relative offset present
bit in the frame (F_CTL bit 3) is set to zero, the Sequence Recipient shall reassemble that frame
using SEQ_CNT;

d) if the Sequence Recipient receives a frame in an Information Category for which the Sequence
Recipient has specified during Login non support of relative offset, and the relative offset present
bit in the frame (F_CTL bit 3) is set to one, the Sequence Recipient shall discard the frame, and in
an acknowledged class of service shall issue a P_RJT with a reason code of "relative offset not
supported";

e) if the Sequence Recipient receives a frame in an Information Category for which the Sequence
Recipient has specified during Login support of relative offset and the relative offset present bit in
the frame (F_CTL bit) is set to one, the Sequence Recipient shall reassemble that frame using
relative offset;

f) if the Sequence Recipient receives a frame in an Information Category for which the Sequence
Recipient has specified during Login support of relative offset and the relative offset present bit in
the frame (F_CTL bit 3) is set to zero, the Sequence Recipient shall reassemble that frame using
SEQ_CNT; and

g) if the Sequence Recipient supports continuously increasing relative offset and detects random
relative offsets, the Sequence Recipient shall discard the frame, and in an acknowledged class of
service shall issue P_RJT with the reason code of "relative offset out of bounds".

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

301

Table 92 - Segmentation and reassembly rules summary

Case
Relative Offset support
by Sequence Recipient

Sequence Initiator action
(Segmentation)

Sequence Recipient
action (Reassembly)

1 Not supported

F_CTL relative offset present bit = 0
Parameter field meaning is protocol and
Information Unit specific

Relative offset shall
not be used (ignore
parameter field)
SEQ_CNT shall be
used

F_CTL relative offset present bit = 1
Parameter field = relative offset

Use P_RJT
reason code = relative
offset not supported

2
Continuously increasing
relative offset supported

F_CTL relative offset present bit = 1
Parameter field = relative offset
First frame of an IU: ROi (0) = initial

relative offset for the IU specified
All other frames of the IU: ROi (n + 1) =

ROi (n) + Length of Payloadi (n)

Relative offset shall be
used

F_CTL relative offset present bit = 0
Parameter field meaning is protocol and
Information Unit specific

Ignore parameter field
SEQ_CNT shall be
used

3
Random relative offset
supported

F_CTL relative offset present bit = 1.
Parameter field = relative offset.
The Initial relative offset for an IU is
permitted to be random.

Relative offset shall be
used

F_CTL relative offset present bit = 0
Parameter field meaning is protocol and
Information Unit specific

Ignore parameter field
SEQ_CNT shall be
used

Key: ROi(n) is the relative offset of frame n of Information Category i within a Sequence. ROi(n+1)

is the relative offset of the first frame of Information Category i that follows frame n of
Information Category i within a Sequence.

a) If relative offset value in the Parameter field is out of bounds, the Sequence Recipient shall issue a
P_RJT with a reason code of “Invalid Parameter field”.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

302

22 Error detection/recovery

22.1 Scope

Error detection and recovery are functions of both FC-2P and FC-2V.

22.2 Introduction

Link integrity and Sequence integrity are the two fundamental levels of error detection in this standard. Link
integrity focuses on the inherent quality of the received transmission signal. When the integrity of the link is
in question, a hierarchy of Primitive Sequences is used to reestablish link integrity. When Primitive
Sequence Protocols are performed, additional data recovery on a Sequence basis may be required.

A Sequence within an Exchange provides the basis for ensuring the integrity of the IU transmitted and
received. Exchange management ensures that Sequences are delivered in the manner specified by the
Exchange Error Policy (see 22.5.4.3). Each frame within a Sequence is tracked on the basis of
Exchange_ID, Sequence_ID, and a SEQ_CNT within the Sequence. Each frame is verified for validity
during reception. Sequence retransmission may be used to recover from any frame errors within the
Sequence and requires involvement, guidance, or authorization from an upper level.

Credit loss is an indirect result of frame loss or errors. Credit loss is discussed in regard to methods
available to reclaim apparent lost Credit resulting from other errors. See clause 20 for a more complete
discussion on flow control, buffer-to-buffer Credit, and end-to-end Credit.

22.3 Timeout periods

22.3.1 Scope

These timeout periods may be used in either FC-2P or FC-2V.

22.3.2 General

The actual value used for a timeout shall not be less than the specified value and shall not exceed the
specified value by more than 20%.

22.3.3 R_T_TOV

The Receiver_Transmitter timeout value (R_T_TOV) is used by the receiver logic to detect
Loss-of-Synchronization. The default value for R_T_TOV is 100 milliseconds. A shorter value of 100
microseconds is allowed. FC_Ports that use the shorter value indicate this by setting the R_T_TOV bit in
the Common Service Parameters during Login. An FC_Port may determine another FC_Port’s R_T_TOV
value using the Read Timeout Value (RTV) ELS (see FC-LS-3).

22.3.4 E_D_TOV

The Error_Detect_Timeout Value (E_D_TOV) is used as the timeout value for detecting an error condition.
The value of E_D_TOV represents a timeout value for detection of a response to a timed event (i.e., during
Data frame transmission it represents a timeout value for a Data frame to be delivered, the destination
Nx_Port to transmit a Link_Response, and the Link_Response to be delivered to the Sequence Initiator).

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

303

The E_D_TOV value selected should consider configuration and Nx_Port processing parameters. The
default value is 2 seconds. However, a valid E_D_TOV value shall also adhere to the proper relationship to
the R_A_TOV value. When an Nx_Port performs Fabric Login, the Common Service Parameters provided
by the Fx_Port specify the proper value for E_D_TOV.

When an Nx_Port performs N_Port Login in a point-to-point topology, the Common Service Parameters
provided by each Nx_Port specify a value for E_D_TOV. If the two values differ, each Nx_Port shall use the
longer time. An FC_Port may determine another FC_Port’s value for E_D_TOV via the Read Timeout
Value (RTV) ELS (see FC-LS-3). Timeout values as specified in the Payload of the LS_ACC are counts of
either 1 ms or 1 ns increments, depending on the resolution specified (e.g., a value of 00 00 00 0Ah
specifies a time period of either 10 ms or 10 ns).

There are three cases when E_D_TOV is used as an upper limit, that is, an action shall be performed in
less than an E_D_TOV timeout period:

a) transmission of consecutive Data frames within a single Sequence;

b) retransmission of a Class 2 Data frame in response to an F_BSY or P_BSY; and

c) transmission of ACK frames from the point in time that the event that prompted the
acknowledgment action.

For all other cases, E_D_TOV shall expire before an action is taken. Two such examples include:

a) Link timeout (see 22.5.2); and

b) Sequence timeout (see 22.5.3).

22.3.5 R_A_TOV

The Resource_Allocation_Timeout Value (R_A_TOV) is used as the timeout value for determining when to
reinstate a Recovery_Qualifier. The value of R_A_TOV represents E_D_TOV plus twice the maximum time
that a frame may be delayed within a Fabric and still be delivered. The default value of R_A_TOV is 10
seconds.

When an Nx_Port performs Fabric Login, the Common Service Parameters provided by the Fx_Port
specify the value for R_A_TOV. When an Nx_Port performs N_Port Login in a point-to-point topology, the
Common Service Parameters provided by each Nx_Port only specify a value for E_D_TOV. R_A_TOV
shall be set to twice the E_D_TOV value in a point-to-point topology. An FC_Port may determine another
FC_Port's value for R_A_TOV via the RTV ELS (see FC-LS-3).

When R_A_TOV is used to determine when to reuse an Nx_Port resource (i.e., Recovery_Qualifier), the
resource shall not be reused until R_A_TOV has expired for all frames previously transmitted that fall
within the SEQ_CNT range of the Recovery_Qualifier. This may be accomplished by restarting the
R_A_TOV timer as each Data frame of a Sequence is transmitted. Other techniques not specified by this
standard may also be employed.

From the Fabric viewpoint, the maximum time that a frame may be delayed within the Fabric and still be
delivered is in the range of 1 to 231 -1 ms. The Fabric shall ensure delivery within the maximum delivery
time by requiring each Fabric Element to timeout frames stored in receive buffers within the Element.
Individual Elements may use different timeout values, possibly one for each class. The maximum Fabric
delivery time is variable and is the cumulative timeout value for elements along the path or paths joining
the source and destination Nx_Ports.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

304

22.4 Link errors

22.4.1 Scope

Link error detection and recovery are functions of the FC-2P sublevel.

22.4.2 Link Failure timeouts

A Link Failure is detected under the following timeout conditions:

a) Loss-of-Signal (see 6.2);

b) Loss-of-Synchronization (see 6.2) > timeout period (R_T_TOV); and

c) Link Reset Protocol timeout (> R_T_TOV) (see 7.8.3).

22.4.3 Link Failure

The first level of link error detection is at the receiver. Link Failure is detected under the following
conditions:

a) Link Failure timeouts (see 22.4.2); or

b) reception of the NOS Primitive Sequence (see 7.6.1).

Recovery from Link Failure is accomplished by performing the Link Failure Protocol (see 7.8.4).

22.4.4 Code violations

Code violations are link errors that result from an invalid transmission code point or disparity error. If a
code violation occurs during Primitive Signals, it is recorded in the Link Error Status Block by incrementing
the Invalid Transmission Word count by one. If a code violation occurs during frame reception (see 11.3.9),
the Link Error Status Block shall also be updated by incrementing the Invalid Transmission Word count by
one and the frame identified as invalid. The Data_Field of the invalid frame may be discarded or processed
based on the Exchange Error Policy.

NOTE 52 - When a code violation is detected, the actual location of the error may precede the location at
which the code violation is detected (see table 6). In particular, even if the code violation is detected
following the Frame_Header, fields in the header may not be valid.

22.4.5 Primitive Sequence protocol error

If a PN_Port is in the Active State and it receives LRR, it shall detect a Primitive Sequence protocol error
that is counted in the LESB.

22.4.6 Link Error Recovery

The Link Recovery hierarchy is shown in figure 78.

The recovery protocols are nested and organized from the most serious to least serious link action.

a) Link Failure Protocol (see 7.8.4);

b) Link Initialization Protocol (see 7.8.2); and

c) Link Reset Protocol (see 7.8.3).

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

305

22.4.7 Link Recovery - secondary effects

22.4.7.1 Class 2

When Primitive Sequences are transmitted or received, the Fx_Port may discard any Class 2 frames held
in its buffers. While a PN_Port is transmitting a Primitive Sequence, it may discard any subsequent Class 2
frames received. Both the PN_Port and Fx_Port may begin transmitting frames after entering the Active
State.

Active Sequences within an Exchange are not necessarily affected. Therefore, normal processing
continues and Sequence recovery is performed as required.

22.4.7.2 Class 3

When Primitive Sequences are transmitted or received, the Fx_Port may discard any Class 3 frames held
in its buffers. While a PN_Port is transmitting a Primitive Sequence, it may discard any subsequent Class 3
frame received. Both the PN_Port and Fx_Port may begin transmitting frames after entering the Active
State.

Active Sequences within an Exchange are not necessarily affected. Therefore, normal processing
continues and Sequence recovery is performed as required.

Figure 78 - Link Recovery hierarchy

Link Initialization
NOS

OLS

LR

LRR

Idles

Idles

Port BPort A

Link Failure

Link Reset

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

306

22.4.8 Link Error Status Block

The errors shown in table 93 are accumulated over time within a PN_Port. The format shown is the format
in which the LESB information shall be supplied in response to an RLS ELS. It does not require any
specific hardware or software implementation. The errors accumulated provide a coarse measure of the
integrity of the link over time. No means are provided to reset a counter in the LESB; however, on overflow
it shall be set to zero and then continue counting. The counts shall be 32 bit values.

NOTE 53 - Informative guidelines to manage the LESB are provided in annex E.

A PN_Port may choose to log these events as well as other errors that occur on a PN_Port specific basis
in a manner not defined in this standard.

NOTE 54 - It is recommended that Fx_Ports also maintain an LESB and accumulate error events in a
manner which is not defined in this standard.

22.4.9 FEC Status Block

The errors shown in table 94 are accumulated over time within an FC_Port if Forward Error Correction is
active for the link. The format shown is the format in which the FEC counter information shall be supplied in
response to an RDP ELS. The errors accumulated provide a coarse measure of the integrity of the link
over time. No means are provided to reset a counter in the FEC Status Block, however, on overflow it shall
be set to zero and then continue counting. The counts shall be 32 bit values.

An FC_Port may choose to log these events as well as other errors that occur on an FC_Port specific basis
in a manner not defined in this standard.

Table 93 - Link Error Status Block format for RLS command

Bits
Word

31 .. 00

0 Link Failure Count

1 Loss-of-Synchronization Count

2 Loss-of-Signal Count

3 Primitive Sequence Protocol Error

4 Invalid Transmission Word

5 Invalid CRC Count

Table 94 - FEC Status Block

Bits
Word

31 .. 00

0 FEC Corrected Blocks Count

1 FEC Uncorrectable Blocks Count

2 - 3 Reserved

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

307

22.4.10 Bit-Error-Rate Thresholding

22.4.10.1 Introduction

The optional bit-error-rate thresholding process is designed to detect an increased error rate before
performance degradation becomes serious. When the specified bit-error-rate threshold is reached, a
Registered Link Incident Report (RLIR) ELS shall be generated as required by the RLIR ELS (see
FC-LS-3).

The bit-error rate is measured during frame, Primitive Signal, and Primitive Sequence reception. The
bit-error rate is not calculated during times when Transmission Word Synchronization has been lost, when
in the Offline State, or when in a Link-Failure State. The terms used to define the bit-error-rate thresholding
process are defined in the Set Bit-error Reporting Parameters (SBRP) ELS (see FC-LS-3).

22.4.10.2 Types of Link Errors Caused by Bit Errors

Bit errors are not detected directly, however they usually result in the recognition of invalid Transmission
Words, Primitive Sequence protocol errors, CRC errors, or other events. If 8b/10b encoding is used, then
only recognition of Invalid Transmission Words are counted toward the bit-error rate threshold. If 64b/66b
encoding is used without FEC, then recognition of Invalid Transmission Words and CRC errors are
counted toward the bit error rate threshold. If 64b/66b encoding is used with FEC, then recognition of
Invalid Transmission Words and uncorrectable FEC Blocks (see 22.4.9) are counted toward the bit error
rate threshold.

22.4.10.3 Error Intervals

A single error may result in several related errors occurring closely together that in turn may result in
multiple counts. A character might have a single bit error in it that causes a code-violation error. A disparity
error might occur on a following character, caused by the same single error. To prevent multiple error
counts from a single cause, the following concept of an Error Interval is introduced:

a) an Error Interval is a time period during which one or more invalid Transmission Words are
recognized. This time may be exceeded due to infrequent unusual conditions;

b) only the first error in an Error Interval is counted toward the Error Threshold; and

c) the default value for the Error Interval is 1.5 seconds with a tolerance of 10%.

22.4.10.4 Bit-Error-Rate-Thresholding Measurement

Measurement of bit-error-rate thresholding shall be accomplished by counting the number of Error
Intervals that occur in an Error Window. When the Error Interval Count equals the Error Threshold, the
threshold is exceeded and an RLIR shall be generated. A maximum of one RLIR ELS reporting bit error
threshold exceeded shall be generated for each link during one Error Window. The default value for the
Error Threshold is 15.

The default value for the Error Window is 300 seconds and the tolerance is + 1 Error Interval or - 0 Error
Intervals.

The bit-error-counting process shall be restarted when Active State is entered and when a
vendor-dependent amount of time has elapsed after the Error Threshold is exceeded. In addition, the
bit-error-counting process may be restarted whenever the Error Window has expired even though an Error
Threshold is not reached. The bit-error-counting process may also be reset and restarted when an
initialization procedure occurs.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

308

22.5 Exchange and Sequence errors

22.5.1 Scope

Exchange and Sequence error recovery are functions of the FC-2V sublevel.

22.5.2 Link timeout

A Link timeout error shall be detected if one or more R_RDY Primitive Signals are not received within
E_D_TOV after BB_Credit_CNT has reached BB_Credit.

Recovery from Link timeout is accomplished by performing the Link Reset Protocol (see 7.8.3).

Link timeout values need to take Fabric characteristics into consideration. The concern is the maximum
time required for frame delivery by the worst case route with any associated delays within the Fabric.

22.5.3 Sequence timeout

22.5.3.1 Introduction

The basic mechanism for detecting errors within a Sequence is the Sequence timeout. Other mechanisms
that detect frame errors within a Sequence are performance enhancements in order to detect an error
sooner than the timeout period. Since an active Sequence utilizes Nx_Port resources, Sequence timeout is
applicable to both the discard policy and the process policy.

22.5.3.2 Class 2

Both the Sequence Initiator and the Sequence Recipient use a timer facility with a timeout period
(E_D_TOV) between expected events. The expected event for the Sequence Initiator to Data frame
transmission is an ACK response. The expected event for the Sequence Recipient is another Data frame
for the same Sequence that is active and not complete. Other events (e.g., Link Credit Reset and
ABTS-LS) shall also stop the Sequence timer. When a Sequence Recipient receives the last Data frame
transmitted for the Sequence, it shall verify that all frames have been received before transmitting the final
ACK (EOFt) for the Sequence.

If the timeout period (E_D_TOV) expires for an expected event before the Sequence is complete, a
Sequence timeout is detected. Timeouts are detectable by both the Sequence Initiator and the Sequence
Recipient. If a Sequence Initiator detects a Sequence timeout, it shall transmit the ABTS frame to perform
the Abort Sequence Protocol. If a timeout is detected by the Sequence Initiator before the last Data frame
is transmitted, ABTS notifies the Sequence Recipient that an error was detected by the Sequence Initiator
(see 22.5.5.2.2). Detection of a Sequence timeout by the Sequence Initiator may also result in aborting the
Exchange (see 16.3.2.3).

If a Sequence Recipient detects a Sequence timeout, it shall set the Abort Sequence Condition (i.e.,
F_CTL bits 5-4) in an ACK to 01b to indicate a missing frame error condition. The Sequence Recipient
shall also post the detected condition in the Exchange Status Block associated with the Sequence. A
Sequence timeout results in either aborting the Sequence (see 16.3.2.2) by the Sequence Initiator,
abnormal termination of a Sequence (see 22.5.5.2) by the Sequence Recipient, or aborting the Exchange
by either the Sequence Initiator or Sequence Recipient (see 16.3.2.3).

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

309

In Class 2, if a Sequence has been aborted and the Sequence Recipient supplies the Recovery_Qualifier
(i.e., OX_ID, RX_ID, and a SEQ_CNT range, low and high SEQ_CNT values), the Sequence Initiator shall
not transmit any Data frames within that range within a timeout period of R_A_TOV. Both the Sequence
Initiator and Sequence Recipient discard frames within that range. After R_A_TOV has expired, the
Sequence Initiator shall reinstate the Recovery_Qualifier using a Reinstate Recovery Qualifier Link Service
request.

22.5.3.3 Class 3

In Class 3, the expected event for the Recipient is another Data frame for the same Sequence. Other
events (e.g., ABTS-LS) shall also stop the Sequence timer. When a Sequence Recipient receives the last
Data frame transmitted for the Sequence, it shall verify that all frames have been received.

NOTE 55 - For environments that do not use a request/response protocol, the Sequence Initiator may
periodically transmit an ABTS frame and the Sequence Recipient is able to inform the Sequence Initiator
of the last deliverable Sequence. If the Sequence Initiator does not transmit ABTS frames, in Discard
multiple Sequences Exchange Error Policy following an error in a Single Sequence, the Sequence
Recipient may continue to abnormally terminate subsequent Sequences and not deliver them to the FC-4
or upper level due to the requirement of in-order delivery of Sequences in the order transmitted.

NOTE 56 - For environments that use a request/response protocol, ABTS should not be used to forward
progress of a transmission. For bi-directional Exchanges, it is possible to infer proper Sequence delivery
without the use of ABTS, if Sequence Initiative has been transferred and the reply Sequence for the same
Exchange is received.

22.5.3.4 End-to-end Class 2 Credit loss

In Class 2 it is possible to have no available end-to-end Credit as a result of one or more Sequence
timeouts. The LCR Link_Control frame shall be transmitted by the Sequence Initiator, that has no available
end-to-end Credit, to the Sequence Recipient. The Sequence Initiator (indicated by the S_ID in the LCR
frame) shall perform normal recovery for the Sequence that timed out (see 22.5.5).

The Fabric may return F_BSY if unable to deliver the LCR frame. A Reject may also be returned if either
the S_ID or D_ID is invalid or an invalid delimiter is used.

When an Nx_Port receives a LCR, it shall discard the Data in its buffers associated with the S_ID of the
LCR frame and abnormally terminate the Sequences associated with any discarded frames.

22.5.4 Exchange Integrity

22.5.4.1 Applicability

Since Class 3 does not use ACK or Link_Response frames, Sequence integrity is verified at the Sequence
Recipient on a Sequence by Sequence basis. In Class 3, only the Recipient is aware of a missing frame
condition and communication of that information to the Initiator is the responsibility of the FC-4 or upper
level.

The remaining discussion concentrates on Class 2. Items applicable to Class 3 shall be specified explicitly.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

310

22.5.4.2 Exchange management

An Exchange is managed according to the rules specified in 19.4.1. When an Exchange is originated, the
Originator specifies the Exchange Error Policy for the duration of the Exchange. Delivery of Data within a
Sequence from the Originator to the Responder or from the Responder to the Originator shall be in the
same order as transmitted. The discarding of Sequences, the delivery order of Sequences, and the
recovery of Sequences varies based on the Exchange Error Policy identified by the Originator Abort
Sequence Condition bits (i.e., F_CTL bits 5-4). (see 12.7.10)

22.5.4.3 Exchange Error Policies

22.5.4.3.1 Introduction

There are two fundamental Exchange Error Policies, the discard policy and the process policy. Discard
policy means that a Sequence is delivered in its entirety or it is not delivered at all. There are two variations
of discard policy that relate to the deliverability of ordered Sequences. Process policy allows an incomplete
Sequence to be deliverable. Process policy allows the Data portion of invalid frames to be delivered if the
Sequence Recipient has reason to believe that it is part of the proper Exchange. See 19.4.10 for rules that
discuss detailed requirements for each type of Exchange Error Policy.

22.5.4.3.2 Discard multiple Sequences

The Discard multiple Sequences Error Policy requires that for a Sequence to be deliverable, it shall be
complete (all Data frames received and accounted for) and any previous Sequences, if any, for the same
Exchange from the Sequence Initiator are also deliverable. This policy is useful if the ordering of Sequence
delivery (i.e., Sequence A followed by Sequence D, followed by Sequence T, and so forth) is important to
the FC-4 or upper level. Sequences shall be delivered to the FC-4 or upper level on a Sequence basis in
the same order as transmitted.

22.5.4.3.3 Discard a single Sequence

The Discard a single Sequence Error Policy requires that for a Sequence to be deliverable, it shall be
complete (i.e., all Data frames received and accounted for). There shall be no requirement on the
deliverability of previous Sequences for the Exchange. This policy is useful if the Payload of the
Sequences delivered contains sufficient FC-4 or upper level information to process the Sequence
independently of other Sequences within the Exchange. Sequences shall be delivered to the FC-4 or
upper level on a Sequence basis in the same order as received.

22.5.4.3.4 Process with infinite buffering

The Process with infinite buffering Error Policy does not require that a Sequence be complete or that any
previous Sequences be deliverable. Process policy allows an Nx_Port to utilize the Data_Field of invalid
frames under certain restrictive conditions (see 11.3.9.2 and 11.3.9.3). The Process with infinite buffering
Error Policy is intended for applications (e.g., a video frame buffer) in which loss of a single frame has
minimal effect or no effect on the Sequence being delivered. Frames shall be delivered to the FC-4 or
upper level in the same order as received.

Process with infinite buffering in shall not be requested in classes of service other than Class 3.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

311

22.5.4.4 Sequence integrity

Sequence management and integrity involves:

a) proper initiation of Sequences (see 19.4.4);

b) proper control of the ordering of Sequences (SEQ_ID usage) with continuously increasing
SEQ_CNT (see 19.4.6);

c) proper control of Data frames by SEQ_CNT within single Sequence (see 19.4.6); and

d) proper completion of a Sequence (see 19.4.8).

Frame identification (see 19.2.2) and Sequence identification (see 19.7.1) provide the appropriate
uniqueness to ensure the integrity of the Data delivered. A Sequence Recipient shall not reassemble and
deliver the Data frames of a single Sequence unless all of the Data frames adhere to the Sequence
management rules specified in 19.4.5.

22.5.4.5 Sequence error detection

Sequence errors are detected in three ways:

a) detection of a missing frame (see 19.4.10 and 19.4.11);

b) detection of a Sequence timeout (see 22.5.3); and

c) detection of rejectable condition within a frame (see 15.3.3.4).

Detection of Sequence errors by the Recipient is conveyed in the Abort Sequence Condition bits (i.e.,
F_CTL 5-4) in an ACK frame or by a P_RJT frame (except Class 3). Otherwise, either the Sequence
Initiator or Sequence Recipient or both detect a Sequence timeout.

Exchange and Sequence status are tracked in the Exchange Status Block (see 19.9.1 and 19.4.14) and
the Sequence Status Block (see 19.9.2 and 19.4.12), respectively.

22.5.4.6 X_ID processing

During certain periods in an Exchange, one or both X_ID fields may be unassigned. If an X_ID is
unassigned, special error recovery for both the Sequence Initiator and the Sequence Recipient may be
required that is beyond the scope of this standard.

22.5.5 Sequence recovery

22.5.5.1 Introduction

Sequence recovery is under control of the individual FC-4 or upper level as well as options within a specific
implementation. Such control may be exercised in the form of guidance, authorization to automatically
perform recovery, a requirement to inform the upper level prior to recovery, or no Sequence recovery within
the Exchange encountering a Sequence error. This standard specifies procedures to terminate or abort a
Sequence, recover end-to-end Credit, handle missing or delayed frames, and synchronize both Nx_Ports
with respect to Sequence and Exchange status. This standard does not require Sequence retransmission
within the same Exchange in which a Sequence error is detected.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

312

22.5.5.2 Abnormal Sequence termination

22.5.5.2.1 Introduction

There are multiple methods by which a Sequence may complete abnormally and one method by which a
Sequence completes but is only partially received by the Sequence Recipient. When a Sequence
completes abnormally, it shall not be delivered to the FC-4 or upper level. The rules for normal Sequence
completion are specified in 19.4.8. The methods by which a Sequence completes abnormally include:

a) the Sequence Initiator aborts the Sequence with an ABTS frame utilizing the Abort Sequence
Protocol. At the time the ABTS frame is received, one or more Sequences are incomplete;

b) if the Exchange of which a Sequence is a member is abnormally terminated, each open Sequence
shall also be abnormally completed (see 19.4.13); and

c) Logout (see FC-LS-3).

A Sequence may complete normally with only a part of the Sequence being received by the Sequence
Recipient in the Stop Sequence Protocol.

22.5.5.2.2 Abort Sequence Protocol

22.5.5.2.2.1 General Case

The Sequence Initiator shall begin the Abort Sequence Protocol (i.e., ABTS Protocol) by transmitting the
ABTS Basic Link Services frame. The SEQ_ID shall match the SEQ_ID of the last Sequence transmitted
even if the last Data frame has been transmitted. The ABTS frame may be transmitted without regard to
whether transfer of Sequence Initiative has already been attempted or completed. The SEQ_CNT of the
ABTS frame shall be one greater than the SEQ_CNT of the last frame transmitted for this Exchange by the
Sequence Initiator of the ABTS frame.

The Sequence Recipient shall accept an ABTS frame even if the Sequence Initiative has been previously
transferred. The Recipient determines the last deliverable Sequence as the Recipient for this Exchange
and it includes that SEQ_ID in the BA_ACC Payload along with a valid indication (see table 72). The
Payload of the BA_ACC also includes the current OX_ID and RX_ID for the Exchange in progress. Low
and high SEQ_CNT values are also returned. The low SEQ_CNT value is equal to the SEQ_CNT of the
last Data frame (i.e., End_Sequence = 1) of the last deliverable Sequence. If there was no deliverable
Sequence, the low value is zero.

The high SEQ_CNT value shall match the SEQ_CNT of the ABTS frame. The combination of OX_ID,
RX_ID, low SEQ_CNT and high SEQ_CNT defines the range of a Recovery_Qualifier. This range
indicates a range of Data frames that were not and shall never be delivered to the FC-4 or upper level in
the Discard multiple Sequences Error Policy. In the Discard a single Sequence Error Policy, the
Recovery_Qualifier may contain Sequences that have been delivered.

If the ABTS frame is transmitted in Class 2 or Class 3, the Recovery_Qualifier shall be timed out by the
Sequence Initiator of the ABTS frame for a timeout period of R_A_TOV. After the R_A_TOV timeout has
expired, the Sequence Initiator of the ABTS frame shall issue a Reinstate Recovery Qualifier Link Service
request in order to purge the Recovery_Qualifier. Timing out the Recovery_Qualifier for R_A_TOV allows
both Nx_Ports to discard frames received in the range of the Recovery_Qualifier. This ensures the Data
integrity of the Exchange.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

313

Transmission of BA_ACC by the Sequence Recipient is a synchronizing, atomic event. The Sequence
Recipient shall discard any frames received within the range of the Recovery_Qualifier, if timeout is
required, the instant that the BA_ACC is transmitted and thereafter, until it receives a Reinstate Recovery
Qualifier (RRQ) ELSs request. The Sequence Initiative F_CTL bit setting in the BA_ACC shall indicate
whether the Sequence Initiative is held or transferred to the Sequence Initiator of the ABTS frame. If the
Sequence Recipient of the ABTS frame holds Sequence Initiative, it shall withhold Sequence Initiative
transfer until the ACK to the BA_ACC is received.

In like manner, after the Sequence Initiator has received the BA_ACC to the ABTS frame, it shall discard
any frames received within the range of the Recovery_Qualifier. The Sequence Initiator shall retire the
SEQ_CNT range within the Recovery Qualifier until R_A_TOV has expired, or it shall abort the Exchange
(the Recovery_Qualifier for the Exchange times out R_A_TOV).

When the Sequence Initiator has received the BA_ACC, it may reclaim any outstanding end-to-end Credit
for all unacknowledged Data frames within the SEQ_CNT range of the Recovery_Qualifier. After the
Sequence Initiator of the ABTS frame has received the BA_ACC with Sequence Initiative transferred to the
Initiator, it may retransmit the Sequences that it determines as non-deliverable by the Sequence Recipient
(see 19.4.8 and 19.4.11).

If a Recovery_Qualifier exists and is being timed out (R_A_TOV) and another Sequence error occurs that
would cause transmission of the ABTS frame, the Exchange shall be aborted using ABTS-LS. However, if
the Reinstate Recovery Qualifier request has been completed such that the Recovery_Qualifier has been
purged, the ABTS Protocol may be utilized and a new Recovery_Qualifier may be established.

22.5.5.2.2.2 Special case - new Exchange

If a Sequence Initiator of the ABTS frame attempts to originate a new Exchange and a Sequence timeout
occurs, the Sequence Initiator shall transmit the ABTS frame as in the ABTS protocol defined. If the
Sequence Recipient receives an ABTS frame for an Exchange that is unknown, it shall open an Exchange
Status Block, with OX_ID = value of ABTS, RX_ID = FF FFh, and post the SEQ_ID of the ABTS frame. The
BA_ACC Payload shall indicate invalid SEQ_ID, a low SEQ_CNT set to zero, and a high SEQ_CNT set to
SEQ_CNT of the ABTS frame.

The Sequence Initiator of the ABTS frame shall timeout the Recovery_Qualifier, if required, and transmit
the Reinstate Recovery Qualifier in the normal manner.

22.5.5.2.3 Recipient abnormal termination

If no Data frames are being received for a Sequence in error, the Sequence Recipient shall timeout the
Sequence and abnormally terminate the Sequence by setting status in the Sequence Status Block to
indicate Sequence timed-out by Recipient, update the Sequence status in the Exchange Status Block, and
release link facilities associated with the Sequence. If an ABTS frame for the abnormally terminated
Sequence is received, the Abort Sequence Protocol shall be performed and completed.

The Sequence Recipient may timeout the Exchange in a system dependent manner and timeout period.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

314

22.5.5.2.4 End_Sequence

If the last Data frame of a Sequence has been transmitted with the Last_Sequence bit set and the
Sequence Initiator detects a Sequence timeout, the Initiator may initiate an Exchange with a REC ELS
request to determine Exchange status. If the Initiator is in the process of timing out a Sequence for a
missing EOFt with Sequence Initiative transferred and it receives a new Sequence initiated by the
Recipient (new Initiator), it shall assume that the previous Sequence ended successfully. In order to make
such an assumption, the N_Port_ID, OX_ID, and RX_ID shall be the same for the new Sequence as the
Sequence that transferred Sequence Initiative.

From a Recipient view, if the last Data frame is lost, the Recipient abnormally terminates the Sequence
when a Sequence timeout is detected.

22.5.5.3 Stop Sequence Protocol

The Stop Sequence Protocol shall be used by a Sequence Recipient to terminate a Sequence without
invoking a drastic recovery protocol. To cause a Sequence to be terminated by the Initiator, the Sequence
Recipient shall set the Abort Sequence Condition bits in F_CTL to a 10b value in the ACK to each Data
frame received after the Recipient recognizes the need to terminate the Sequence. When the Sequence
Initiator receives the first ACK with the Stop Sequence Condition indicated, it shall terminate the Sequence
by transmitting a Data frame of the Sequence with End_Sequence = 1. If the Sequence Initiator has
already transmitted the last Data frame of the Sequence, no further action is required of it except that
which may be required by the FC-4 or upper level.

Once the Sequence Recipient has indicated the Stop Sequence condition, it shall not report Sequence
errors related to Data frames with a SEQ_CNT greater than that of the Data frame at which the Stop
Sequence condition was recognized. However, it shall observe the normal Sequence timeout protocols
before transmitting the ACK to the frame with the End_Sequence bit set and shall recover Credit in the
normal manner.

NOTE 57 - When the Sequence Initiator stops the Sequence, or if it sent the last Data frame before
receiving the Stop-Sequence indication, it may either hold or pass Sequence Initiative as determined by
the Upper Level Protocol. It is the responsibility of the Upper Level Protocol to define the protocol for
indicating to the Sequence Initiator why the Sequence was stopped, if such an indication is needed, and
the protocol for transferring Sequence Initiative if needed.

NOTE 58 - A common use of this protocol is to signal that there is no more room in the Upper Level
Protocol buffer for the Data being received. To terminate the Sequence when the Upper Level Protocol
buffer is exhausted, the Sequence Recipient stores as much data as possible from the first frame whose
Payload is not completely stored and indicates the Stop Sequence condition in the Abort Sequence
Condition bits in F_CTL in the ACK to that Data frame and in each subsequent ACK until the end of the
Sequence. When the Sequence ends, the ULP protocol may send a message from the Sequence
Recipient to the Initiator that includes the count of the number of bytes in the Sequence that were stored
before the ULP buffer was exhausted.

22.5.5.4 End-to-end Credit loss

This standard does not define the method to be employed for Credit allocation to a destination Nx_Port. If
destination end-to-end Credit is allocated on a Sequence basis, then that portion of end-to-end Credit is
reclaimed when the Sequence is aborted or abnormally terminated. When a Sequence is aborted, any
end-to-end Credit for outstanding ACK frames associated with that Sequence may be reclaimed. This
applies only to Class 2.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

315

22.6 Integrated error detection / actions

22.6.1 Errors detected

Table 95 lists 10 categories of errors that are detectable. The categories specified relate directly to link
integrity or data integrity as previously discussed. This list is representative of the types of errors that may
be detected. It is not an exhaustive list. Column 1 of table 95 specifies a general error category. Column 2
identifies specific errors within that general category. Column 3 identifies the action that the Sequence
Initiator takes on ACK frame errors detected for Sequences being transmitted or link integrity errors (ACK
frame reception is only applicable to Class 2). Column 4 identifies the action that the Sequence Recipient
takes on Data frame errors detected for the Sequences being received or link integrity errors.

Table 95 - Detailed errors and actions (part 1 of 2)

Error Category Specific Error
Seq Init
Action

Seq Recp
Action

Link Failure Loss-of-Signal 22.6.2.12 22.6.2.12

Loss of Sync> timeout period 22.6.2.12 22.6.2.12

Link Errors Invalid Transmission Word during frame reception 22.6.2.1,
22.6.2.11

22.6.2.1,
22.6.2.11

Invalid Transmission Word outside of frame reception 22.6.2.11 22.6.2.11

Loss of Sync 22.6.2.11 22.6.2.11

Link Timeout Missing R_RDYs (no buffer-to-buffer Credit is
available)

22.6.2.6 22.6.2.6

Link Reset
protocol timeout

missing LRR response to LR transmission 22.6.2.12 22.6.2.12

missing Idle response to LRR transmission 22.6.2.12 22.6.2.12

Sequence
timeout

timeout during Sequence 22.6.2.8,
22.6.2.10

22.6.2.9

timeout at end of Sequence 22.6.2.8,
22.6.2.10

22.6.2.9

Delimiter Errors Class not supported 22.6.2.2 22.6.2.2

Abnormal frame termination 22.6.2.1 22.6.2.1

EOFa received 22.6.2.1 22.6.2.1

Incorrect SOF or EOF (see tables 56 and 58) 22.6.2.1 22.6.2.1

Address
Identifier errors

incorrect D_ID 22.6.2.2 22.6.2.2

incorrect S_ID 22.6.2.2 22.6.2.2

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

316

Frame_Content
errors

CRC 22.6.2.1 22.6.2.1

Busy frame received 22.6.2.5 22.6.2.5

Reject frame received 22.6.2.3 22.6.2.3

TYPE not supported 22.6.2.2 22.6.2.2

Invalid Link_Control 22.6.2.2 22.6.2.2

Invalid R_CTL 22.6.2.2 22.6.2.2

Invalid F_CTL 22.6.2.2 22.6.2.2

Invalid OX_ID 22.6.2.2 22.6.2.2

Invalid RX_ID 22.6.2.2 22.6.2.2

Invalid SEQ_ID 22.6.2.2 22.6.2.2

Invalid SEQ_CNT 22.6.2.2 22.6.2.2

Invalid DF_CTL 22.6.2.2 22.6.2.2

Exchange Error 22.6.2.2 22.6.2.2

Protocol Error 22.6.2.2 22.6.2.2

Incorrect length 22.6.2.2 22.6.2.2

Unexpected Link_Continue 22.6.2.2 22.6.2.2

Unexpected Link_Response 22.6.2.2 22.6.2.2

Login Required 22.6.2.2 22.6.2.2

Excessive Sequences attempted 22.6.2.2 22.6.2.2

Unable to Establish Exchange 22.6.2.2 22.6.2.2

Relative offset out of bounds N/A 22.6.2.2

Data frame errors buffer not available - Class 2 N/A 22.6.2.4

buffer not available - Class 3 N/A 22.6.2.1

ABTS frame received N/A 22.6.2.8

missing frame error detection N/A 22.6.2.13,
22.6.2.7

ACK_1 frame
errors

ABTS frame received 22.6.2.8,
22.6.2.10

N/A

missing frame error detection 22.6.2.13,
22.6.2.8

N/A

Table 95 - Detailed errors and actions (part 2 of 2)

Error Category Specific Error
Seq Init
Action

Seq Recp
Action

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

317

22.6.2 Actions by Initiator or Recipient

22.6.2.1 Discard frame

In both the discard policy and the process policy, a frame that is terminated with an EOFa shall be
discarded:

a) Discard policy - If an invalid frame is detected, the entire invalid frame shall be discarded. If a valid
frame is received and a rejectable or busy condition in Class 3 is detected, the entire frame shall
be discarded; and

b) Process policy - If an Nx_Port is able to determine that an invalid frame is associated with an
Exchange which is designated as operating under Process policy, the Nx_Port may process and
use the Data_Field at its discretion, otherwise, the entire invalid frame shall be discarded.

22.6.2.2 Transmit P_RJT frame

If a valid Data frame (see 11.3.9.2) is received that contains information in the Frame_Header that is
invalid or incorrect, then:

a) in Class 2, a P_RJT frame shall be transmitted with the appropriate reason code as specified in
15.3.3.4. Reason codes are defined such that the first error detected is returned as the reason
code; and

b) in any class of service, the received frame shall be discarded and R_RDY shall be transmitted in
response to the discarded frame.

22.6.2.3 Process Reject

When a P_RJT or F_RJT frame is received in response to a frame transmission, the reject information
shall be passed to the appropriate Upper Level Protocol in order to process. Certain errors are recoverable
by taking an appropriate action (e.g., Login). The Sequence shall be aborted using the Abort Sequence
Protocol, regardless of possible recovery actions. For typical non-retryable errors the Exchange shall also
be aborted.

If a P_RJT or F_RJT frame is received that contains information in the Frame_Header that is invalid or
incorrect, the frame shall be discarded.

22.6.2.4 Transmit P_BSY frame

An Nx_Port shall track the status of its buffers such that if a Class 2 Data frame is received and no
EE_buffer is available, a P_BSY shall be returned to the transmitter of the frame. If a Class 2 Data frame is
received and no BB_buffer is available, the Recipient may discard the frame without issuing a P_BSY or
P_RJT. Portions of the frame other than the Frame_Header are discarded. The Frame_Header is captured
in order to generate a proper P_BSY Link_Response frame.

An R_RDY is transmitted in response to a Class 2 frame regardless of the disposition of the received
frame.

22.6.2.5 Process Busy

When an F_BSY or P_BSY is received in response to a Class 2 Data frame, and if the Nx_Port has the
capability to retransmit, the Nx_Port shall retransmit the Class 2 Data frame within E_D_TOV of the last
Data frame transmission. In order to avoid reissuing a frame for an extended number of retries an Nx_Port
may choose to count the number of retries and decide to shutdown communication with a specific Nx_Port.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

318

When an F_BSY is received in response to an ACK frame (Class 2), the Nx_Port shall not retransmit the
ACK frame.

22.6.2.6 Perform Link Reset Protocol

When a PN_Port has no buffer-to-buffer Credit available and has exceeded the Link timeout period
(E_D_TOV), a Link timeout is detected. When a Link timeout is detected, the PN_Port or Fx_Port begins
the Link Reset Protocol.

22.6.2.7 Set Abort Sequence Bits

When a Sequence Recipient detects a Sequence error by missing frame detection or other internal
processing errors, the Recipient sets the appropriate Abort Sequence in F_CTL bits 5-4 to:

a) 00b = Continue Sequence;

b) 01b = Abort, perform ABTS; or

c) 10b = Stop Sequence.

The SEQ_CNT of the first missing frame is saved in the Sequence Status Block. Only the first error is
saved in the Sequence Status Block. This information shall not be required by the Sequence Initiator for
recovery purposes.

22.6.2.8 Perform Abort Sequence Protocol

When a Sequence Initiator detects a Sequence error or receives an appropriate Abort Sequence Condition
(01b) in F_CTL bits 5-4 in an ACK for an active Sequence, the Initiator shall transmit an Abort Sequence
Link Service request to the Recipient and transfers Sequence Initiative in order to complete Abort
Sequence processing (see 22.5.5.2).

When a Sequence Recipient receives an ABTS frame, it shall respond as specified in 22.5.5.2.2 and
16.3.2.

22.6.2.9 Abnormally terminate Sequence

When a Sequence Recipient detects a Sequence timeout (E_D_TOV) and no Data frames are being
received for the Sequence, the Recipient shall terminate the Sequence and update the Exchange Status
Block.

22.6.2.10 Retry Sequence

When a Sequence has been abnormally terminated, the Sequence Initiator may retransmit the Sequence
under guidance, authorization, or control of the FC-4 or upper level.

22.6.2.11 Update LESB

The Link Error Status Block is updated to track errors not directly related to an Exchange.

22.6.2.12 Perform Link Failure Protocol

Transmission or reception of the not operational Primitive Sequence initiates the Link Failure Protocol.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

319

22.6.2.13 Error Policy processing

When an error is detected within a Sequence, the Sequence is either processed normally (process policy),
or discarded (discard policy). See 22.5.4.3 for additional information.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

320

23 Broadcast

23.1 Scope

Broadcast is a function of the FC-2M sublevel.

23.2 Applicability

Broadcast provides a service based on Fabric routing of Class 3 frames.

Broadcast operations are not applicable to Class 2.

23.3 Broadcast operation

A frame addressed to the Well-known address for Broadcast (i.e., FF FF FFh) is a Broadcast frame. The
Fabric shall attempt to send the Broadcast frame to all possible Nx_Ports within zoning constraints.
However, the Fabric may not be able to deliver to all Nx_Ports for any number of reasons (e.g., class
mismatch or Nx_Port not operational).

An Nx_Port may discard a Broadcast frame.

An Nx_Port shall send and receive Class 3 Broadcast Data frames in the context of an implicit Broadcast
Port Login. The implicit Broadcast Port Login is particular because it is not tied to any remote
N_Port_Name and Node_Name, but it is tied to the destination address identifier FF FF FFh.

The implicit Broadcast Port Login specifies the service parameters to be used for broadcast
communications. An FC-4 using the Broadcast functionality may specify the service parameters that it
requires in the implicit Broadcast Port Login. In absence of such a specification, the default Login
parameters specified in FC-LS-3 shall be used.

23.4 Other

Other forms of broadcast and multicast are available in topology specific configurations. For examples see
FC-AL-2 for a description of Selective Replicate to perform dynamic multicasting.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

321

24 Clock synchronization service

24.1 Scope

ELS Command service (see 24.3) is a function of the FC-3 level. Primitive Signal service (see 24.4) is a
function of the FC-2P sublevel.

24.2 Introduction

24.2.1 References

See Informative annex F for implementation details related to Clock Synchronization.

24.2.2 Applicability

Conventional network technologies utilize clock distribution protocols (e.g., Network Time Protocol) that
synchronize the computer’s time-of-day clock. Such protocols typically provide clock synchronization
accuracies on the order of a few milliseconds with highly tuned versions producing accuracies on the order
of 50 microseconds.

The protocols defined in this clause allow clocks located within nodes to be readily synchronized to
microsecond accuracies. If all sources of error are accounted for, higher accuracies are possible.

24.2.3 Function

Clock Synchronization over Fibre Channel is attained through a Clock Synchronization Server that
contains a reference clock. The Server synchronizes Client’s clocks to the reference clock on a periodic
basis using either Primitive Signals or ELS frames. The Server may be built into a Fabric or it may be
implemented as an independent node that services one or more Nx_Ports in either a Fabric or an
Arbitrated Loop topology.

When all the Clients are synchronized with the Server, they shall be synchronized with each other. By
tagging data with the current value of their synchronized clock, one client may accurately exchange time
sensitive data with another client.

24.2.4 Assumptions

A simplifying assumption in both the ELS and Primitive methods is that propagation delays over the
medium are insignificant. This eliminates the need for the Server to calculate and maintain the media delay
to each Client.

Very accurate clock synchronization is accomplished without the use of media propagation delays through
the techniques described in this clause. If the system requires even greater accuracy, “canned”
propagation delays could be added in the Client’s software or hardware. This and other sources of error
are discussed in annex F.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

322

24.2.5 Clock Synchronization Quality of Service

Certain performance (Quality of Service) parameters are made available to the Clients by the Clock
Synchronization Server and the Fabric. This information is made available via FLOGI/PLOGI and/or the
Clock Synchronization Request (CSR) ELS Command. The Quality of Service parameters include the
accuracy of the Clock Count value, the implemented MSB and LSB, and the update period. These
parameters are described in FC-LS-3.

24.3 ELS Command Service

24.3.1 Scope

ELS Command Clock Synchronization Service is a function of the FC-3 level.

24.3.2 ELS Commands

The format for the Clock Synchronization Request (CSR) and Clock Synchronization Update (CSU)
commands are defined in FC-LS-3.

24.3.3 Fabric Topology

24.3.3.1 Model

The basic Model of the ELS method in a Fabric is shown in figure 79.

24.3.3.2 Clock Synchronization Server Rules

The Clock Synchronization Server (FF FF F6h) shall have an n-bit binary counter. This counter shall act as
the Master Clock to the Clients.

Figure 79 - ELS Clock Sync model – Fabric

Client

n-
bit

Coun-

Clock

Load

Clock
Synchronization

Server
(WKA FF FF F6h)

n-
bit

Master
Clock

Clock

Load

Fabric

n-
bit

Coun-

Clock

Load

CSR
ELS

CSR
ELS

CSU
ELS

CSU
ELS

Optional:

REQUEST:

UPDATE:

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

323

The Server shall periodically issue the Clock Synchronization Update (CSU) ELS command to the Clients.
When a CSU command is sent, the Server shall place the current value of the Master Clock in the Payload.

The Server shall support at least one method for providing its Clock Synchronization Quality of Service
capabilities to Clients. The available methods are N_Port Login and the Clock Synchronization Request
(CSR) ELS command. The Server shall provide Clock Synchronization to Clients with the Quality of
Service indicated in the N_Port Login LS_ACC Payload or the CSR ELS LS_ACC Payload.

The Clock Synchronization ELS Capable bit in the Initiator Control section of the Nx_Port Class Service
Parameters shall be used to indicate whether the Server is capable of providing Clock Synchronization to
Clients.

24.3.3.3 Fabric Rules

When a CSU is received from the Server, the Fabric shall transmit the clock value contained in the Payload
to the D_ID specified in the header.

The Fabric shall support at least one method for providing its Clock Synchronization Quality of Service
capabilities to Clients. The available methods are Fabric Login and the Clock Synchronization Request
(CSR) ELS command. The Fabric shall provide Clock Synchronization to Clients with the Quality of
Service indicated in the Fabric Login LS_ACC Payload or the CSR ELS LS_ACC Payload.

The Clock Synchronization ELS Capable bit in the Recipient Control section of the Fabric Class Service
Parameters shall be used to indicate whether the Fabric is capable of transferring CSU ELS frames from
the Server to the Clients.

24.3.3.4 Fabric Options

A Fabric may have its own n-bit binary counter as shown in figure 79. If this is done, the Fabric shall load
its counter with the value in the Payload of the incoming CSU command, regardless of the content of the
D_ID field of the header. The Fabric shall then place the current value of its counter in the Payload of the
outgoing CSU command and update the CRC value. All other elements of the outgoing CSU frame shall
be the same as in the incoming CSU frame.

24.3.3.5 Client Rules

A Client shall have an n-bit binary counter.

When a CSU is received, the Client shall load its counter with the incoming value in the Payload of the
CSU command.

The Clock Synchronization ELS Capable bit in the Recipient Control section of the Class Service
Parameters shall be used to indicate whether the Client is capable of receiving CSU ELS frames.

24.3.3.6 Client Options

Clients have the option of requesting particular Quality of Service parameters to the Server and the Fabric
via Login or the CSR ELS command. However, the Server and Fabric may or may not be able to provide
the Quality of Service requested.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

324

24.3.4 Loop Topology

24.3.4.1 Model

The basic Model of the ELS method in a Loop is shown in figure 80.

24.3.4.2 L_Port Server Rules

The Clock Synchronization Server shall have an n-bit binary counter. This counter shall act as the Master
Clock to the Clients.

The Server shall periodically issue the Clock Synchronization Update (CSU) ELS command to the Clients.
When a CSU command is sent, the Server shall place the current value of the Master Clock in the Payload.

The Server shall support at least one method for providing its Clock Synchronization Quality of Service
capabilities to Clients. The available methods are N_Port Login and the Clock Synchronization Request
(CSR) ELS command. The Server shall provide Clock Synchronization to Clients with the Quality of
Service indicated in the N_Port Login LS_ACC Payload or the CSR ELS LS_ACC Payload.

The Clock Synchronization ELS Capable bit in the Initiator Control section of the PLOGI Class Service
Parameters shall be used to indicate whether the Server is capable of providing Clock Synchronization to
Clients.

24.3.4.3 L_Port Server Options

Depending on the implementation, the Server may receive the Clock Synchronization Request (CSR) ELS
command from Clients to initiate Clock Sync Service. The format of the CSR command is defined in
FC-LS-3. When the Server accepts the CSR command, it shall notify the Client that Clock Sync Service is
enabled.

Figure 80 - ELS Clock Sync model – loop

Clock
Synchronization

Server
(WKA FF FF F6h)

CSU
ELS

CSU
ELS

UPDATE:

n-
bit

Master
Clock

Clock

Load

L_Port
Client(s)

n-
bit

Counter

Clock

Load

L_Port
Client(s)

n-
bit

Counter

Clock

Load

LPSM
Repeater

LPSM
Repeater

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

325

Although N_Port or Fabric Login is not required to use the CSR or CSU commands, if Login is used the
Clock Sync Capable bit in the Class Specific Login Service Parameters shall be used to indicate whether
the server is capable of supporting Clock Synchronization.

24.3.4.4 L_Port Client Rules

A Client shall have an n-bit binary counter.

When a CSU is received, the Client shall load its counter with the incoming value in the Payload of the
CSU command.

The Clock Synchronization ELS Capable bit in the Recipient Control section of the PLOGI Class Service
Parameters shall be used to indicate whether the Client is capable of receiving CSU ELS frames.

24.3.4.5 Client Options

Clients have the option of requesting particular Quality of Service parameters to the Server via Login or the
CSR ELS command. However, the Server may or may not be able to provide the Quality of Service
requested.

24.4 Primitive Signal Service

24.4.1 Scope

Primitive Signal Clock Synchronization Service is a function of the FC-2P sublevel.

This standard does not specify Primitive Signal Clock Synchronization Service for FC_Ports using 64B/
66B transmission code.

24.4.2 Introduction

Primitive Signal Service for Clock Synchronization is compatible with all topologies, point-to-point,
Arbitrated Loop, and Fabric based networks.

24.4.3 Communication Model

Figure 81 illustrates the protocol for synchronizing client’s real-time clocks with a clock synchronization
server real-time clock. To accomplish this the server periodically generates a synchronization event. The
synchronization event is the transfer of clock synchronization primitives from the server to the Clients with
the period between synchronization events controlled by the Server. Embedded within the clock
synchronization primitives is the necessary data to update the client’s real-time clock. For the client to
receive an accurate real-time clock update in a Fabric based network the Fabric shall, to the degree
required by the application(s) of interest, compensate for the delay of moving the real-time clock value
from the server to the clients.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

326

24.4.4 Requirements

24.4.4.1 Introduction

The Clock Synchronization Server shall initiate clock synchronization events by substituting three
synchronization primitives for a sequence of three consecutive Fill Words in the inter-frame interval, as
shown in figure 82. This shall be done in such a way as to ensure that the synchronization symbols are
bracketed at both ends by at least two Fill Words.

Clock synchronization primitives shall consist of the SYNx, SYNy, and SYNz Ordered Sets shown in table
8. The 14-bit values contained within each primitive (SYNx, SYNy, and SYNz) are the concatenation of two
7-bit values (i.e., X1 and X2, Y1 and Y2, Z1 and Z2 respectively). Each 7-bit value shall have an equivalent
neutral disparity data character (i.e., CS_X1 and CS_X2, CS_Y1 and CS_Y2, CS_Z1 and CS_Z2) as
shown in table 96. The 42-bit time sync value shall be the concatenation of these neutral disparity data

Figure 81 - Clock Synchronization data distribution

Server Fabric Client

Re-Sync
Period

Re-Sync
Period

Clock SyncPrimitives

Clock SyncPrimitives

Clock SyncPrimitives

Clock SyncPrimitives

T
im

e

T
im

e

Figure 82 - Synchronization primitive substitution for Idle srimitives in inter-frame interval

CRC EOFx Idle Idle SYNx SYNy SYNz Idle Idle SOFx Header

Previous Frame

Next Frame

Clock Sync Data

Time Data Stream

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

327

characters such that the most significant 7-bits is represented by CS_X1 and the least significant 7-bits is
represented by CS_Z2. The 42-bit value is CS_X1 CS_X2 CS_Y1 CS_Y2 CS_Z1 CS_Z2. Neutral disparity
data characters shall be selected such that their decimal value is equal to the binary value being
transmitted (i.e., if transmitting a value of 1111111b select neutral disparity data character FFh. If
transmitting a value of 0000000b select neutral disparity data character EFh).

Table 96 - Neutral Disparity Character Values (part 1 of 2)

Symbol: Dxx.y
Neutral Disparity
Character (hex)

xx y

0 1 2 3 4 5 6 7

00 (126) (56) (5) 00, 80, E0

01 (125) (55) (4) 01, 81, E1

02 (124) (54) (3) 02, 82, E2

03 (113) (94) (75) (43) (24) 23, 43, 63, A3, C3

04 (123) (53) (2) 04, 84, E4

05 (112) (93) (74) (42) (23) 25, 45, 65, A5, C5

06 (111) (92) (73) (41) (22) 26, 46, 66, A6, C6

07 (110) (91) (72) (40) (21) 27, 47, 67, A7, C7

08 (122) (52) (1) 08, 88, E8

09 (109) (90) (71) (39) (20) 29, 49, 69, A9, C9

10 (108) (89) (70) (38) (19) 2A, 4A, 6A, AA, CA

11 (107) (88) (69) (37) (18) 2B, 4B, 6B, AB, CB

12 (106) (87) (68) (36) (17) 2C, 4C, 6C, AC, CC

13 (105) (86) (67) (35) (16) 2D, 4D, 6D, AD, CD

14 (104) (85) (66) (34) (15) 2E, 4E, 6E, AE, CE

15 (121) (51) (0) 0F, 8F, EF

16 (120) (50) (133) 10, 90, F0

17 (103) (84) (65) (33) (14) 31, 51, 71, B1, D1

18 (102) (83) (64) (32) (13) 32, 52, 72, B2, D2

19 (101) (82) (63) (31) (12) 33, 53, 73, B3, D3

20 (100) (81) (62) (30) (11) 34, 54, 74, B4, D4

21 (99) (80) (61) (29) (10) 35, 55, 75, B5, D5

22 (98) (79) (60) (28) (9) 36, 56, 76, B6, D6

Legend: (x) = Decimal value of neutral disparity character

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

328

24.4.4.2 Clock Synchronization Server Rules

The Clock Synchronization Server shall be capable of initiating clock synchronization events on a periodic
basis or be disabled. The default synchronization event period shall be 1 second. The synchronization
event period shall be settable from 1 microsecond to at least 60 seconds in 1-microsecond increments or
set to zero.

The Clock Synchronization Server shall maintain a real-time clock register with sufficient bits to fulfill
requirements for clock synchronization for applications of interest and as needed to support 24.2.5, Clock
Synchronization Quality of Service. If the server’s real-time clock register is less than 42-bits, a 42-bit value
shall be generated by concatenating the real-time clock value with bits having a value of zero in such a
way that the real-time clock value resides in the least significant bit positions. Primitive clock sync
characters shall be generated from this 42-bit value.

The Clock Synchronization Server may be physically located in a Fabric or an Nx_Port.

The Clock Synchronization Server shall be addressed using Well-Known Address FF FF F6h and
configured using the clock synchronization ELSs (see FC-LS-3).

24.4.4.3 Fabric Rules

Fabrics shall provide one port designated as the Fabric Clock Synchronization (FCS) Server port. All
Fx_Ports shall be capable of periodically receiving clock synchronization primitives. Received clock
synchronization primitives shall be interpreted the same as Fill Words by all ports except the FCS Server
port. Following reception by the FCS Server port all Fx_Ports shall transmit clock synchronization
primitives, except for the FCS Server port, using available inter-frame intervals. The real-time clock value
transmitted by Fx_Ports shall be equal to the real-time clock value in the clock synchronization server,
within the accuracy limits defined by the application(s) of interest.

23 (119) (49) (132) 17, 97, F7

24 (118) (48) (131) 18, 98, F8

25 (97) (78) (59) (27) (8) 39, 59, 79, B9, D9

26 (96) (77) (58) (26) (7) 3A, 5A, 7A, BA, DA

27 (117) (47) (130) 1B, 9B, FB

28 (95) (76) (57) (25) (6) 3C, 5C, 7C, BC, DC

29 (116) (46) (129) 1D, 9D, FD

30 (115) (45) (128) 1E, 9E, FE

31 (114) (44) (127) 1F, 9F, FF

Total 134 13 19 19 19 13 19 19 13

Table 96 - Neutral Disparity Character Values (part 2 of 2)

Symbol: Dxx.y
Neutral Disparity
Character (hex)

xx y

0 1 2 3 4 5 6 7

Legend: (x) = Decimal value of neutral disparity character

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

329

24.4.4.4 Client Rules

Clients that support clock synchronization shall be capable of periodically receiving clock synchronization
primitives Clients that do not support clock synchronization shall interpret received clock synchronization
primitives the same as Fill Words or ignore them.

Supporting clients shall maintain a real-time clock register with sufficient bits to fulfill requirements for clock
synchronization for applications of interest. The real-time clock register shall be loaded, upon receipt of
three consecutive clock synchronization primitives, with the value received.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

330

Annex A
(informative)

CRC generation and checking

A.1 Extract from FDDI

First part of this annex is an extract from Fiber Distributed Data Interface - Media Access Control (see
FDDI-MAC). FDDI's Frame Check Sequence (FCS) methodology, polynomials and equations are used by
Cyclic Redundancy Check (CRC) in FC-2. The term FCS is unique to FDDI and not used by Fibre
Channel. CRC coverage is defined in 11.4.5.

A.2 Frame check sequence (FCS)

This annex specifies the generation and checking of the FCS field. This field is used to detect erroneous
data bits within the frame as well as erroneous addition or deletion of bits to the frame. The fields covered
by the FCS field include the FC, DA, SA, INFO, and FCS fields.

A.3 Definitions

A.3.1 Basic terms

F(x): A degree k-1 polynomial that is used to represent the k bits of the frame covered by the FCS
sequence (see 11.4.5). For the purposes of the FCS, the coefficient of the highest order term is the first bit
transmitted.

L(x): A degree 31 polynomial with all of the coefficients equal to one, i.e.,

L(x) = X31 + X30 + X29 + ••• + X2 + X1 + 1

G(x): The standard generator polynomial

G(x) = X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1

R(x): The remainder polynomial that is of degree less than 32

P(x): The remainder polynomial on the receive checking side that is of degree less than 32

FCS: The FCS polynomial that is of degree less than 32

Q(x): The greatest multiple of G(x) in

[X32 • F(x) + Xk • L(x)]

Q*(x): X32 • Q(x)

M(x): The sequence that is transmitted

M*(x): The sequence that is received

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

331

C(x): A unique polynomial remainder produced by the receiver upon reception of an error free
sequence. This polynomial has the value

C(X) = X32 • L(X) / G(X)

= X31 + X30 + X26 + X25 + X24 + X18 + X15 + X14 + X12 + X11 + X10 + X8 + X6 + X5 + X4 + X3 + X + 1

A.3.2 FCS generation equations

The equations that are used to generate the FCS sequence from F(x), are as follows:

a) FCS = L(X) + R(X) = R$(X)

where R$(X) is the one's complement of R(X);

NOTE 59 - Adding L(x) (all ones) to R(x) simply produces the one's complement of R(x); this equation is
specifying that the R(x) is inverted before it is sent out.

b) [X32 • F(x) + Xk • L(X)] / G(X) = Q(X) + R(X) / G(X); and

c) M(x) = x32 • F(x) + FCS.

NOTE 60 - All arithmetic is modulo 2.

NOTE 61 - Equation c) above specifies that the FCS is appended to the end of F(x).

A.3.3 FCS checking

The received sequence M*(x) may differ from the transmitted sequence M(x) if there are transmission
errors. The process of checking the sequence for validity involves dividing the received sequence by G(x)
and testing the remainder. Direct division, however, does not yield a unique remainder because of the
possibility of leading zeros. Thus a term L(x) is prepended to M*(x) before it is divided. Mathematically, the
received checking is shown in the following equation:

X32 [M*(X)+Xk • L(X)] / G(X) = Q*(X) + P(X) / G(X)

In the absence of errors, the unique remainder is the remainder of the division

P(X) / G(X) = X32 • L(X) / G(X) = C(X)

A.4 CRC generation example for ACK_1 frame

An example of CRC generation for an ACK_1 frame is provided in a set of tables A.1 through A.8. Table
A.1 shows an example of an ACK_1 fields without CRC and table A.2 shows the hexadecimal values for
each field. Table A.3 shows the transmit bit order (03 80 40 C..0 80h) with the bytes in table A.2
transposed. Table A.4 shows the bit stream X32 • F(x) + Xk • L(x) (FC 7F..0 80h) for the sample. Table A.5

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

332

shows the generated remainder (64 9E OB F7h) for the sample. Table A.6 shows the one's complement of
the remainder (9B 61 F4 08h) for the sample. The transmitted bit sequence for the sample with the CRC
(03 80 40 C..F4 08h) is shown in table A.7. The transmitted 10B stream for the sample with CRC is shown
in table A.8.

Table A.1 - Sample FC-2 frame

Sample ACK_1 without CRC (Frame_Header fields)

R_CTL D_ID

rrrr rrrr S_ID

TYPE F_CTL

SEQ_ID DF_CTL SEQ_CNT

OX_ID RX_ID

Parameter

Table A.2 - Sample ACK_1 without CRC

Sample Frame_Header

C0 01 02 03

00 04 05 06

00 C0 00 00

02 00 00 03

FF FF FF FF

00 00 00 01

Table A.3 - F(x)

Bytes in table A.2 transposed

03 80 40 C0

00 20 A0 60

00 03 00 00

40 00 00 C0

FF FF FF FF

00 00 00 80

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

333

Table A.4 - X32 F(x) + Xk L(x)

FC 7F BF 3F

00 20 A0 60

00 03 00 00

40 00 00 C0

FF FF FF FF

00 00 00 80

Table A.5 - R(x)

64 9E 0B F7

Table A.6 - L(x) + R(x) = R$(x)

9B 61 F4 08

Table A.7 - M(x)

03 80 40 C0

00 20 A0 60

00 03 00 00

40 00 00 C0

FF FF FF FF

00 00 00 80

9B 61 F4 08

Table A.8 - M(x) - (10B)

D0.6 D1.0 D2.0 D3.0

D0.0 D4.0 D5.0 D6.0

D0.0 D0.6 D0.0 D0.0

D2.0 D0.0 D0.0 D3.0

D31.7 D31.7 D31.7 D31.7

D0.0 D0.0 D0.0 D1.0

D25.6 D6.4 D15.1 D16.0

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

334

Annex B
(Informative)

Frame Scrambling

B.1 Serial Frame Scrambling and Descrambling Implementations

Figure B.1 shows an example of the serial bit-wise implementation of a data scrambler, and figure B.2
shows the equivalent example of a data descrambler for the polynomial:

G(x) = x58 + x39 + 1

Figure B.1 - Serial Implementation of a Scrambler

Figure B.2 - Serial Implementation of a Descrambler

S1 S2 S3 S38 S39 S57 S58

S1 S2 S3 S38 S39 S57 S58

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

335

B.2 Parallel Frame Scrambling and Descrambling Implementations

A 32-bit parallel implementation of a scrambler and descrambler circuit may be decomposed into two
common components: a 58-bit linear feedback shift register (LFSR), and a 32-bit wide XOR tree. These
two components are interconnected into either a scrambler or descrambler configuration as shown in
figure B.3 and figure B.4.

Figure B.3 - Parallel Implementation of a Scrambler

Unscrambled
Parallel Data

XOR Tree LFSR

Scrambled
Parallel Data

dout(31:0)

din(31:0) lfsr(39:8)lfsr(58:27) xin(31:0)

lfsr(58:1)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

336

Figure B.4 - Parallel Implementation of a Descrambler

The XOR tree combinatorial logic component of the scrambler or descrambler has as inputs:

a) the 32-bit parallel unscrambled or scrambled input data (i.e., bits din(31) down to din(0));

b) the 32-bit parallel current state of LFSR bits lfsr(58) down to lfsr(27); and

c) the 32-bit parallel current state of LFSR bits lfsr(39) down to lfsr(8).

The XOR tree combinatorial logic component of the scrambler or descramble has as output the 32-bit
parallel scrambled or unscrambled output data (i.e., dout(31) down to dout(0)). The combinatorial logic
function of this block is defined by the following equations.

dout(31) = lfsr(58) lfsr(39) din(31)

dout(30) = lfsr(57) lfsr(38) din(30)

dout(29) = lfsr(56) lfsr(37) din(29)

dout(28) = lfsr(55) lfsr(36) din(28)

dout(27) = lfsr(54) lfsr(35) din(27)

dout(26) = lfsr(53) lfsr(34) din(26)

dout(25) = lfsr(52) lfsr(33) din(25)

dout(24) = lfsr(51) lfsr(32) din(24)

dout(23) = lfsr(50) lfsr(31) din(23)

dout(22) = lfsr(49) lfsr(30) din(22)

dout(21) = lfsr(48) lfsr(29) din(21)

dout(20) = lfsr(47) lfsr(28) din(20)

dout(19) = lfsr(46) lfsr(27) din(19)

Scrambled
Parallel Data

XOR Tree LFSR

Unscrambled
Parallel Data

dout(31:0)

din(31:0) lfsr(39:8)lfsr(58:27) xin(31:0)

lfsr(58:1)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

337

dout(18) = lfsr(45) lfsr(26) din(18)

dout(17) = lfsr(44) lfsr(25) din(17)

dout(16) = lfsr(43) lfsr(24) din(16)

dout(15) = lfsr(42) lfsr(23) din(15)

dout(14) = lfsr(41) lfsr(22) din(14)

dout(13) = lfsr(40) lfsr(21) din(13)

dout(12) = lfsr(39) lfsr(20) din(12)

dout(11) = lfsr(38) lfsr(19) din(11)

dout(10) = lfsr(37) lfsr(18) din(10)

dout(9) = lfsr(36) lfsr(17) din(9)

dout(8) = lfsr(35) lfsr(16) din(8)

dout(7) = lfsr(34) lfsr(15) din(7)

dout(6) = lfsr(33) lfsr(14) din(6)

dout(5) = lfsr(32) lfsr(13) din(5)

dout(4) = lfsr(31) lfsr(12) din(4)

dout(3) = lfsr(30) lfsr(11) din(3)

dout(2) = lfsr(29) lfsr(10) din(2)

dout(1) = lfsr(28) lfsr(9) din(1)

dout(0) = lfsr(27) lfsr(8) din(0)

The LFSR combinatorial logic component of the scrambler or descrambler has as input the scrambled data
(i.e., xin(31) down to xin(0) in the following equations) and has as output the 58-bit current state of the
LFSR (i.e., lfsr(58) down to lfsr(1) in the following equations). The next state of the LFSR (i.e., next_lfsr(58)
down to next_lfsr(1) in the following equations) is reached by a state transition defined by the following
equations.

next_lfsr(58) = lfsr(26)

next_lfsr(57) = lfsr(25)

next_lfsr(56) = lfsr(24)

next_lfsr(55) = lfsr(23)

next_lfsr(54) = lfsr(22)

next_lfsr(53) = lfsr(21)

next_lfsr(52) = lfsr(20)

next_lfsr(51) = lfsr(19)

next_lfsr(50) = lfsr(18)

next_lfsr(49) = lfsr(17)

next_lfsr(48) = lfsr(16)

next_lfsr(47) = lfsr(15)

next_lfsr(46) = lfsr(14)

next_lfsr(45) = lfsr(13)

next_lfsr(44) = lfsr(12)

next_lfsr(43) = lfsr(11)

next_lfsr(42) = lfsr(10)

next_lfsr(41) = lfsr(9)

next_lfsr(40) = lfsr(8)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

338

next_lfsr(39) = lfsr(7)

next_lfsr(38) = lfsr(6)

next_lfsr(37) = lfsr(5)

next_lfsr(36) = lfsr(4)

next_lfsr(35) = lfsr(3)

next_lfsr(34) = lfsr(2)

next_lfsr(33) = lfsr(1)

next_lfsr(32) = xin(31)

next_lfsr(31) = xin(30)

next_lfsr(30) = xin(29)

next_lfsr(29) = xin(28)

next_lfsr(28) = xin(27)

next_lfsr(27) = xin(26)

next_lfsr(26) = xin(25)

next_lfsr(25) = xin(24)

next_lfsr(24) = xin(23)

next_lfsr(23) = xin(22)

next_lfsr(22) = xin(21)

next_lfsr(21) = xin(20)

next_lfsr(20) = xin(19)

next_lfsr(19) = xin(18)

next_lfsr(18) = xin(17)

next_lfsr(17) = xin(16)

next_lfsr(16) = xin(15)

next_lfsr(15) = xin(14)

next_lfsr(14) = xin(13)

next_lfsr(13) = xin(12)

next_lfsr(12) = xin(11)

next_lfsr(11) = xin(10)

next_lfsr(10) = xin(9)

next_lfsr(9) = xin(8)

next_lfsr(8) = xin(7)

next_lfsr(7) = xin(6)

next_lfsr(6) = xin(5)

next_lfsr(5) = xin(4)

next_lfsr(4) = xin(3)

next_lfsr(3) = xin(2)

next_lfsr(2) = xin(1)

next_lfsr(1) = xin(0)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

339

B.3 Scrambler and Descrambler Implementations in C

The following is an example C program that generates the scrambled serial data for transmission. The
inputs are the serial data bits to be scrambled, a control indication to reinitialize the residual value, and a
control indication to bypass the scrambler and hold the present state of the linear feedback shift register.

/* Serial Scrambler Implementation for: */

/* 1-bit data path */

/* x**58 + x**39 + 1 polynomial */

unsigned long serial_scrambler (unsigned char tx_data_bit, int reset_state, int scrambler_bypass) {

static unsigned long scram_state[2]; /* scrambler state coded as two 32-bit values */

unsigned char tx_scram_data_bit, x58, x39;

/*************************/

/* determine output data */

/*************************/

tx_data_bit = tx_data_bit & 0x1; /* input is only one bit */

if (scrambler_bypass != 0) { /* implement bypass */

tx_scram_data_bit = tx_data_bit; /* input data driven directly to output */

} else { /* scramble data with current scrambler state */

/* isolate x**58 and x**39 terms for 1-bit data path width */

x58 = (scram_state[1] >> 25);

x39 = (scram_state[1] >> 6);

/* calculate scrambled data */

tx_scram_data_bit = (x58 ^ x39 ^ tx_data_bit) & 0x1;

} /* end if */

/**************************************/

/* determine next state for scrambler */

/**************************************/

if (reset_state != 0) { /* implement reset */

scram_state[1] = 0x00294387;

scram_state[0] = 0x98327338;

 } else if (scrambler_bypass == 0) { /* advance scrambler state */

scram_state[1] = ((scram_state[1] << 1) | (scram_state[0] >> 31)) & 0x03FFFFFF;

scram_state[0] = (scram_state[0] << 1) | tx_scram_data_bit;

} /* end if */

/* the scrambler state remains unchanged if it is not reset and the data is not scrambled */

return tx_scram_data_bit;

} /* end serial_scrambler */

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

340

The following is an example C program that descrambles received serial data bits. The inputs are the serial
data bit to be descrambled, a control indication to reinitialize the residual value, and a control indication to
bypass the descrambler and hold the present state of the linear feedback shift register.

/* Serial Descrambler Implementation for: */

/* 1-bit data path */

/* x**58 + x**39 + 1 polynomial */

unsigned long serial_descrambler (unsigned long rx_data_bit, int reset_state, int descrambler_bypass) {

static unsigned long descram_state[2]; /* descrambler state coded as two 32-bit values */

unsigned char rx_unscram_data_bit, x58, x39;

/*********************/

/* determine output data */

/*********************/

rx_data_bit = rx_data_bit & 0x1; /* input is only one bit */

if (descrambler_bypass != 0) { /* implement bypass */

rx_unscram_data_bit = rx_data_bit; /* input data driven directly to output */

} else { /* scramble data with current scrambler state */

/* isolate x**58 and x**39 terms for 1-bit data path width */

x58 = (descram_state[1] >> 25);

x39 = (descram_state[1] >> 6);

/* calculate unscrambled data */

rx_unscram_data_bit = (x58 ^ x39 ^ rx_data_bit) & 0x1;

} /* end if */

/**/

/* determine next state for descrambler */

/**/

if (reset_state != 0) { /* implement reset */

descram_state[1] = 0x00294387;

descram_state[0] = 0x98327338;

 } else if (descrambler_bypass == 0) { /* advance descrambler state */

descram_state[1] = ((descram_state[1] << 1) | (descram_state[0] >> 31)) & 0x03FFFFFF;

 descram_state[0] = (descram_state[0] << 1) | rx_data_bit;

} /* end if */

/* the descrambler state remains unchanged if it is not reset and the data is not descrambled */

return rx_unscram_data_bit;

} /* end serial_descrambler */

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

341

The following is an example C program that generates the scrambled 32-bit data for transmission. The
inputs are the 32-bit data to be scrambled, a control indication to reinitialize the residual value, and a
control indication to bypass the scrambler and hold the present state of the linear feedback shift register.

/* Parallel Scrambler Implementation for: */

/* 32-bit data path */

/* x**58 + x**39 + 1 polynomial */

unsigned long parallel_scrambler (unsigned long tx_data, int reset_state, int scrambler_bypass) {

static unsigned long scram_state[2]; /* scrambler state coded as two 32-bit values */

unsigned long tx_scram_data, x58to27, x39to8;

/*********************/

/* determine output data */

/*********************/

if (scrambler_bypass != 0) { /* implement bypass */

tx_scram_data = tx_data; /* input data driven directly to output */

} else { /* scramble data with current scrambler state */

/* isolate x**58 and x**39 terms for 32-bit data path width */

x58to27 = (scram_state[1] << 6) | (scram_state[0] >> 26);

x39to8 = (scram_state[1] << 25) | (scram_state[0] >> 7);

/* calculate scrambled data */

tx_scram_data = x58to27 ^ x39to8 ^ tx_data;

} /* end if */

/*******************************/

/* determine next state for scrambler */

/*******************************/

if (reset_state != 0) { /* implement reset */

scram_state[1] = 0x00294387;

scram_state[0] = 0x98327338;

 } else if (scrambler_bypass == 0) { /* advance scrambler state */

scram_state[1] = scram_state[0] & 0x03FFFFFF;

scram_state[0] = tx_scram_data;

} /* end if */

/* the scrambler state remains unchanged if it is not reset and the data is not scrambled */

return tx_scram_data;

} /* end parallel_scrambler */

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

342

The following is an example C program that descrambles received 32-bit data. The inputs are the 32-bit
data to be descrambled, a control indication to reinitialize the residual value, and a control indication to
bypass the descrambler and hold the present state of the linear feedback shift register.

/* Parallel Descrambler Implementation for: */

/* 32-bit data path */

/* x**58 + x**39 + 1 polynomial */

unsigned long parallel_descrambler (unsigned long rx_data, int reset_state, int descrambler_bypass) {

static unsigned long descram_state[2]; /* descrambler state coded as two 32-bit values */

unsigned long rx_unscram_data, x58to27, x39to8;

/*********************/

/* determine output data */

/*********************/

if (descrambler_bypass != 0) { /* implement bypass */

rx_unscram_data = rx_data; /* input data driven directly to output */

} else { /* scramble data with current scrambler state */

/* isolate x**58 and x**39 terms for 32-bit data path width */

x58to27 = (descram_state[1] << 6) | (descram_state[0] >> 26);

x39to8 = (descram_state[1] << 25) | (descram_state[0] >> 7);

/* calculate unscrambled data */

rx_unscram_data = x58to27 ^ x39to8 ^ rx_data;

} /* end if */

/*********************************/

/* determine next state for descrambler */

/*********************************/

if (reset_state != 0) { /* implement reset */

descram_state[1] = 0x00294387;

descram_state[0] = 0x98327338;

 } else if (descrambler_bypass == 0) { /* advance descrambler state */

descram_state[1] = descram_state[0] & 0x03FFFFFF;

descram_state[0] = rx_data;

} /* end if */

/* the descrambler state remains unchanged if it is not reset and the data is not descrambled */

return rx_unscram_data;

} /* end parallel_descrambler */

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

343

B.4 Scrambler and Descrambler Implementation with XORs

These equations generate the scrambled word bits (scrm31 down to scrm0) by XORing the input word
(d31 down to d0) with current state bits of the linear feedback shift (x1 to x58). These equations also
descramble received words by XORing the input scrambled word with current state bits of the linear
feedback shift register. The scrambler and descrambler differ in that the state of the linear feedback shift
register of the scrambler is updated by loading the scrambled output word into the low order bits and
shifting low order bits into high order bits, while the state of the linear feedback shift register of the
descrambler is updated by loading the received input word into the low order bits and shifting low order bits
into high order bits.

scrm31 = x58 x39 d31

scrm30 = x57 x38 d30

scrm29 = x56 x37 d29

scrm28 = x55 x36 d28

scrm27 = x54 x35 d27

scrm26 = x53 x34 d26

scrm25 = x52 x33 d25

scrm24 = x51 x32 d24

scrm23 = x50 x31 d23

scrm22 = x49 x30 d22

scrm21 = x48 x29 d21

scrm20 = x47 x28 d20

scrm19 = x46 x27 d19

scrm18 = x45 x26 d18

scrm17 = x44 x25 d17

scrm16 = x43 x24 d16

scrm15 = x42 x23 d15

scrm14 = x41 x22 d14

scrm13 = x40 x21 d13

scrm12 = x39 x20 d12

scrm11 = x38 x19 d11

scrm10 = x37 x18 d10

scrm9 = x36 x17 d9

scrm8 = x35 x16 d8

scrm7 = x34 x15 d7

scrm6 = x33 x14 d6

scrm5 = x32 x13 d5

scrm4 = x31 x12 d4

scrm3 = x30 x11 d3

scrm2 = x29 x10 d2

scrm1 = x28 x9 d1

scrm0 = x27 x8 d0

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

344

B.5 Scrambled Data Example

Table B.1 is an example of a scrambled frame. The linear feedback shift register of the scrambler is reset
to an initial state of 029438798327338h by the SOF delimiter.

Table B.1 - Scrambled Frame Example

Word Position Word Contents Scrambled Data

Starting delimiter <SOF> <SOF>

0h 060405EFh 036480EFh

1h 000404E8h 7C9E03E9h

2h 08290000h 0FF007D8h

3h 00000000h F59F1A4Ch

4h 8018FFFFh CDF237F6h

5h 00000000h FE5D775Ch

6h 00000000h 91714751h

7h 00000000h 2E7F35AAh

8h 00000002h FE0D2A22h

9h 12018300h D830F3EBh

Ah 20000000h E6FAE951h

Bh 00000000h DBF10F2Bh

Ch 00000000h 1D0DB668h

Dh 00000020h AA79D18Bh

Eh AA92695Ch 38AB00D5h

Ending delimiter <EOF> <EOF>

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

345

Annex C
(informative)

Data transfer protocols and examples

This annex provides Data transfer protocol examples.

C.1 Frame level protocol

C.1.1 Class 2 frame level protocol

The Class 2 frame level protocol employs:

a) Data frame;

b) ACK; and

c) R_RDY.

The Class 2 frame level protocol is illustrated in figure C.1.

1) The Originator initiates the Sequence with a Data frame embedded with SOFi2;

2) The Fx_Port responds with an R_RDY and forwards the Data frame to the destination;

3) The destination responds with an R_RDY, in addition to ACK;

4) The Fx_Port and the PN_Port respond each with R_RDY on receipt of ACK;

5) The Originator streams multiple Data frames and the Responder responds with ACK.

A) ACK returns some information contained in F_CTL of the Data frame to which it is responding
unaltered:

a) First_Sequence bit;

b) Last_Sequence bit;

c) End_Sequence bit; and

d) Sequence Initiative bit;

and

B) ACK toggles some information contained in F_CTL of the Data frame:

a) Exchange Context bit; and

b) Sequence Context bit.

F_CTL usage for the Sequence is described in table C.1;

6) For each of these frames received, each PN_Port or Fx_Port returns a R_RDY;

7) SOFn2 is used to indicate the Sequence in progress;

8) The Sequence Initiator indicates the end of Sequence by the End_Sequence bit in F_CTL.
However, the Sequence ends in the perspective of Sequence Recipient, only when all Data frames
are received or accounted for; and

9) The Sequence Recipient transmits EOFt only in the final ACK after all Data frames are received or

accounted for.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

346

Figure C.1 - Class 2 frame level protocol

N_Port Fabric N_Port

 ACK

R_RDY

R_RDY

SOFi2, Data frame

•
•
•

R_RDY

ACK

R_RDY

R_RDY

SOFn2, Data frame

R_RDY

End_Sequence

ACK, EOFt

R_RDY

R_RDY

SOFn2, Data frame

R_RDY

Originator, OX_ID=12
Initiator, SEQ_ID=5

Responder, RX_ID=44
Recipient, SEQ_ID=5

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

347

C.1.2 Class 3 Frame Level Protocol

The Class 3 frame level protocol employs:

a) Data frame; and

b) R_RDY.

The Class 3 frame level protocol is illustrated in figure C.2.

1) The Originator initiates the Sequence with a Data frame embedded with SOFi3;

2) The Fx_Port responds with an R_RDY and forwards the Data frame to the destination;

3) The destination responds with an R_RDY;

4) The Originator streams multiple Data frames. For each of these frames received, each PN_Port or
Fx_Port returns a R_RDY. F_CTL usage for the Sequence is described in table C.2;

5) SOFn3 is used to indicate the Sequence in progress; and

6) The end of Sequence is indicated to the Sequence Recipient by the End_Sequence bit in F_CTL
and EOFt.

Figure C.2 - Class 3 frame level protocol

N_Port Fabric N_Port

R_RDY

R_RDY

SOFi3, Data frame

•
•
•

R_RDY

R_RDY

SOFn3, Data frame

End_SequenceR_RDY

R_RDY

SOFn3, Data frame, EOFt

Originator, OX_ID=101
Initiator, SEQ_ID=33

Responder, RX_ID=477
Recipient, SEQ_ID=33

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

348

C.2 Sequence level protocol example

Sequence level protocol is illustrated with a three Sequence Exchange in figure C.3. The first Sequence is
a “read” request. The second Sequence transfers the “data”. The third Sequence transfers “ending status”
and ends the Exchange.

Table C.1 - F_CTL for Class 2 frame level protocols

Description
Exchange
Context

Sequence
Context

First
Sequence

of
Exchange

Last
Sequence

of
Exchange

End
Sequence

Sequence
transmit
initiative

F_CTL Bits 23 22 21 20 19 16

First Data frame 0 (ORG) 0 (SI) 1 (First) 0
(Sequence)

0 0 (NM)

ACK 1 (RSP) 1 (SR) 1 (First) 0
(Sequence)

0 0 (NM)

Intermediate Data
frame(s)

0 0 1 0 0 0 (NM)

ACK 1 1 1 0 0 0 (NM)

Last Data frame 0 0 1 0 1 0 (retain
Sequence
Initiative)

ACK 1 1 1 0 0 0 (NM)

Key - NM - Not Meaningful

Table C.2 - F_CTL for Class 3 frame level protocol

Description
Exchange
Context

Sequence
Context

First
Sequence

of
Exchange

Last
Sequence

of
Exchange

End
Sequence

Sequence
transmit
initiative

F_CTL Bits 23 22 21 20 19 16

First Data frame 0 (ORG) 0 (SI) 1 (First) 0
(Sequence)

0 0 (NM)

Intermediate Data
frame(s)

0 0 1 0 0 0 (NM)

Last Data frame 0 0 1 0 1 0 (retain
Sequence
Initiative)

Key - NM - Not Meaningful

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

349

Frames 1, 2, and 3 represent the first Sequence of an Exchange. In this example a Command Request for
a Read operation is sent as a request Sequence. Note that Sequence Initiative is transferred to the
Sequence Recipient.

Frames 4, 5, and 6 represent the first, intermediate and last frames of the data transferred in response to
the Read request. Note that the Sequence Initiative is retained in order to start a Sequence with ending
status.

Frames 7, 8, and 9 represent the ending status for the preceding data transfer and end the Exchange.
Depending on the FC-4 Protocol, the Responder may not be allowed to end the Exchange, but transfer the
Sequence Initiative to the Originator to complete the Exchange.

F_CTL usage

Use of F_CTL bits for these example Sequences are shown in table C.3.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

350

Figure C.3 - Sequence level protocol example

N_Port Fabric N_Port

Originator, OX_ID=25
Initiator, SEQ_ID=2

Responder, RX_ID=36
Recipient, SEQ_ID=2

SOFix, ,Data frame

•
•
•

SOFnx, Data frame

End_Sequence, SI

SOFnx, Data frame(, EOFt)

Responder, RX_ID=36
Initiator, SEQ_ID=4

Originator, OX_ID=25
Recipient, SEQ_ID=4

SOFix, Data frame

•
•
•

SOFnx, Data frame

End_Sequence

SOFnx, Data frame(, EOFt)

Responder, RX_ID=36
Initiator, SEQ_ID=5

Originator, OX_ID=25
Recipient, SEQ_ID=5

SOFix, Data frame

•
•
•

SOFnx, Data frame

End_Sequence

SOFnx, Data frame(, EOFt)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

351

Table C.3 - Sequence level protocol example

Description
Exchange
Context

Sequence
Context

First
Sequence

of
Exchange

Last
Sequence

of
Exchange

End
Sequence

Sequence
transmit
initiative

F_CTL Bits 23 22 21 20 19 18

First Data frame (SOFix)

of the Exchange and of
the first Sequence (a
Read Request
Sequence)

0 0 1 0 0 0 (NM)

Intermediate Data frame
of first sequence

0 0 1 0 0 1

Last Data frame of first
Sequence

0 0 1 0 1 1

First Data frame (SOFix)

of intermediate
Sequence (Reply
Sequence)

1 0 0 0 0 0 (NM)

Intermediate Data frame
of intermediate
Sequence

1 0 0 0 0 0 (NM)

Last Data frame of
intermediate Sequence

1 0 0 0 1 0

First Data frame (SOFix)

of the last Sequence
(Reply Status Sequence)

1 0 0 1 0 0 (NM)

Intermediate Data frame
of the last Sequence

1 0 0 1 0 0 (NM)

Last Data frame of the
last Sequence and of the
Exchange

1 0 0 1 1 0

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

352

C.3 Class 2 frame level protocol example

N_Port Login is used to illustrate Class 2 frame flow as shown in figure C.4.

Figure C.4 - Class 2 frame level protocol - Login example

N_Port Fabric N_Port

Originator, OX_ID=4
Initiator, SEQ_ID=2

Responder, RX_ID=5
Recipient, SEQ_ID=2

End_Sequence, SI

ACK, EOFt

R_RDY

R_RDY

SOFi2, PLOGI frame

R_RDY

Responder, RX_ID=5
Initiator, SEQ_ID=1

Originator, OX_ID=4
Recipient, SEQ_ID=1

End_Sequence

ACK, EOFt

R_RDY

R_RDY

SOFi2, LS_ACC frame

R_RDY

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

353

C.4 Class 3 frame level protocol example

N_Port Login is used to illustrate Class 3 frame flow as shown in figure C.5.

Figure C.5 - Class 3 frame level protocol - Login example

N_Port Fabric N_Port

Originator, OX_ID=4
Initiator, SEQ_ID=2

Responder, RX_ID=5
Recipient, SEQ_ID=2

End_Sequence, SI
R_RDY

R_RDY

SOFi3, PLOGI frame

Responder, RX_ID=5
Initiator, SEQ_ID=1

Originator, OX_ID=4
Recipient, SEQ_ID=1

End_Sequence
R_RDY

R_RDY

SOFi3, LS_ACC frame, EOFt

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

354

Annex D
(informative)

Out of order characteristics

D.1 Introduction

This annex describes some of the implications of out of order transfer. There are two cases considered:

a) out of order transfer of Data frames due to the inability of a Fabric to maintain order; and

b) out of order transmission of ACKs by an Nx_Port due to its buffer availability algorithms.

D.2 Out of order Data frame delivery

Based on Fx_Port service parameters, the delivery of frames during Class 2 service may occur as:

a) “Misordered Delivery”. The destination Nx_Port receives frames in an order different than a source
Nx_Port sent them (i.e., the Fabric does not maintain the ordering of the frames); and

b) “Ordered Delivery”. The destination Nx_Port receives frames in the same order as the source
Nx_Port sent them (i.e., the Fabric maintains the ordering of the frames).

The following is a discussion of the implications of misordered delivery of frames and class 2 Sequence
recovery.

Misordered frame delivery may occur whenever there are multiple routes, within the Fabric, between two
communicating Nx_Ports. When a Sequence is initiated, the individual frames of the Sequence are
independently routed by the Fabric and, therefore, may take different routes through the Fabric, with some
routes being longer or shorter than others. This may cause the misordered delivery of frames to the
destination Nx_Port. Also, since each frame is independently routed, it is very difficult for the Fabric to
purge, or flush from the Fabric, all the frames for a Sequence.

Because of the above, this standard has provided the following functions to aid in the detection and
recovery of Sequences abnormally terminated due to time-out, e.g., because a frame was lost:

a) the R_A_TOV timeout to discard in transit frames (see 22.3.5); and

b) establishment of a Recovery_Qualifier for the duration of the R_A_TOV time (see 16.3.2.2.4).

These functions have several implications:

a) when an Nx_Port is initialized, it may not have knowledge of Sequences initiated prior to
initialization, (e.g., an Nx_Port may be powered off after sending a Sequence, and then powered
back on). Some (or all) frames of this prior Sequence may still be traversing the Fabric after the
Nx_Port has been initialized. After initialization, an Nx_Port waits R_A_TOV time before it initiates
any Sequences so that any duplicate frames in the Fabric are discarded (see 22.3.5);

b) the specification for Recovery_Qualifiers (see 16.3.2.2.4) implies that

A) an Nx_Port maintains a list of Recovery_Qualifiers;

B) entries are added to this list when a Sequence is abnormally terminated;

C) entries are deleted from this list when R_A_TOV has expired for the entry; and

D) the list is referenced prior to sequence initiation to ensure that a Data frame that falls within the
range of a Recovery_Qualifier is not transmitted;

and

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

355

c) if a subset of the entire Sequence_Qualifier (e.g., X_ID) is used to route and store incoming
frames, a frame falling within the range of a Recovery_Qualifier may not be detected until after the
frame is placed in a receive buffer and the Frame_Header is validated. This has implications on
Credit and buffer management.

The Sequence to which this frame belongs was abnormally terminated and all the Credit for the
Sequence was recovered. As a result, this frame is an “unexpected” frame that is not accounted
for by the current Credit management within the Nx_Port. Therefore, it may be occupying a buffer
that a source Nx_Port believes is available. This may cause another frame to receive a P_BSY,
even though the sender of the busied frame obeyed the Credit rules.

D.3 Out of order ACK transmission

The transmission of ACK frames in Class 2 service may occur as:

a) misordered transmission. In this case, the Sequence Recipient is not acknowledging Data frames
in the SEQ_CNT order, (i.e., the corresponding ACK frames are not being sent in SEQ_CNT
order); and

b) ordered transmission. In this case, the Sequence Recipient is acknowledging Data frames in the
SEQ_CNT order, (i.e., the corresponding ACK frames are being sent in SEQ_CNT order).

The implications of misordered transmission of ACKs and ordered transmission of ACKs are:

a) with misordered transmission, the Credit for a lost ACK is not recovered until after a Sequence
time-out is detected, (i.e., the Credit is lost until the E_D_TOV time has expired); and

b) with ordered transmission, the reception of an ACK recovers the Credit for all Data frames with
that SEQ_CNT or lower, regardless of whether previous ACKs were received. This is true
regardless of whether the Fabric supports misordered delivery or ordered delivery.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

356

Annex E
 (informative)

Link Error Status Block

E.1 Introduction

In this annex, guidelines are provided to manage the Link Error Status Block (see 22.4.8).

E.2 Link Failure Counters

Four types of Link Failures are recorded in individual counters in LESB. The Link Failure Counters are:

a) Link Failure Count (Word 0) counts miscellaneous link errors;

b) Loss-of-Synchronization Count (Word 1) counts confirmed and persistent synchronization losses;

c) Loss-of-Signal Count (Word 2); and

d) Primitive Sequence Protocol Error Count (Word 3).

The conditions under which individual counters increment are summarized in table E.1. For specific state
changes, related nomenclature, considerations and conditions, see table 19.

E.3 Invalid Transmission Word

The Invalid Transmission Word Counter (Word 4) increments, once for every Invalid Transmission Word
received (see 6.3.4.2), and once for every Invalid 64B/66B Transmission Word (see 6.4.3), except:

a) no Transmission Word errors are counted if the receiver is in the Loss-of-Synchronization state
(see 6.2); and

b) no Transmission Word errors are counted if the Port is in the OL2 State or the OL3 State (see 7.7).

E.4 Invalid CRC Count

The Invalid CRC Count (Word 5) increments, once for every received frame that meets one of the following
conditions:

a) the Port is in the Active State and the received frame's CRC is in error and the frame is either
missing an EOF delimiter or the EOF delimiter is an EOFn or EOFt (see 5.2.7.2 and 5.3.7.1); or

b) the Port is in the Active State and the received frame's CRC is in error (see 11.4.5).

NOTE 62 - The frames received with EOFni or EOFa may be excluded from consideration.

E.5 Link Failure Counter Triggers

Table E.1 shows the specific Link Failure Counters that are incremented when an input event occurs. A “-”
in a cell indicates that no link error count is incremented. Any other entry in a cell indicates that if the
specific input event occurs in that state, the indicated link error counter shall be incremented.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

357

Table E.1 - Link Failure Counters and management

State ACTIVE LINK RECOVERY LINK FAILURE OFFLINE

Substate

(AC) (LR1) (LR2) (LR3) (LF1) (LF2) (OL1) (OL2) (OL3)

IDLE
RECV

LR
XMIT

LR
RECV

LRR
RECV

NOS
RECV

NOS
XMIT

OLS
XMIT

OLS
RECV

WAIT
OLS

Input Event

L >> LR - - - - - - - - note a

PER

L >> LRR note a

PER
- - - - - - - note a

PER

L >> IDLES - - - - - - - - -

L >> OLS - - - - - - - - -

L >> NOS
LF LF LF LF

- note b

-
note c

LF LF
note b

-

Loss-of-
Signal

LOSIG LOSIG LOSIG LOSIG LOSIG - - - -

Loss of Sync >
Limit LOSYN

note d

LOSYN
note d

LOSYN
note d

LOSYN
note d

LOSYN
- - - -

Event time-out
(R_T_TOV)

- LF LF LF LF - - - -

LEGEND:
L >> means receiving from the Link
“-” means no change to any counter
LF: means increment Link Failure Counter (Word 0)
LOSYN: means increment Loss-of-Synchronization Counter (Word 1)
LOSIG: means increment Loss-of-Signal Counter (Word 2)
PER: means increment Primitive Sequence Protocol Error Counter (Word 3)

Notes:

a) Abnormal Link_Response from the attached Port

b) A normal event if the Port is in loopback, or if the attached Port is in the OL3 State.

c) Only increments if the condition occurs while performing the Online-to-Offline protocol.

d) This condition does not occur, since the Event Time-out occurs first

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

358

Annex F
(informative)

Clock Synchronization

F.1 Introduction

The goal of the Clock Synchronization Service described in clause 24 is to provide each participating node
with a continuously-running counter that, at all times, contains exactly the same value that is found in the
counter in every other participating node. Clause 24 provides the message definitions and formats required
to accomplish this goal in an interoperable way. But the extent to which the value in a given node's counter
actually matches the value in any other node's counter is dependent on the techniques used to implement
the elements described in clause 24.

For systems with low accuracy requirements, the CSU ELS frames could be handled in software with no
special hardware/firmware support. The client software could use any existing timer resources to maintain
its local version of the counter. For systems that require the higher levels of accuracy, dedicated hardware
assistance would be needed.

It is the purpose of this annex to present several possible hardware implementations and to discuss the
sources of error in each of them.

Clause 24 defines two separate mechanisms for transfer of the synchronizing information -- the ELS
method and the Primitive Signal method. This annex addresses only the ELS method.

F.2 Discussion

F.2.1 Introduction

The approach used is to first present a basic model of an NL_Port, in order to give a context for the rest of
the discussion. Then basic hardware-based implementations for each topology is presented along with a
discussion of the various sources of error and approaches for reducing these errors. The topologies
discussed include point-to-point (see F.2.4), Fabric (see F.2.5), and loop (see F.2.6).

F.2.2 A Model of an NL_Port

Figure F.1 presents a model of a generic NL_Port that is used as the basis for the discussions in this
annex. The elasticity buffer in the receive path and the multiplexer in the transmit path exist to support the
operation of the port in an Arbitrated Loop topology. The remainder of the components support all
topologies. For purposes of this annex, the interaction of the host with the port logic occurs entirely through
data structures in the port's Memory that the host accesses via the Host Bus.

As Transmission Words are received, they pass through a Deserializer/Decoder (Des/Decode), and are
checked for validity and for the various types of frame delimiters (CRC/Valid). Valid frames destined for the
local node are pushed onto the Receive FIFO. From the Receive FIFO, frames are stored as data
structures in the Memory. The host is informed of the presence of incoming frames via an unspecified
mechanism, and the data is then transferred to the host via the host bus.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

359

For outgoing data, the host and the port cooperate (in an unspecified manner) to cause the outgoing
frames to be placed into the port's Memory. From there, the frames are transferred into the Trans FIFO.
The frames are sent through the CRC logic, the multiplexer, and the encoder/serializer logic and onto the
link. The CRC logic calculates the CRC value that is placed in the outgoing frame at the appropriate
location.

For Arbitrated Loop operation, a port that is in neither the OPEN nor the OPENED state, incoming
Transmission Words are sent directly from the Elasticity buffer to the multiplexer and out onto the link via
the encoder/serializer logic.

F.2.3 Hardware-Assisted Clock Synchronization

Figure F.2 shows the location of the Clock Sync circuitry that supports the Server. Figure F.3 shows the
location of the corresponding circuitry that supports the Client.

For the Server, the Host Bus connection allows the loading of an initial value into the master clock. The
Server periodically sends the master clock value to the clients in a CSU ELS frame. A multiplexer at the
input to the CRC logic allows the CSU frame to bypass the Transmit FIFO, thereby eliminating
unnecessary delays caused by other traffic.

For the Client (see figure F.3), the Clock Sync circuitry receives the CSU ELS frame prior to the Receive
FIFO, thereby eliminating unnecessary delays caused by other traffic. The Host Bus connection allows
application software to access the clock sync value. Note that for highest accuracy in applying time tags,
the clock sync value should be accessed directly by hardware (i.e., without software intervention).

Figure F.1 - Generic NL_Port

Memory

H
os

t
B

u
s

Encode /
Serialize

Loop
Elasticity

Transmit
FIFOCRCMux

Receive
FIFO

CRC /
Valid

Deserial /
Decode

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

360

Figures F.4 and F.5 show an implementation of the Clock Sync logic for the Server and the Client,
respectively. These represent a very basic implementation.

F.2.4 A Point-to-Point System

F.2.4.1 Introduction

Although a simple point-to-point topology may not be of great practical interest, it is discussed first
because it simplifies the discussion of the errors involved. All of the errors discussed in this section are
applicable to all topologies. For reference in the following discussions, figure F.6 shows the Clock
Synchronization model from 24.3 with the Fabric removed.

Figure F.2 - Server NL_Port Clock Sync Context

Encode /
Serialize

Loop
Elasticity Memory

Transmit
FIFOCRMux

Receive
FIFO

CRC /
Valid

Deserial /
Decode

H
o

st
 B

u
s

Mux

Clock
Sync

Circuitry

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

361

Figure F.3 - Client NL_Port Clock Sync Context

Figure F.4 - Server Clock Sync Implementation (Basic Approach)

Loop
Elasticity Memory

Receive
FIFO

CRC /
Valid

Deserial /
Decode

H
os

t B
us

Clock
Sync

Circuitry

Encode /
Serialize

Transmit
FIFOCRCMux

Server
Oscillator Counter

CSU ELS
(to CRC Mux)

Initialized from Host Bus

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

362

F.2.4.2 Discussion of Errors

F.2.4.2.1 Introduction

Clock synchronization errors usually consist of both a deterministic and non-deterministic components. If
extremely accurate clock information is needed, a system designer may measure or calculate the
deterministic components of the errors and adjust the observed clock value to account for them. But the
non-deterministic component is, by its nature, not subject to adjustment in the same way by the system
designer.

Figure F.5 - Client Clock Sync Implementation (Basic Approach)

Client
Oscillator Counter

to Host Bus

CSU ELS
(from CRC/Valid)

Figure F.6 - ELS Clock Sync Model - point-to-point

Client

n-
bit

Coun-

Clock

Load

Clock
Synchronization

Server
(WKA FF FF F6h)

n-
bit

Master
Clock

Clock

Load

CSR
ELS

CSU
ELS

REQUEST:

UPDATE:

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

363

F.2.4.2.2 Client Oscillator Frequency Error

Even though the counters in the server and the client nominally count at the same frequency, the
oscillators that drive them are independently subject to the tolerances specified in the Fibre Channel
standard. So even if they were to contain the exact same value at some point in time (e.g., just after receipt
of the CSU ELS at the client), the values would slowly drift apart as time passes, until the next CSU ELS
arrives. Figure F.7 illustrates this effect. The client oscillator is assumed to be of slightly higher frequency
than that of the server. Near the center of the figure, it is assumed that another CSU ELS is received at the
client. This results in the value of the client clock being corrected so that it again matches the server clock.

The correction of the client's clock when it receives the CSU ELS limits the maximum error as seen by the
user of the client's clock. However, it may also result in that user seeing time appear to run backwards.
Reading the clock just prior to receipt of the CSU ELS may return a value that is larger than the value
returned if the clock is read just after receipt of the CSU ELS. This non-monotonic behavior may cause
difficulties with some algorithms that are intended to interpret these values.

The error due to oscillator frequency differences is essentially deterministic. A given client may determine
the degree to which its oscillator frequency exceeds (or falls behind) that of the server by observing the
time between receipt of CSU ELS frames, and the degree to which it's clock value exceeds (or lags) the
value in the received CSU ELS. This error may then be largely compensated for, either by hardware or by
software algorithms.

Figure F.7 - Client Clock Drift

Client

CSU ELS
received

Server

Time

C
ou

nt
er

 V
a

lu
e

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

364

Analysis:

The parameters used in this analysis are given in table F.1

The maximum error occurs just prior to the receipt of a CSU ELS frame. Specifically,

freq_error = T_CSU • [f_client / f_server] - T_CSU

The worst mismatch occurs when one oscillator is at the fast end of the allowable range, and the other is at
the slow end. So assume that:

f_client = f_nom • (1 + f_tol), and

f_server = f_nom • (1 - f_tol)

Then, since f_tol = 100 ppm,

freq_error ~ T_CSU • (2 • 10 -4)

An example is given in table F.2.

F.2.4.2.3 Link Propagation Delay Error

In the preceding discussion, it was assumed that the CSU ELS that was sent from the server was received
instantaneously at the client. In general this is not exactly true, since the frame needs to traverse the link
that connects the two nodes. Since the value in the CSU ELS is not updated as it travels down the link, the
value received by the client represents the value of the server's clock at some time in the past. For a given
system, with fixed cable lengths, this error, too, is deterministic. For many systems of interest, the error is
negligible. If it is not, its magnitude may be determined by the system designer and be compensated for.
This assumes, of course, that the cable lengths are known and fixed.

Table F.1 - Parameters used in analysis

Symbol Definition

T_CSU The period of the CSU ELS frame (i.e., the time between successive CSU frames).

f_server The frequency of the oscillator in the Clock Synchronization server.

f_client The frequency of the oscillator in the Clock Synchronization client.

f_tol The allowed tolerance of the Fibre Channel transmission frequency in either direction
from the nominal frequency.

f_nom The nominal frequency of Fibre Channel transmission.

freq_error The maximum client clock error due to mismatch of client vs. server oscillator
frequencies.

Table F.2 - Example of analysis results

T_CSU freq_error

100 m 20 s

1 s 200 s

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

365

Analysis:

The parameters used in this analysis are given in table F.3

The magnitude of this error depends on the properties of the specific cable involved. Nominal estimates of
delay are:

Electrical cables: 5.5 ns / meter

Optical cables: 5 ns / meter

Example:

For a 33-meter electrical cable:

link_delay_error ~ 33 m • 5.5 ns / m, or

link_delay_error ~ 182 ns

For a 10-Km optical cable,

link_delay_error ~ 10 Km • 5 ns / m, or

link_delay_error ~ 50 s

F.2.4.2.4 Unload Error

Another assumption that was made in the preceding discussions was that the value in the CSU ELS
exactly represented the content of the server's counter at the time the most significant bit of that value was
placed on the wire (see 24.3.4.4). If a given implementation of a server fails to achieve this, the result may
be observed by the client as an error. Depending on the design, this error may contain both deterministic
and non-deterministic errors. Non-deterministic errors may result, if the design is such that the CSU ELS
frame is placed into a FIFO behind other frames. Since it is not known ahead of time what, if any, other
frames are ahead of the CSU ELS in the FIFO, the errors may appear to be non-deterministic.
Deterministic errors could result from a failure of the design to account for transmission delays from the
time the value is taken from the counter until it actually appears on the wire.

It is possible to deal with the deterministic portion of unload error by simply defining it to not exist in a
particular system. Note that the server's deterministic unload error affects all client clocks by the same
amount. If all references to time in the system are made through client clocks (i.e., if no reference is made
directly to the clock in the server), then one could simply define the objective standard to be the server's
counter value plus the server's unload error as defined above. By this definition, there is no remaining
deterministic unload error at the system level. One should still be conscious of the non-deterministic
portion of the error that could be much larger than the deterministic portion.

Table F.3 - Parameters used in analysis

Symbol Definition

link_delay_error The error caused by the fact that the Clock Count value in the CSU ELS frame does
not update as the frame travels down the cable from the transmitter to the receiver.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

366

Analysis:

The parameters used in this analysis are given in table F.4.

There is very little useful analysis that may be done regarding the unload error outside the context of a
specific design. However, that the non-deterministic component of the error has the potential to be very
large if it is not addressed in the design of the server's logic. The CSU ELS frame might be queued up in
the server's Transmit FIFO behind some number of maximum-length frames. If the other end of the link
has no buffer space to receive frames (BB_Credit_CNT = BB_Credit), then additional delays may occur
beyond that needed to transmit the frames ahead of the CSU ELS.

Example:

Without justification, assume that unload_error_D is equivalent to the transmission time of 5 full-speed
Fibre Channel Transmission Words. Then

unload_error_D = 5 • 37.65 ns = 188 ns

Regarding the non-deterministic portion of the unload error, assume that the CSU frame does not bypass
the Transmit FIFO. Also assume that the FIFO may hold up to four full-size Fibre Channel frames; and that
the design of the server does not ensure the FIFO is empty when the CSU ELS frame is pushed onto the
FIFO. Assume, however, that BB_Credit_CNT < BB_Credit so that no additional wait occurs beyond the
time to transmit the frames in the FIFO. Then since

t_full_frame = ((15 + (2 112 / 4)) Transmission Words) • (37.65 ns / Transmission Word), or

t_full_frame ~ 20 s

Then

unload_error_ND = t_full_frame • 3, or

unload_error_ND ~ 60 s

Table F.4 - Parameters used in analysis

Symbol Definition

t_full_frame Time to transmit a maximum-size Fibre Channel frame at full-speed Fibre
Channel rate, including SOF, EOF, CRC, inter-frame gap, and Payload.

unload_error_D The deterministic portion of the error caused by delays in the Clock
Synchronization server logic between the time the counter value is read and the
time the most significant bit of the clock count value in the CSU ELS frame is
placed on the link.

unload_error_ND The non-deterministic portion of the error caused by delays in the Clock
Synchronization server logic between the time the counter value is read and the
time the most significant bit of the clock count value in the CSU ELS frame is
placed on the link.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

367

F.2.4.2.5 Load Error

The link propagation delay error was discussed previously. That error dealt with the fact that the CSU ELS
clock value was not updated as the ELS made its way from the server's transmitter to the client's receiver.
But the client's clock synchronization counter is separated from its receiver by some amount of logic, the
details of which depend on the specific design of the client. The time from the arrival of the CSU ELS at the
client's receiver until the client's counter is updated is perceived by the client as an error. Similarly to the
unload error discussed above, the load error may contain both deterministic and non-deterministic
components.

Analysis:

The parameters used in this analysis are given in table F.5.

There is little useful analysis that may be done regarding the unload error outside the context of a specific
design. Figure F.3 indicated that the CSU ELS frame went directly from the CRC/Validation logic into the
client's clock synchronization circuitry. If instead, the frame may languish in the Receive FIFO, the
non-deterministic portion of load error could become fairly large.

Example:

Without justification, assume the deterministic portion of load error is on the order of the time to transmit 6
full-speed Fibre Channel Transmission Words. Then

load_error_D = 6 • 37.65 ns ~ 226 ns

Regarding the non-deterministic portion of the load error, assume that the CSU frame does not bypass the
Receive FIFO. Also assume that the FIFO may hold up to four full-size Fibre Channel frames. Arbitrarily
assume that the design of the client logic is such that it may empty the FIFO exactly as fast as the link fills
it. Then by assumption,

t_full_frame ~ 20 s

Then

load_error_ND = t_full_frame • 3, or

load_error_ND ~ 60 s

Table F.5 - Parameters used in analysis

Symbol Definition

t_full_frame Time to DMA a full Fibre Channel frame into host memory.

load_error_D The deterministic portion of the error caused by delays in the Clock
Synchronization client logic between the time the most significant bit of the
clock count value in the CSU ELS frame is received from the link and the time
that value is actually loaded into the client's counter.

load_error_ND The non-deterministic portion of the error caused by delays in the Clock
Synchronization client logic between the time the most significant bit of the
clock count value in the CSU ELS frame is received from the link and the time
that value is actually loaded into the client's counter.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

368

F.2.4.2.6 R/T Clock Domain Error

As defined above, the R/T clock domain error is actually a component of the load error. It is dealt with
separately because of its unique nature. It is a non-deterministic error that arises from the assumed fact
that not all of the logic in the client's port operates from the same clock oscillator. It is assumed that most of
the logic is operated from the same oscillator that drives the transmitter. But there is a small amount that is
operated from the clock recovered from the received serial bit stream. Specifically, the deserialize/decode
logic and the front end of the elasticity buffer of Figure F.3 are assumed to operate from the recovered
clock. Passing information from one clock domain to another requires re-synchronizing to the receiving
domain's clock. Standard methods for accomplishing this generally result in a delay of 1-2 cycles of the
receiving domain's clock. This difference (i.e., zero to one cycle of the receiving domain's clock) is
non-deterministic. The R/T Clock Domain Error may be treated as a deterministic delay of one-and-a-half
clock cycles, and a non-deterministic value of one-half of a clock cycle.

Analysis:

The parameters used in this analysis are given in table F.6.

Using the assumptions stated in the preceding discussion,

clk_domain_error_D = 1.5 • logic_clk_period, and

clk_domain_error_ND = 0.5 • logic_clk_period

Example:

Assume that the logic_clk_period is the same as the time to transmit one Fibre Channel Transmission
Word. i.e.,

Assume logic_clk_period = (40 bits / (1.0625 • 109 bits/sec)) = 37.56 ns. Then

clk_domain_error_D = 56 ns, and

clk_domain_error_ND = 19 ns

Table F.6 - Parameters used in analysis

Symbol Definition

logic_clk_period The period of the clock that drives the logic in
which the client's clock synchronization counter
resides.

clk_domain_error_D The deterministic portion of the client clock error
due to crossing between the receiver clock
domain and the clock domain in which the
client's clock synchronization counter resides.

clk_domain_error_ND The non-deterministic portion of the client clock
error due to crossing between the receiver clock
domain and the clock domain in which the
client's clock synchronization counter resides.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

369

F.2.4.2.7 Server Oscillator Error

An assumption in the preceding discussions is that the server's oscillator frequency is correct by definition.
Recall that the stated goal of the clock synchronization service is to faithfully reproduce at each client
node, an exact copy of the server's counter that is counting cycles of the server's oscillator. If the goal is,
instead, to provide each client with a value that represents some other, independent clock value, then the
extent to which the server's oscillator fails to match the update rate of that other clock is seen as another
error. A discussion of this error is outside the scope of this annex.

F.2.4.3 Techniques for Reducing Deterministic Errors

F.2.4.3.1 A Fix for Differences in Oscillator Frequencies

Shown in figure F.8 is a model of logic that could be used in place of figure F.5 to correct for errors due to
the difference in the frequency of the client's oscillator as compared to that of the server. This figure is
intended as a model only, not as a specific implementation (e.g., multipliers and dividers may take up a
considerable amount of logic, and may be replaced by an appropriate series of adds; or by some
techniques such as skipping counts (if the client's oscillator is too fast), or inserting counts (if the client's
oscillator is too slow)).

In the figure, it is assumed that the counter is simply set to zero upon receipt of the CSU ELS frame, rather
than being loaded with the value in the CSU ELS. At that same time, the value from the CSU ELS frame is
captured in the ELS_valuen register, the previous value from the ELS_valuen register is captured in the
ELS_valuen-1 register, and the value in the counter just prior to its being reset is captured in the
ELS_arrivedn-1 register. These values are then used as shown in the figure to calculate the client's local
clock value.

Figure F.9 shows a minimal set of hardware assists needed to implement the model of figure F.8. Upon the
receipt of the CSU ELS, host software would read the ELS_valuen and ELS_arrivedn-1 registers. Since the
ELS_valuen-1 register is nothing more than the old value of the ELS_valuen register, host software would
maintain this value internally. The calculation of the Adjustmentn factor and the corrected valued used by
client would be calculated by host software using the algorithms indicated in figure F.8.

The Raw Time Tag tuple from the ELS_valuen register is shown in the figure as being available directly,
and not going through the host bus interface. This is to emphasize the problem in allowing software delays
to corrupt the attachment of the time tag value to data sets. The implication of the figure is that the Raw
Time Tag value would be available directly to some hardware that could attach the value directly to the
data set with minimal delay. A simple addition of the counter value to the ELS_valuen value would result in
an unadjusted, non-monotonic time value as shown in figure F.7. But for more accurate results, host
software could apply the adjustment factor from figure F.8.

Moving the calculation of the adjustment factor to software has additional benefits. The model of figure F.8
implicitly assumes that the only error involved is that due to differences in the oscillator frequencies of the
server and its clients. In a real implementation, of course, all of the sources of error contributes to the total
error. The host software algorithms may apply filtering algorithms to the data in addition to simply
calculating the adjustment factor. This results in better estimates of the true value of the clock.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

370

Figure F.8 - Client Clock Sync Logic Model (Rate Adjusted)

Adjustment =
(ELS_Valuen - ELS_Valuen-1) / ELS_Arrivedn-1

CounterELS_Arrivedn-1ELS_Valuen-1ELS_Valuen

Adjusted Time =
ELS_Valuen + (Adjustment • Counter)

CSU ELS
Clock Count

FC Link

Reset

Clock Value used by Client

CSU ELS arrival is gating event

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

371

F.2.4.3.2 A Fix for Link Propagation Delay Error

Simply adding it to the value received in the CSU ELS frame may compensate for the deterministic portion
of the link propagation delay error (see figure F.10).

F.2.4.3.3 A Fix for Load Error

The fix for link propagation delay error may also be used to correct the deterministic portion of the load
error by simply replacing the link propagation delay error in figure F.10 by the load error. Of course, both
errors may be corrected simultaneously by simply adding them together before applying them to the adder.

Figure F.9 - Rate Adjustment Hardware Assists for Client Clock Sync

Counter ELS_Arrivedn-1ELS_Valuen

CSU ELS
Clock Count

FC Link

Reset

CSU ELS arrival is gating event

Host Bus

Raw time Tag

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

372

F.2.4.3.4 A Fix for Unload Error

F.2.5.2.3 indicated that it was possible under some conditions to define the deterministic portion of the
unload error into non-existence. If this is not possible or desirable for some system, another approach for
correcting it is shown in figure F.11. If this fix is combined with that of F.2.4.3.2 (i.e., the fix for link
propagation delay error), the two adders are in series. While it would be possible to combine the two
adders by combining the Load Error of the client with the Unload Error of the server, this is not
recommended. Doing so would violate the concept of information hiding and would also violate at least the
spirit of the standard, since the standard requires that the value in the CSU ELS correctly represent the
time in the server's clock as the CSU ELS exits the server port.

Figure F.10 - Client Clock Sync Implementation (Link Delay Fix)

Client
Oscillator Counter

to Host Bus

Link
Propagation
 Delay Error

Adjusted Counter =
CSU ELS Clock Count +

Link Propagation Delay Error

CSU ELS

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

373

F.2.4.4 Dealing With Non-Deterministic Error

On the server side, the fix for the non-deterministic component of unload error is to eliminate as many
sources of non-deterministic delay as possible. Some design elements to consider include the following:

a) transmit FIFO control. Assuming that the CSU ELS frame is entered into the Transmit FIFO of
Figure F.2, ensure that the FIFO is empty at the time the Clock Count value is pushed onto the
FIFO; and

b) BB_Credit. Before the CSU ELS frame is entered into the Transmit FIFO, ensure that
BB_Credit_CNT is less than BB_Credit. This ensures that the frame may be transmitted onto the
link without delay.

On the client side, a design element to consider is special CSU frame handling. The CSU ELS frame has a
unique R_CTL Information Category value. This may be of use in quickly recognizing the incoming CSU
frame so that it be given special handling (e.g., bypassing the normal Receive FIFO).

On either the server or the client side, a design element to consider is priority. One could use high priority
for minimizing delays in processing the CSU ELS frame.

F.2.4.5 Dealing With Non-Monotonicity

As discussed in F.2.4.2, if the client oscillator frequency error is not corrected, the client's counter may be
set to an earlier time value when the CSU ELS is received. If the proposed fix for this error source is not
implemented, it may still be desirable to have a monotonically increasing client clock value in order to avoid
difficulties with some algorithms that use that value. If the client's oscillator is slower than that of the server,
non-monotonicity does not occur -- the value of the client's counter jumps when the CSU ELS is received,
but the jump is in the positive direction. So the problem only occurs when the client's oscillator is faster
than that of the server. In this case, when the CSU ELS is received, rather than simply loading the CSU

Figure F.11 - Server Clock Sync Implementation (Unload Error Fix)

Server
Oscillator Counter

Unload
Error

Initialized
from Host Bus

CSU ELS Clock Count =
Counter +

Unload Error

CSU ELS

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

374

ELS value into the counter as was done in figure F.5 and continuing to count from there, one could stop the
counter for a number of clock cycles. The number of cycles to stop could be calculated as the difference
between the client counter value at the time the CSU ELS is received, and the value in the CSU ELS. The
result of this would be as shown figure F.12.

F.2.5 Fabric Considerations

F.2.5.1 Introduction

For reference, figure F.13 reproduces the model from 24.3 for the Clock Synchronization Service in a
Fabric-based system. Note that for purposes of this discussion, we have exercised the option for the
Fabric to have its own counter and update the value in the Payload of the outgoing CSU frame. This is the
basis for the discussions in the sub-clauses that follow. In order to illustrate more of the possible sources of
error, the discussions assume that the Clock Sync Server is implemented in a separate node outside of
any switch element in the Fabric. It should be noted, however, that implementing this server inside of the
Fabric might allow for eliminating some of these errors altogether. For simplicity, a single-switch Fabric is
assumed in all of the examples.

The insertion of the Fabric between the server and the client results in additional errors being introduced
into the client's counter. In terms of error analysis, the Fabric acts as a client of the server, and as a server
to the ultimate client.

Figure F.12 - Client Clock Drift (Monotonic)

Client

CSU ELS
received

Server

Time

C
ou

nt
er

 V
a

lu
e

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

375

F.2.5.2 Discussion of Errors

The general nature of these errors is the same as discussed in F.2.4.2. Here, we discuss only the
differences between the point-to-point case and the Fabric case.

F.2.5.2.1 Client Oscillator Frequency Error

In the Fabric case, there are at least two oscillators that may introduce errors -- the one in the ultimate
client, and the one in the Fabric, in its role as a client. For the best results, both errors should be
considered. The design of the specific Fabric in question should be analyzed to determine the exact
number of oscillators in the Fabric that need to be considered.

Fabric oscillator(s) only affect the end result for the period of time between the arrival of the CSU ELS at
the Fabric (from the original server), and the time the Fabric sends the CSU ELS to the ultimate client. In a
well-designed system, this time is very small, and the resulting error may be ignored.

Analysis:

The parameters used in this analysis are given in table F.7.

Figure F.13 - ELS Clock Sync Model – Fabric

Client

n-
bit

Coun-

Clock

Load

Clock
Synchronization

Server
(WKA FF FF F6h)

n-
bit

Master
Clock

Clock

Load

Fabric

n-
bit

Coun-

Clock

Load

CSR
ELS

CSR
ELS

CSU
ELS

CSU
ELS

REQUEST:

UPDATE:

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

376

The error accumulates during the time the CSU ELS frame is resident in the Fabric. This error is in addition
to the similar error that occurs at the client for the time between CSU ELS frames. Specifically,

freq_error_fabric = T_CSU_Fabric • [f_fabric / f_server] - T_CSU_Fabric

The worst mismatch occurs when one oscillator is at the fast end of the allowable range, and the other is at
the slow end. So assume that:

f_fabric = f_nom • (1 + f_tol), and

f_server = f_nom • (1 - f_tol)

Then, since f_tol = 100 ppm,

freq_error_fabric ~ T_CSU_Fabric • (2 • 10 -4)

Another way to look at this is that the worst case total error due to both Fabric and Client oscillator
frequency differences (as compared to the Server) is:

freq_error_total = freq_error + freq_error_fabric, or

freq_error_total = (T_CSU + T_CSU_Fabric) • (2 • 10-4)

An example is given in table F.8.

Note that even with these rather large values of T_CSU_Fabric this component is quite small compared to
T_CSU that was calculated in F.2.4.2.2 and may therefore be ignored.

Table F.7 - Parameters used in analysis

Symbol Definition

T_CSU_Fabric The time between receipt of a CSU ELS frame by the Fabric and the time it
transmits the CSU ELS frame to the ultimate client.

f_server The frequency of the oscillator in the Clock Synchronization server.

f_fabric The frequency of the oscillator in the Fabric.

f_tol The allowed tolerance of the Fibre Channel transmission frequency in either
direction from the nominal frequency.

f_nom The nominal frequency of Fibre Channel transmission.

freq_error_fabric The maximum client clock error due to mismatch of Fabric vs. server
oscillator frequencies.

Table F.8 - Example of analysis results

T_CSU_Fabric freq_error_fabric

80 s 16 ns

320 s 64 ns

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

377

F.2.5.2.2 Link Propagation Delay Error

In the case of the Fabric, there are two links that contribute to the error (i.e., one from the original server to
the Fabric, and one from the Fabric to the ultimate client). These errors should be commensurate with
each other.

F.2.5.2.3 Unload Error

There are two sources of unload error (i.e., one in the original server, and one in the Fabric as it acts as a
server for the ultimate client). These errors should be commensurate with each other.

Caution should be used when ignoring the deterministic portion of unload error. The unload error
associated with the server itself may still be ignored. The unload error associated with the Fabric may only
be ignored if it is known that the path from the server to each client goes through the same number of
Fabric elements; and that the Fabric elements all have identical unload errors. If this is true, though, the
unload error of the Fabric may be treated the same as that of the server.

The considerations of F.2.4.3.4 may be applied to lessen the non-deterministic portion of unload error in
the Fabric.

Analysis:

The presence of the Fabric has two potential effects. First, and most obviously, the circuitry in the Fabric
that maintains the counter and that acts as the surrogate server for the client, has its own unload error.
This error simply adds to the unload error of the original Server. Secondly, contention in the Fabric may
affect the unload error of the original Server if care is not taken in the design of the Server. Specifically, if
the Server design takes the value from the counter and puts it in the CSU ELS frame before ensuring that
the BB_Credit_CNT is less than BB_Credit, then contention in the Fabric causes a delay in getting the
CSU ELS onto the wire. This increases the Server's unload error.

Example:

Regarding the non-deterministic portion of the unload error, assume in the Fabric case that the Transmit
FIFO may hold up to four full-size Fibre Channel frames; and that the design of the server does not ensure
the FIFO is empty when the CSU ELS frame is pushed onto the FIFO. Again without justification, assume
that each of the frames (including the CSU ELS frame) waits for delivery of, say, four full-size Fibre
Channel frames before it receives BB_Credit so that it may proceed. Then since

t_full_frame = ((15 + (2 112 / 4)) Transmission Words) • (37.65 ns / Transmission Word), or

t_full_frame ~ 20 s

Then

unload_error_ND = t_full_frame • (3 • (4+1) + (4)), or

unload_error_ND ~ 380 s

F.2.5.2.4 Load Error

There are two sources of load error (i.e., one in the ultimate client, and one in the Fabric as it acts as a
client of the original server). These errors should be commensurate with each other.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

378

F.2.5.2.5 R/T Clock Domain Error

The Fabric may contain internal clock boundaries that are crossed as the CSU ELS information passes
through the Fabric. The number of such crossings depends on the internal design of the Fabric.

F.2.5.2.6 Server Oscillator Error

The effect of the Fabric oscillator frequency is included as part of the client oscillator frequency error (see
F.2.5.2.1).

F.2.5.3 Fixes for Fabric Errors

Since the nature of the errors introduced by the Fabric is the same as those discussed in the point-to-point
case, the same fixes may be applied to the design of the Fabric.

It should be emphasized that 24.3.3.3 includes rules for Fabrics that are designed to minimize the effect of
delays through the Fabric. The Fabric maintains its own counter. It loads this counter with the value
received in the incoming CSU ELS frame. When the CSU frame is to be forwarded on the Client link, the
Fabric modifies the CSU frame to contain the current value from the counter in the Fabric. If these rules are
followed, the effect of delay through the Fabric is essentially eliminated.

F.2.6 Loop Considerations

F.2.6.1 Introduction

For reference, figure F.14 reproduces the model from 24.3.4 for the Clock Synchronization Service in a
Loop-based system. This is the basis for the discussions in the sub-clauses that follow.

Figure F.14 - ELS Clock Sync Model – Loop

Clock
Synchronization

Server
(WKA FF FF F6h)

CSU
ELS

CSU
ELS

UPDATE:

n-
bit

Master
Clock

Clock

Load

L_Port
Client(s)

n-
bit

Counter

Clock

Load

L_Port
Client(s)

n-
bit

Counter

Clock

Load

LPSM
Repeater

LPSM
Repeater

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

379

The diagram assumes that one of the L_Ports acts as the server while the other nodes on the Loop are
clients. However, there is no requirement that all nodes on the loop be clients. The insertion of n L_Ports
between the server and the client(s) results in additional errors being introduced into the client's counter. In
terms of error analysis, it doesn’t matter if the nodes between the server and a given client are clients or
not since the delay through the LPSM repeater is the same.

F.2.6.2 Discussion of Errors

F.2.6.3 Introduction

The general nature of these errors is the same as discussed in F.2.4.2, but only the differences between
the point-to-point case and the loop case are discussed. One unique aspect of the loop configuration is the
delay that occurs as Transmission Words are passed from one node to the next (i.e., node delay) (see
F.2.6.3.1).

F.2.6.3.1 Node Delay

The Arbitrated Loop standard (FC-AL-2) allows up to 6 Transmission Word times to elapse between the
time a Transmission Word is received until it is forwarded on to the next node in the loop. This delay is
largely deterministic. There is a non-deterministic component of the error due to clock skew management.

Analysis:

The parameters used in this analysis are given in table F.9.

Example:

In order to calculate the cumulative deterministic node delay, the system designer needs to know the
number and type of nodes that lie between the server and the client. This is different for each client on the
loop.

Assume there are 5 nodes from Vendor A and 5 nodes from Vendor B between the server and the client.
Also assume the specific node delays are as follows:

Vendor_A_node_delay = 6 Transmission Word times

Vendor_B_node_delay = 5 Transmission Word times

Then the deterministic node delay is as follows:

node_delay_error_D = 5 • Vendor_A_node_delay + 5 • Vendor_B_node_delay

node_delay_error_D = 5 • (6 • 37.65 ns) + 5 • (5 • 37.65 ns)

Table F.9 - Parameters used in analysis

Symbol Definition

node_delay_error_D The deterministic portion of the error caused by the fact that the Clock Count
value in the CSU ELS frame is not updated as the frame is passed from one
node to the next.

node_delay_error_ND The non-deterministic portion of the error caused by the fact that the Clock
Count value in the CSU ELS frame is not updated as the frame is passed from
one node to the next.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

380

node_delay_error_D = 2.07 microseconds

For estimating the non-deterministic error, consider the discussion in FC-AL-2 concerning L_Port Elasticity
buffer management, which requires that no more than 4 Transmission Words are deleted between frames.
Using this assumption, the worst case non-deterministic error would be:

node_delay_error_ND = 4 • 37.56 ns

node_delay_error_ND = 150.24 ns

This shows that even under worst case conditions the non-deterministic node delay error is small
compared to the deterministic error, depending on the size of the loop. The larger the loop the smaller the
error is.

F.2.6.3.2 Client Oscillator Frequency Error

This error is the same as discussed in F.2.4.2.2. Only the server's oscillator and the oscillator of the client
under consideration need to be considered. The effect of oscillators in other nodes is considered as part of
the non-deterministic component of node delay error.

F.2.6.3.3 Link Propagation Delay Error

The nature of this error is the same as discussed in F.2.4.2.3. In the case of the loop, of course, the
number of links to consider is generally larger. The links to consider are all of the links that lie between the
server's transmitter and the client’s receiver, which is different for each client on the loop.

F.2.6.3.4 Unload Error

This error is the same as discussed in F.2.4.2.4. Even in the loop configuration, there is only one unload
error that is due to the server. There is no unload error in intermediate nodes because the counter value is
simply transferred from input to output without being loaded into a counter and then unloaded from the
counter.

F.2.6.3.5 Load Error

This error is the same as discussed in F.2.4.2.5. Even in the loop configuration, there is only one load error
that applies to any given client. That is the load error in that client. There is no load error in intermediate
nodes because the counter value is simply transferred from input to output without being loaded into a
counter and then unloaded from the counter.

F.2.6.3.6 R/T Clock Domain Error

This error is the same as discussed in F.2.4.2.6. Even in the loop configuration, there is only one R/T clock
domain error that applies to any given client. That is the R/T clock domain error in that client. The effect of
clock domain crossings in other nodes is considered as part of the non-deterministic component of node
delay error.

F.2.6.3.7 Server Oscillator Error

The Loop does not introduce any additional errors in this area.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

381

F.2.6.4 Fixes for Loop Errors

Since the nature of the errors introduced in a loop is generally the same as those discussed in the
point-to-point or Fabric cases, the same fixes may be applied to the design of the loop.

There is one source of error that is unique to loops, that being the node delay. The deterministic portion of
the node delay error may be subtracted out at the client, as was done for other deterministic errors.
Another approach to minimizing node delay error is to position the most time-sensitive nodes as close as
possible to the server (on the downstream side).

F.3 An Example

Figure F.15 shows a hypothetical example of the application of clock synchronization to a tactical avionics
system. The system contains two independent sensor subsystems, a processing subsystem, and a
weapon delivery subsystem. The sensor subsystems receive energy from their environment, convert it to a
series of digital samples, and send the sample set to the processing subsystem. Based on the combined
information from the two sensor subsystems, the processing subsystem determines whether potential
targets are present and if so, their tracking information. This data is presented to the pilot. The processing
subsystem then computes data for attacking a target identified by the pilot. This data is sent to the weapon
delivery subsystem that causes the weapon to be targeted and released at the appropriate time for
accurate delivery.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

382

The figure does not explicitly show the Clock Synchronization server. Each of the four subsystems, though,
is presumed to be a client of the same server so that they share a common sense of time.

The sensor subsystems attach a time tag (i.e., Time A1, Time B1) to the set of digitized samples from their
respective receivers. Assuming that successive samples in a data set are taken at regular intervals,
tagging the data set with the time of arrival of the energy at the sensor for the first sample allows the
determination of the time of arrival of all samples in the set.

The information available to the algorithm in the processing subsystem includes:

a) digitized samples of the energy received at Sensor A;

b) the time of arrival of the sampled energy at Sensor A;

Figure F.15 - Application of Clock Synchronization to Tactical Avionics

Fibre Channel
Fabric

client

NL_Port

Sensor A
subsystem

client

NL_Port

Processing
 subsystem

Receiver

A/D client

NL_Port

weapon deliv-
ery subsystem

client

NL_Port

Sensor B
 subsystem

Receiver

A/D

Processing
Algorithm

Header

Targeting
Data

Time A1

Header

Time T1

Sample A1

•••

Sample An

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

383

c) Characteristics of Sensor A, including the orientation of the receiving aperture;

d) Digitized samples of the energy received at Sensor B;

e) The time of arrival of the sampled energy at Sensor B;

f) Characteristics of Sensor B, including the orientation of the receiving aperture; and

g) The current time.

Note that once the time tag has been attached to the samples by the sensor subsystems, the processing
subsystem has no need to further tag them (e.g., it is not necessary for it to note the time at which the
frames containing the samples arrived at its FL_Port). What is important is the time at which the energy
from potential targets arrived at the sensors. The current time may be important so that the processing
subsystem does not present stale data to the pilot. It is also important so that any computed targeting
information be prepared for a time that is still in the future (i.e., It would do little good to tell the weapon
delivery subsystem what it should have done at some time in the past). The sense of shared time between
the processing subsystem and the weapon delivery subsystem ensures that the weapon is triggered at the
time most appropriate for precise delivery of the weapon.

In this example, the critical associations of time and data occur in the sensor subsystems and in the
weapon delivery subsystem. If software is involved in reading the time counter and attaching it to a data
set, the accuracy of the time tag may be worse by at least one, and probably two orders of magnitude as
compared to a hardware-based time tagging. So for maximum precision, the sensor subsystems would
use hardware to capture a time value from the counter at the precise time that the sample comes from the
analog-to-digital converter (i.e., even greater inaccuracy would result if the samples were to travel through
the Fabric and be time-tagged when they arrive at the processing subsystem).

Similarly, in the weapon delivery subsystem, the actual triggering of the weapon would be accomplished by
hardware directly linked to the synchronized time counter.

In contrast to these considerations, the software in the processing subsystem has a more relaxed need for
knowledge of time. Its primary need is to ensure that the information it presents to the pilot represents the
current situation; and that the targeting data that it computes for the weapon delivery subsystem is for
some time in the future. But the time that is used in the algorithm itself as part of the interpretation of the
sample data is the time attached to that data by the sensor subsystems. So the processing subsystem
probably has no need for a direct hardware-based tagging of information.

As a final comment, if the adjustment for oscillator frequencies (see F.2.4.3) is desired, but the sensor
nodes have no embedded processor to apply the adjustment factors, the simple Time A1 value indicated in
figure F.15 could be replaced by the following tuple:

a) counter;

b) ELS_value n;

c) ELS_value n-1; and

d) ELS_arrived n-1.

Of course, the hardware in the sensor that attaches this tuple to the data set should be able to do an
atomic reading of all components of the tuple so that values in the tuple are coherent.

Algorithms in the processing subsystem could then apply the adjustment algorithms separately for each
sensor before using the time tag in its tracking and targeting algorithms.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

384

Annex G
(informative)

Speed negotiation details

G.1 Scope

This annex contains supplementary information on the goals, assumptions, and methodology for the
design of the speed negotiation algorithm specified in clause 8 of this standard.

G.2 Basic assumptions

The speed negotiation method is based on the following set of assumptions:

a) the objective is to find the highest common speed that actually operates for all elements in the
Fibre Channel link involved in the speed negotiation.

Functionality is demanded from the entire link at the speed selected including all cables,
connectors, hubs, transceivers, Serdes, and conversion devices. The design capabilities of the
components are not sufficient criteria for acceptance – actual hardware is required to perform;

b) error free Transmission Word Synchronization for 1 000 Transmission Word times is an adequate
quality measure for speed negotiation purposes. This is not the same as verifying operation at the
Fibre Channel bit error rate;

c) link quality issues detected after the speed has been determined are addressed by other means;

d) once a speed has been negotiated, it is permissible that the speed not be changed after conditions
are improved such that operation at a higher speed would now be possible. Forcing a
re-negotiation is done with higher level protocols or out-of-band;

e) speed negotiation concludes promptly unless it is physically impossible for any common speed to
exist;

f) only point-to-point topology is supported.

Loop configurations that negotiate speeds are assumed to present a single port to the other
negotiating port for speed negotiation purposes;

g) ports capable of speed negotiation are not required to support a common 1Gbits/second speed;

h) the transmitter and receiver of a port are assumed to be capable of working at different speeds at
the same time during speed negotiation;

i) a port is assumed to negotiate among up to a maximum of any four speeds;

j) the speed negotiation method is independent of and compatible with the link protocol (e.g.,
operating, or not operating in Arbitrated Loop topology);

k) the same speed negotiation method supports both copper and optical ports;

l) the algorithm is realizable in a host driver or in port firmware;

m) the algorithm assumes loop infrastructure (e.g., hub) that has a port attachment scheme that
supports sensing of the operating speed of the infrastructure by the attaching port receiver. This
port attachment scheme prevents the attaching port transmitter from connecting into the existing
infrastructure unless the proper speed is established;

n) as an option to negotiating each hub port per the algorithm, multiple speed hubs may be set to a
single speed during speed negotiation by some out-of-band means;

o) connection of Speed Negotiating ports to an operating set of devices does not disrupt the
operation of those devices unless the ports being connected are transmitting at their speed;

p) once a particular speed has been established speed negotiation is not attempted again unless a
LINK FAILURE is detected or by means outside the scope of this standard;

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

385

q) the algorithm supports speed determination by ports attached to ports that operate only at any
single speed or with loops that have been set to a single speed by means not specified in this
standard; and

r) speed negotiation completes within 2.6 s. If the speed negotiation does not complete within 2.6 s
no common speed exists.

Speed negotiation usually completes in less than 1 s if there is any speed common among both
ports and the cable plant. The full 2.6 s may be required in the following cases:

A) where the slow-wait stage is used; or

B) special cases when both ports are negotiating and only the lowest (common) speed is
supported by the cable plant.

G.3 Supported configuration

There are three cases supported by the algorithm as shown in table G.1.

Speed negotiation is defined only between directly connected pairs of ports. This means that multi port
entities (e.g., hubs and JBODs) have significant restrictions when used with the speed negotiation
algorithm. Specifically, hub ports either are assumed to be capable of executing the speed negotiation
algorithm independently for every hub port or the hub speed is fixed at the same value for all ports. For
JBODs the entire enclosure is assumed to be presented to the attached loop port as a single speed
negotiating loop port or the entire population of devices within the JBOD enclosure is assumed to be fixed
speed.

G.4 Derivation of timing requirements and characteristics

Table G.1 - Three configurations supported by the speed negotiation requirements

Negotiating
Port

Case 1:
Negotiating Ports include

hub ports with intelligence to
support the negotiation algorithm

at each hub port separately

Negotiating
Port

Negotiating
Port

Case 2:
Fixed speed Ports

include legacy1Gbits/s repeating hubs,
fixed speed hubs at any speed,

and loop enclosures (JBOD)

Fixed Speed
Port

Fixed Speed
Port

Case 3:
Works if the speeds match
or does not work at all --

no negotiation involved in this case

Fixed Speed
Port

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

386

G.4.1 Introduction and diagram conventions

In this subclause the derivation of the timing requirements is shown. The derivations used in this subclause
may not be mathematically rigorous for some parameters. They do, however, represent the best
engineering judgment available and have been borne out by extensive simulations.

The examples in G.4 attempt to describe extreme cases for the timing parameters and as such involve
marginal conditions and timings.

The timing diagrams in G.4 use the notational conventions listed here:

a) each number represents a speed (SP#). x represents a speed other than the incoming speed
(states 26, 27, etc.);

b) letters represent major stages or modes of the algorithm. Different type case is used for the
different stages to enable easier graphical visualization;

c) some timing examples show approximate timing and may not exactly match the numerical values;

d) w indicates Wait_for_signal stage; s indicates Slow_wait stage; M indicates Negotiate_master
stage; F indicates Negotiate_follow stage; n indicates Normal operation;

e) Bold/underline indicates a successful result from a Pass sync_test (>1 000 error free
Transmission Words, etc.);

f) Underline without bold indicates just missing passing a Pass sync_test for any reason; and

g) Italics indicates legacy hub disruption between cable connection and completion of algorithm.

Time values a) through e) are used in the graphical and analytical explanations. The derivation of these
values follows:

a) 30 ms = t_rxcycl (max) (see table 21);

b) 184 ms = t_txcycl + t_rcycl (max). This is maximum duration of a transmit speed in
Wait_for_signal;

c) 156 ms = t_txcycl + t_rxcycl (min). This is the minimum duration of a transmit speed in
Negotiate_master;

d) 214 ms = t_txcycl + 2 • t_rxcycl (max). This is the maximum duration of a transmit speed in
Negotiate_master; and

e) 247 ms = t_stbl + t_rcycl (max). This is the maximum length of time a port transmits at a single
speed in Negotiate_follow while receiving a stable input signal.

These are examples. Other configurations and/or sequencing may lead to the same results.

G.4.2 Receiver cycle time, t_rxcycl

The minimum for this timing value is 2 ms that allows receiver stabilization time plus margin. The maximum
is 30 ms that allows for responsiveness of the current generation of firmware implementations.

G.4.3 Master transmitter cycle time, t_txcycl

= 5 • (t_rxcycl (max) + n • (100 s)) + (Transmitter Stabilization Time) + margin

= 5 • (30.2 ms - .2 • (Transmitter Stabilization Time) + 5 • (100 s)) + (Transmitter Stabilization Time) +
.5 ms

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

387

= 151 ms - (Transmitter Stabilization Time) + 2500 s + (Transmitter Stabilization Time) + .5 ms

= 154 ms

5 comes from Negotiate_master wherein 4 speeds + the transmit speed is tested in block 27. n represents
the number of blocks while cycling around block 21 in Negotiate_master: n = 5 because the sequence
through state 24, state 25, state 23, state 2C, and state 22 represents the maximum delay path.

G.4.4 Speed stability time, t_stbl

t_stbl is designed to be of sufficient duration to ensure that the other transmitter is no longer changing
speeds. The maximum transmitter speed duration occurs in Negotiate_master. T_stbl is found by adding
the time required to execute State 23 and State 27. A safety factor (3ms) is added to ensure that the
tolerances in executing State 23 and State 27 do not allow ambiguity. The execution time for State 23 is
found by adding t_txcycl (154 ms) to the maximum t_rxcycl (30 ms). An additional maximum t_rxcycl (30
ms) execution time is added by state 27. Therefore:

t_stbl = 154 ms + 30 ms + 30 ms + 3 ms = 217 ms

G.4.5 Watchdog timer threshold, t_fail

With properly implemented equipment, Passing the Pass sync_test should occur regularly until speed
negotiation is completed. T_fail is used as a watchdog to indicate that occurrences of successful Pass
sync_tests are spaced too far apart in time, that something is wrong, and speed negotiation should be
restarted. This analysis determines the minimum value for t_fail by analyzing the maximum time required
to pass the Pass sync_test after entering Negotiate_master (i.e., from Wait_for_signal or Slow_wait).

In most parts of the algorithm the transmitter cycles regularly through the speeds it supports, however, this
may be prolonged in the transition into the Negotiate_master stage. This scenario is used in the analysis.

Figure G.1 - Example worst case timing for t_fail

MMMMMMMMMMMMMMMMMMMMM MMMMMw wwwwwwwwwwwwwwwwwwwwwwwww . . .

wwww MMM MM. . .

wwwww

. . . 41 1 1 1 1 4 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 4 4 4 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2 2 2 1 1 1 1 1 . . .1 :

2 : . . . 1 234 1 441 4 3 2 x 1 4 3 . . . 1 4 3 2 x 1 . . .

30 ms
each

speed

30 ms
each

speed

30 ms
each

speed

30 ms
each

speed

30 ms
each

speed

184 ms each speed 214 ms each speed

variablevariable

<150
ms

connect

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

388

These conventions and assumptions apply to figure G.1, figure G.2, and figure G.3:

a) the 1st row (1:) is the incoming speed received from the other port, Port 1;

b) the 2nd row (2:) is the Rx speed of the receiving port, Port 2;

c) the cable plant into Port 2 only supports SP1. It was connected just ahead of the beginning of the
numbered sequence;

d) Port 2 detects Port 1 just after the beginning of the sequence; and

e) Port 1 detects Port 2 in the middle of the sequence (i.e., a cable plug event) with Rx_LOS false
indicated by the change from Wait_for_signal to Negotiate_master.

Figure G.1 shows that the first occurrence of the next Pass sync_test may occur up to 1 614 ms after entry
into Negotiate_master, the event that starts tneg. Adding comfortable margin brings t_fail to 1 620 ms.
Although detection of Port 1 is shown with Pass sync_test, for purposes of t_fail there is no difference if it
is accomplished by Rx_LOS false.

G.4.6 Watchdog Timer test delay, t_wddly

The delay that is designed to be included in each cycle of the watchdog timer test loop is not critical. There
is no requirement for a nonzero lower limit on the delay between watchdog timer tests. The choice of its
upper limit balances two objectives:

a) the value of t_ncycl may be reduced by keeping the maximum t_wddly small; and

b) it should be large enough to allow an attractively simple implementation of the watchdog test that
embeds it in the main algorithm adjacent to each Pass sync_test.

This implementation leads to the interval between successive watchdog tests being the duration of a Pass
sync_test (t_rxcycl) plus the delay associated with execution of the maximum code that separates two
successive Pass sync_test instances (a few hundred s). To allow this, t_wddly is permitted to range up to
a small margin above the maximum t_rxcycl.

0 t_wddly t_rxcycl (max) + margin = 32 ms

G.4.7 Speed recording time, t_ncycl

Due to some system configurations with ports that are capable of three or four speeds but share only one
or two common speeds (e.g., due to a limiting cable plant), it is possible for speed negotiation to become
prolonged. If this behavior is observed, negotiation may be hastened by reducing the list of transmitted
speeds to match the list of detected receiver speeds. T_ncycl is used to determine that sufficient time has
passed to have seen all possible speeds and to reduce the transmit speed list. This analysis determines
the minimum value for t_ncycl by analyzing the maximum time required to record all speeds after exiting
Wait_for_signal or Slow_wait.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

389

Conventions and assumptions a) - e) in G.4.5 apply to figure G.2.

Port 2 detects a signal, not necessarily at the receiver speed, with Rx_LOS instead of using the Pass
sync_test at the beginning of the sequence (i.e., Rx_LOS false causes entry into Negotiate_master, the
event that starts tneg, but no speed is recorded).

The requirement for t_ncycl is the same as for t_fail: 1 614 ms. However, certain fault cases may result in
no speeds being detected during t_ncycl. To avoid the need for special logic for these cases, t_ncycl is
extended to exceed the maximum possible watchdog timer expiration interval. This assures the watchdog
timer triggers restart before the speed-reduction logic terminates without a speed.

t_ncycl = maximum [(t_ncycl(above), t_fail + t_wddly)] = 1 652 ms

Any/all other speeds would be detected within this time window.

G.4.8 Speed recording time initial value, t_ncinit

In the t_ncinit analysis no speed was recorded upon entry into Negotiate_master because Rx_LOS was
used. In contrast, if the Pass sync_test is used to enter Negotiate_master, then one speed has already
been recorded, and the issue is to determine the minimum time required to observe the remaining speeds.

Figure G.2 - Example worst case timing for t_ncycl using Rx_LOS

MMMMMMMMMMMMMMMMMMMMM MMMMMw wwwwwwwwwwwwwwwwwwwwwwwww . . .

wwww MMM MM. . .

wwwww

. . . 41 1 1 1 1 4 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 4 4 4 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2 2 2 1 1 1 1 1 . . .1 :

2 : . . . 1 234 1 441 4 3 2 x 1 4 3 . . . 1 4 3 2 x 1 . . .

30 ms
each

speed

30 ms
each

speed

30 ms
each

speed

30 ms
each

speed

30 ms
each

speed

184 ms each speed 214 ms each speed

variablevariable

<150
ms

connect

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

390

Conventions and assumptions a) - e) in G.4.5 apply to figure G.3.

This time turns out to be 1 280 ms, 372 ms shorter than t_ncycl as determined in G.4.7. To add margin, 370
ms is chosen. However, to work in the algorithm, t_ncycl remains at 1 652 ms, and tnc is initialized to 370
ms in state 12 or state 5B as t_ncinit. Any/all other speeds would be detected within the 1 280 ms time
window.

G.4.9 Parameters relating to the optional slow_wait stage

G.4.9.1 Low processing load sleep time, t_sleep

This is maximum duration that the receiver may be cycled slowly on an inactive port. It is constrained only
by the need to limit convergence time when a valid speed negotiation signal sequence is presented to a
port that previously had no signal. This limit is arbitrarily chosen to be 5 s. Thus, t_sleep is:

= 5 000 ms.

G.4.9.2 Slow_wait cycle transmit cycle delay, t_txdly

The limits on the delay that is designed to be included in each cycle of the low processing overhead loop is
designed to assure that the time interval of transmission at each speed is sufficient to meet the
requirements of a downstream receiver in Negotiate_master stage to detect and record each speed
(greater than t_txcycl), and insufficient to trigger the downstream receiver to transition from the
Negotiate_follow stage to normal operation (less than t_stbl). Because t_stbl exceeds t_txcycl by 2 •
t_rxcycl, the delay may be assured to be in the necessary range by the single test for delay greater than
t_txcycle, executed at the maximum sampling interval, t_rxcycl.

t_txcycl t_txdly t_txcycl + t_rxcycl

Figure G.3 - Example worst case timing for t_ncinit using Pass sync_test

wwwwwwwwwwwwwwwwwwwwwwwwwww MMMMMMMMMMMMMMMM M

.

.2 :

. . .

.

2 1 1 1 1 1 1 4 4 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 4 4 4 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2

MM

1 :

1 4 3 2 1 4 4. 2 1 4 3 x 2 1 2 1 4 3 x 2

wwwwMM

30 ms
each
speed

30 ms
each
speed

30 ms
each

speed

184 ms each speed 214 ms each speed

variablevariable

<150
ms

connect

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

391

G.4.9.3 Periodic sync search wake time, t_wake

The purpose of Slow_wait is to minimize receiver cycling to conserve demands on a processor. The
receiver speed is cycled at the much slower rate used for transmitter cycling. However, to reliably detect a
signal once one is presented, the device periodically resumes receiver speed cycling at the rate
determined by t_rxcycl. The minimum time for cycling the receiver speeds at the rate determined by
t_rxcycl to assure detecting an acceptable presented signal is the periodic sync search wake time. This
analysis determines the minimum value for periodic sync search wake time by analyzing the maximum
time required for the port to synchronize to a signal:

a) Port 1 is the remote transmitter in Negotiate_master;

b) Port 2 is the local (receiver) in Slow_wait wake mode;

c) the cable is already connected from Port 1 to Port 2 but only SP1 is supported; and

d) Port 2 detects Port 1 with the Pass sync_test at the end of the sequence.

Port 2 just missed Port 1 at the beginning of the numbered sequence, but finally catches it at the end. The
times add up to 882 ms. This number is rounded up to 900 ms. Rx_LOS could eliminate this time.

Figure G.4 - Example worst case timing for t_wake

1

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

. . .

. . .

s . . .

. . .

. . .1 : .

2 :

1 1 1 4 4 4 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2 2 2 1 1 1 1

.4 3 2 1 4 3 1 4 3 2 1

connect

30 ms
each

speed

30 ms
each

speed

30 ms
each

speed

30 ms
each

speed

214 ms each speed

variable

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

392

G.4.10 Duration of disruption to single loops caused by connecting speed
negotiating ports to hubs

G.4.10.1 Introduction

While a port that is in Arbitrated Loop topology is executing speed negotiation, the port is required to
transmit some flavor of LIP. If this transmission is allowed to enter an active loop, it disrupts the operation
of the loop. The scope and duration of this disruption may be limited by attaching Speed Negotiating ports
to a loop only through hubs with this behavior:

a) if the hub participates in speed negotiation, it prevents disruption until the attached port has
completed speed negotiation;

b) if the hub does not participate in negotiation, it is set to a fixed speed by design or by configuration
action not specified herein; or

c) if the hub is operating at a fixed speed, it bypasses an attached port that is not presenting a signal
at the operating speed of the hub.

A port executing speed negotiation does not disrupt a loop if it is attached to the loop via a negotiating hub
or if the port does not support the speed at which a fixed speed hub is operating. However, during speed
negotiation with a fixed-speed hub, if a port transmits at the speed of the hub, the hub inserts the port and
loop disruption occurs. The following discussion derives the limits on the duration of these disruptions.

In the following discussion, only worst-case timings are presented. The disruption is considered to be the
time(s) during which the port prevents normal operation of the loop before the port begins loop
initialization.

NOTE 63 - Non-simultaneous duplex cable connections: If the cable plant from the attaching port
connects the port’s transmitter into the hub’s receiver, periodic hub disruption occurs when/while the
attaching port is transmitting at the hub's speed. This periodic disruption continues until shortly after the
path from the hub’s transmitter to the port’s receiver is completed with sufficient time to complete speed
negotiation before allowing port initialization. Hub disruption is limited to the normal port insertion
disruption if the path from the hub’s transmitter to the port’s receiver is completed with sufficient time to
complete speed negotiation before allowing the port’s transmitter to be connected to the hub’s receiver.

In general, if the path carrying the signal from the hub to the port is completed before the other path from
the hub to the port in the duplex connection is completed, the port moves through speed negotiation with
less, or without, initial disruption caused by the Slow_wait or Wait_for_signal stages.

Normal duplex connections with presently defined connectors do not control the sequencing of the
connections.

The derivations here assume a realistic worst case of non-simultaneous cable direction connection where
the signal from the port to the hub is presented t_rxcycl prior to the presentation of signal from the hub to
the port. This allows up to 30 ms of disruption by the port before speed negotiation allows it to detect and
possibly respond to the signal from the hub.

Each stage of speed negotiation may produce one or more disruptions. In some circumstances, the
disruptions produced in successive stages may be contiguous, resulting in a longer single disruption. In
other circumstances, transitions from one stage to the next may change transmitter speeds, causing the
disruption to be discontinuous, but prolonging the overall interval during which disruptions occur.
Subclauses G.4.10.2 through G.4.10.12 derive maximum single disruptions and groups of disruptions for
each stage of speed negotiation and then uses these to derive the overall maximum disruption for the
speed negotiation process.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

393

In the example figures in G.4.10, the charting conventions introduced in G.4.1 are augmented as follows:

a) the speed line headed H: is for the hub;

b) the speed line headed PT: is for the port transmitter;

c) the speed line headed PR: is for the port receiver; and

d) if the stage notation S (upper-case S) is used, it represents the fast-sampling period of the
Slow_wait stage, and s in the same line refers specifically to the slow-sampling period of the
Slow_wait stage.

G.4.10.2 Maximum single disruption in Wait_for_signal stage

If the port becomes connected in the Wait_for_signal stage, its receiver is continuously changing and
testing speeds at intervals not to exceed t_rxcycl, so speed negotiation allows it to remain in that stage
(possibly disrupting) for no more than

4 • t_rxcycl = 120 ms

after a signal is presented and before it passes the Pass sync_test and transitions to the Negotiate_master
stage. Non simultaneous connection may extend the possible disruption by another t_rxcycl to 150 ms.
Transmission at any one speed may last as long as 184 ms so the maximum disruption of 150 ms is
possible if the connection from port to hub is completed just as both the transmitter and receiver of the port
transition to the speed of the hub

G.4.10.3 Maximum single disruption in Slow_wait stage

The maximum single disruption during the Slow_wait stage is limited by the longest transmit time at a
single speed. This length disruption is possible if connection is established during the slow-sampling
period of the stage when the port is not transmitting at the speed of the hub. When the port's transmit
speed reaches the hub's speed, it begins disruption. It transmits at this speed for t_txcycl + t_rxcycl = 184
ms, then tests for and detects sync. It then transitions to the Negotiate_master stage

Figure G.5 - Example of maximum single disruption, Wait_for_signal

n n

. .

. .

. .. .

PR:

PT :

H:

. . . .

.

4 4 4 4 4 4 4 44 4 4 4 4 4 44 4 4 4 4 4 4

.

1 1 1 1 1 4 4 4 44 4 4 44 4 4 44 4 4 4

3 2 2 1 1 4 4 4 3 3 3 2 2 2 1 1 1 4 4 4 4

scale:
one character = ten ms

wwwwwwwwwwwwwwwwwwwwwwwwwwwMMM

disrupt

connect
(P to H)

connect
(H to P)

30
m-
ms

120 ms

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

394

G.4.10.4 Maximum single disruption in Negotiate_master stage

The maximum single disruption during the Negotiate_master stage is limited by the stage's maximum
transmission time at a single speed:

t_txcycl+2 • t_rxcycl = 214 ms.

This disruption time occurs if and only if the hub speed is not the maximum port speed. In this case, the
transmit speed is set to the maximum speed of the port at the start of the stage, and is decreased
periodically. When the port transmitter slows to the speed of the hub, it disrupts. None of the exit conditions
for the Negotiate_master stage are met until the port finishes transmitting at the speed of the hub. At that
time, it tests and detects the received speed equal to the transmitted speed, so exits to the
Negotiate_follow stage.

Figure G.6 - Example of maximum single disruption, Slow_wait

 nn n n n n n n n n nn n n n n n n n n n nn n n n n n n n n n n

H: 4 4 4 4 4 4 4 4 4 4 4 4 4 44 4 4 4 4 4 4 4 4 4

PT : 1 1 1 1 1 4 4 4 4 4 4 4 4 44 4 4 4 4 4 4 4 4 4

PR: 1 1 1 1 1 4 4 4 4 4 4 4 4 44 4 4 4 4 4 4 4 4 4

 ss s s s s s s s s s MMM

scale:
one character = ten ms disrupt

connect
(both)

184 ms

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

395

By contrast, if the hub speed is equal to the maximum speed of the port, the Negotiate_master stage
produces exactly one t_rxcycl = 30 ms of disruption. This is because the port has already synchronized at
that speed, so the port enters the Negotiate_master stage with its receiver speed at maximum and its
transmitter speed forced to maximum, assuring disruption. At the end of the first receive cycle, it again
tests for sync. This time it detects sync at its maximum speed and exits to the Negotiate_follow stage.

Figure G.7 - Example of maximum single disruption, Negotiate_master

n n n n n n n n n nn n n n n n n n n nn n n n n n n n n nn n

H: 3 3 3 3.3 .3 3 3 3 3 3 3 3 3 3

PT: 4 4 4 4 4 4 4 34 4 4 4 4 4 4 4 4 4 4 4 4 4

PR: 3 3 3 3 3.4 4

 - - - - - - - MMF F F F

disrupt

214 ms

Wait_for_signal
or Slow_wait

Figure G.8 - Example where hub is at maximum port speed

 n n n n n n n n n n n n n n

H: 4 4 4 4 4 4 4.

PT : 4 4 4 4

PR: 4 . . .4 4 4 4

 - - - - - - - MMMF F F F

disrupt
scale:
one character = ten ms

30
ms

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

396

G.4.10.5 Maximum single disruption in Negotiate_follow stage

Since the upstream port is fixed speed, the Negotiate_follow stage never changes speeds, and tests for
and detects sync for t_stbl + t_rxcycl = 247 ms. Since it is entered with the transmitter matching the hub, it
disrupts the whole time. This simple case is not charted.

G.4.10.6 Maximum disruption group - Wait_for_signal

This maximum disruption group consists of the port in Wait_for_signal, first disrupting then not disrupting,
for a total of 150 ms. As in the description of Maximum single disruption in Wait_for_signal stage
(G.4.10.2), speed negotiation allows the port to remain in the Wait_for_signal stage for no more than:

4 • t_rxcycl = 120 ms

after a signal from the hub and 150 ms from onset of signal to the hub. The disruption pattern may not
exceed this duration. If the port transmit speed initially matches the speed of the hub, but changes before
the port receiver tests the hub's speed, the disruption may be of any duration less than 150 ms followed by
a non-disruptive interval up to the balance of the 150 ms. Since the port transmit duration at any single
speed is not allowed by speed negotiation to be less than t_txcycl = 154 ms, the port does not change
speeds again (potentially disrupting again) before it transitions out of the Wait_for_signal stage.

G.4.10.7 Maximum disruption group - Slow_wait

This maximum disruption group consists of the port in Slow_wait first for 120 ms disruptive followed by 554
ms nondisruptive finally followed by 184 ms disruptive. In this worst case, connection from the port to the
hub occurs in the fast-sampling period of the Slow_wait stage while the port is transmitting at the hub's
speed, just as the port begins receiving at the hub's speed. Disruption 1 begins. The receive cycle at the
hub's speed ends t_rxcycl later, just as the signal from the hub reaches the port too late. Then, 3 • t_rxcycl
later, just as the port’s receiver is about to sample the hub's speed again, the fast-sampling period ends
and the hub's transmit speed changes to its next speed, ending the first disruption but preventing the
receiver from staying at the hub's speed into the slow-sampling period. Now in the slow-sampling period,
the port transmits and receives in sequence at three speeds other than that of the hub, unable to

Figure G.9 - Example of maximum disruption group - Wait_for_signal

 n

H: 4 4 4 4 4 4 4 4 4 4 4 4 44 4 4 4 4 4 4 4 4 4 4

PT : 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3

PR: 3 2 2 1 1 4 4 4 3 3 3 2 2 2 1 1 1 4 4 4 4

 wwwwwwwwwwwwwwwwwwwwwwwwwwwMMM

disrupt end disrupt

connect
(P to H)

connect
(H to P)

30
ms

90 ms 30
ms

scale:
one character = ten ms

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

397

synchronize but not disrupting, for 3 • t_txcycl. Then the port transmits and receives at the hub's speed,
disrupting for another t_txcycl, at the end of which it finally tests and detects sync, and transitions to the
Negotiate_master stage. Figure G.10 shows the speed of the hub is not the maximum speed of the port, so
when the port begins transmitting at its maximum rate on entry to the Negotiate_master stage, this ends
the second disruption.

G.4.10.8 Maximum disruption group - Negotiate_master

This maximum disruption group consists of the port in Negotiate_master for 642 ms nondisruptive followed
by 214 ms disruptive. In the Negotiate_master stage, the port begins to transmit at its maximum speed and
(because the port was in sync to transition from the prior stage) it continues to receive at the speed of the
hub.

If the operating speed of the hub is the maximum speed of the port, the Negotiate_master stage disrupts
for 30 ms and transitions to the Negotiate_follow stage, as discussed in Maximum single disruption,
Negotiate_master (see G.4.10.4).

If the operating speed of the hub is not the maximum speed of the port, the hub bypasses the port
immediately, terminating any prior disruption. The port transmits in turn at as many as three non-matching
speeds, for:

3 • (t_txcycl + 2 • t_rxcycl) = 642 ms.

Then it transmits at the speed of the hub, beginning a new disruption. This lasts for:

t_txcycl + 2 • t_rxcycl = 214 ms.

At the end of this transmit speed, the port tests and detects sync and therefore transitions to the
Negotiate_follow stage. This case is charted in Figure G.11.

Figure G.10 - Example of maximum disruption group - Slow_wait

n n n n n n n n nn

1 1 1 1 1 1 1 1 11 . . 1 . .H:

1 4 4 4 4 4 4 3 3. . . 2 1 1 1 1 1 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1 4 . .PT :

2 4 4 4 4 4 4 3 3. . . . 3 2 1 4 3 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1 4 . .PR:

Ss s s s s s s sSSSSSSSSS s s s s s s s s s s s s s s s s MMM

disrupt end disruptdisrupt end disrupt

connect
(P to H)

connect
(H to P)

 90
 ms

552 ms
30
ms

184 ms

scale:
one character = 30 ms

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

398

G.4.10.9 Maximum disruption group - Negotiate_follow

This maximum disruption group consists of the port connecting while in Negotiate_follow, causing 247 ms
disruption. Since the hub port is fixed speed, the Negotiate_follow stage is entered with the port transmitter
set to that speed and the port does not change speeds. The Negotiate_follow stage therefore produces a
single disruption that lasts throughout the stage. This case is not charted.

G.4.10.10 Maximum single disruption overall

A longer disruption may result if a disruption at one stage carries over to the next stage.

Because the transition from the Negotiate_master stage to the Negotiate_follow stage always happens
without a speed change, the last disruption in the Negotiate_master stage always is concatenated with the
disruption in the Negotiate_follow stage.

The disruption caused in the Wait_for_signal or Slow_wait stages may concatenate to the disruption
caused in the Negotiate_master stage only if the hub is operating at the maximum speed of the port
(though other conditions may still prevent it). This is because the port forces its transmitted speed to its
maximum at the start of the Negotiate_master stage. If this is not the speed of the hub, the port is
bypassed, breaking the disruption.

In the case where the hub speed is not the maximum speed of the port, the maximum disruption for the
Negotiate_master stage plus the maximum disruption for the Negotiate_follow stage may concatenate to a
single disruption of 214 + 247 = 461 ms. This case being straightforward, it is not charted.

In the case where the hub speed is the maximum speed of the port and the port has entered the Slow_wait
stage (Wait_for_signal has a shorter disruption), the maximum disruption for the Slow_wait stage plus 30
ms disruption for the Negotiate_master stage plus the maximum disruption for the Negotiate_follow stage
may concatenate to 461 ms (i.e., 184 + 30 + 247 = 461).

Figure G.11 - Example of maximum disruption group - Negotiate_master

n n . . n n n n .n n n n n n n n n . n n n n . . n n n n . . n n n n n

1 1 . . 1 1 1 1 .1 1 1 1 . 1 1 1 1 . . 1 1 1 1 . . 1 1 1 . .H:

4 4 . . 4 3 3 3 4 . 3 2 2 2 . . 2 1 1 1 . . 1 1 1 . .PT :

3 2 . . 4 1 4 . 3 2 1 1 1 . .PR:

MM. . MMMM.- - - - - - - - M . MMMM. . MMMM. . MF F F F

disrupt
scale:
one character = 30 ms

642 ms 214 ms

Wait_for_signal
or Slow_wait

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

399

G.4.10.11 Maximum disruption group overall

The maximum disruption group overall consists of three disruptions occurring over a 1 961 ms period. In
no case does the port transmit speed change on transition from the Negotiate_master stage to the
Negotiate_follow stage, so the lengths of those stages concatenate, but the transition does not introduce
an additional period of disruption.

The example worst-case disruption group for the Slow_wait stage exceeds the duration of the example
disruption group for the Wait_for_signal stage, and additionally, its exit conditions match the entry
conditions for the worst-case disruption group for the Negotiate_master stage, so its duration and number
add to those of the Negotiate_master example.

The result is:

1) 120 ms disruptive in the Slow_wait stage;

2) 554 ms nondisruptive in the Slow_wait stage;

3) 184 ms disruptive in the Slow_wait stage;

4) 642 ms nondisruptive in the Negotiate_master stage; and

5) 461 ms disruptive in the Negotiate_master and Negotiate_follow stages.

Total = 1 961 ms

NOTE 64 - Cable plants: Limits on the cable plant need not be considered in this discussion because the
presumptions for this analysis include that the cabling plant supports the speed of the hub and the hub
bypasses if presented with a signal at any other speed regardless of the quality of the cabling.

NOTE 65 - Use of Rx_LOS: Use of Rx_LOS is permitted during the Wait_for_signal and Slow_wait
stages. If it is effective, it greatly reduces the likelihood and maximum length of disruption during those
stages. However, the size of the possible improvement is sensitive to cabling capability.

Figure G.12 - Example of maximum single disruption overall

n n

.H: 4 4 4 4 4 4 4 44 4 4 4 4 4 4 4 4 44 4 4 4 4 4 4 4 44 4 4 4 4 4 4 4 44 4 4 4 4 4 4 4 44 4 4 4 4 4 4 4 4

.PT : 4 4 1 1 1 1 1 44 4 4 4 4 4 4 4 4 44 4

.PR: 4 4 1 1 1 1 1 44 4 4 4 4 4 4 4 4 44 4

wwwwws s s s s ss MMMF n n n n

scale:
one character
=
ten ms

disrupt

30
ms

247 ms184 ms

connect Loop Init

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

400

G.4.10.12 Summary of loop disruption

Attaching a port capable of speed negotiation to an Arbitrated Loop hub may generate up to three
disruptions to existing loop operation. The properties of these disruptions are summarized here:

a) t_disrupt1: The maximum single disruption duration is 461 ms; and

b) t_disrupt2: The maximum duration of a series of disruptions is 1 961 ms.

Both single and concatenated series disruption times may be significantly reduced, and the greatest
number of disruptions reduced to two, by disabling the Slow_wait stage or by using Rx_LOS, if it is reliable,
to initially detect a signal.

G.4.11 Algorithm convergence time

This subclause describes the convergence time properties of the algorithm. Use of this result is beyond the
scope of this annex.

The longest convergence time, including Wait_for_signal, is conservatively 2 571 ms (i.e., 11 times the
maximum transmitter time (214ms) + t_stbl (217 ms)). The longest convergence time is with both ports
capable of negotiating at all four speeds and where the infrastructure only supports the lowest speed.
Based on this calculation a maximum convergence time of 2.6 s is used for the speed negotiation
algorithm.

Convergence time is the elapsed time between start and stop as defined here:

a) start = the last of (port A beginning speed negotiation, port B beginning speed negotiation
connection of port A to port B cable plant, connection of port B to port A cable plant); and

b) stop = the latter of (port A entering Normal_operation, port B entering Normal_operation).

If the optional slow_wait stage is implemented and enabled, Slow_wait replaces Wait_for_signal after a
negotiation failure. Since Slow_wait is t_sleep of transmit cycling time alternating with logic equivalent to
the Wait_for_signal algorithm, the maximum length of Slow_wait is approximately the maximum length of
Wait_for_signal plus t_sleep. The net is extending the maximum convergence time by t_sleep, giving
about 7.5 s if Slow_wait is enabled.

In the highly unlikely event that the Slow_wait port is actively testing for Transmission Word
Synchronization just as its attached port is transitioning from a wait stage to Negotiate_master stage, it is
possible for the test to fail. This causes an additional delay of up to t_sleep + t_wake = 5 900 ms,
extending the convergence time to about 13.5 s.

G.5 Ports using separate PMD components

This subclause describes the issues with using separate PMD components in a speed agile application.
Figure G.13 shows the general relationship of the two ports and the physical architecture within one of the
ports.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

401

If a port uses a separate PMD component (e.g., a removable PMD component such as a GBIC) care is
required to ensure that both the port supplier and the PMD component supplier clearly understand what is
required to achieve the speed agility and to execute the speed negotiation algorithm.

Signal timings are formally measured at the external duplex port connector. Signal timing properties
affected by the speed negotiation algorithm are assumed to match the timings specified in the algorithm
where applicable (e.g., speed changes executed in the protocol chip are assumed to show up at the
external connector within the allowed time for speed changes). The 1 ms requirement for changing speeds
formally applies at the external connector. This assumption is practical because the granularity of the
timing requirements for the speed negotiation algorithm are orders of magnitude more coarse than the
signal propagation time through normal removable PMD components and the logic. In practice, only the
protocol chip and other board logic are capable of enforcing accurate timings so if the separate PMD has
time delays of the order of the speed negotiation algorithm timing granularity the assumption of signal
timing values applying at the port connector is rendered invalid.

Figure G.13 - Physical architecture of a port with a separate transceiver component

PORT
B

PORT
A

CONTAINS THE PROTOCOL
CHIP TRANSMITTER AND

PROTOCOL CHIP RECEIVER

CONTAINS THE TRANS-
CEIVER TRANSMITTER AND

THE TRANSCEIVER RECEIVER

CONTAINS SERDES
OR EQUIVALENT

CONTAINS ONLY
ANALOG ELEMENTS

PROTOCOL CHIP +
LOGIC ON PCB TRANSCEIVER

EXTERNAL
DUPLEX

CONNECTOR

Tx

Rx

Tx Speed Sel

Tx_Disable

Rx Speed Sel

Tx_Fault

Sg_Detect / LOS

TRANSCEIVER
TRANSMITTER

TRANSCEIVER
RECEIVER

These control lines
are not required for
implementing the
SN algorithm

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

402

Several additional considerations of separate PMDs are listed here:

a) the protocol chip and other board logic may be supplied from different sources than the
transceiver. In the design of speed negotiation, the protocol chip and other board logic were not
treated as a unit with the transceiver. Specifications have been placed specifically on one or the
other (or both separately) and the use of any control signals have been noted;

b) there are effectively two transmitters and two receivers in each port. The receiver in the
transceiver is termed the transceiver receiver and the receiver in the protocol chip or on the board,
but not part of the transceiver is termed the protocol chip receiver. Similarly: transceiver transmitter
and protocol chip transmitter;

c) the speed of the transceiver transmitter is controlled by the protocol chip and other board logic by
changing the speed of the data signals driven from the protocol chip. However, the launch
amplitude and /or other properties of the transceiver transmitter either needs to be:

A) common to all supported speeds;

B) a control signal to the transceiver is used to set the amplitude of the transceiver transmitter; or

C) internal circuitry within the transceiver senses the incoming bit rate and adjusts the amplitude
accordingly;

NOTE 66 - The requirements for full speed and double speed are not mutually exclusive (i.e., it is
possible to design a transceiver transmitter that meets both the full speed and the double speed
requirements without any change).

and

d) the speed of the transceiver receiver is similarly controlled by either:

A) having the transceiver receiver specifications common to all supported speeds;

B) a control signal to the transceiver is used to set the properties of the transceiver receiver; or

C) internal circuitry within the transceiver senses the incoming bit rate and adjusts the receiver
parameters accordingly.

NOTE 67 - The requirements for full speed and double speed are not mutually exclusive (i.e., it is
possible to design a transceiver receiver that meets both the full speed and the double speed
requirements without any change). For any speeds higher than double speed the transceiver receiver
needs to change its properties in order to meet the transceiver receiver requirements.

G.6 Implementation notes

The Slow_wait stage described in 8.6.6 may be implemented as a means of reducing processing time
required to poll ports that remain unconnected or unused for extended periods of time. The speed
negotiation algorithm may also be disabled for ports determined to be inactive by methods not controlled
by this standard, such as:

a) commands from an out of band management system;

b) hardware jumpers;

c) using a signal detect function (Rx_LOS) to detect when a connection is made (may not be a
reliable indication that the Tx side is connected and requires that the opposite connected port be
transmitting in a manner that allows signal detection to function); or

d) using an automatic sensing of connector retention engagement or the presence of a removable
PMD device to sense plausible device attachment (does not guarantee that the opposite end of
the link is connected).

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

403

Annex H
(informative)

IEEE company_ID

H.1 Overview

The IEEE Registration Authority for a fee provides a registered number that is guaranteed to be unique.
The unique number may be provided in either of two formats, depending on the requirements of the
manufacturer. The number is provided as a 6 hexadecimal number value as the IEEE company_id. The
number is provided as three hexadecimal-digit pairs in canonical form representing the 3 octets of the
24-bit number as the IEEE Organizationally Unique Identifier (OUI). A manufacturer for all its products that
use an IEEE registration uses the same number. A manufacturer shall base all its identifiers on the same
number, even if the identifiers have different formats. A manufacturer shall not purchase a new
company_id until at least one of the identifier spaces using the company_id is substantially exhausted.
Other identifier spaces shall continue using the original company_id until they are also exhausted.

The IEEE Registration Authority may be contacted at http://standards.ieee.org/regauth/oui/index.shtml or:

IEEE Registration Authority
IEEE Standards Dept.
445 Hoes Lane, P.O. Box 1331
Piscataway, NJ 08855-1331

H.2 Uses of IEEE registered Company_ID other than Name_Identifiers

In addition to construction of several forms of Name_Identifiers (see H.3), Fibre Channel uses the
company_ID in the RNFT LS_ACC (see FC-LS-3).

H.3 IEEE tutorial on Fibre Channel uses of company_ID

The following text replicates the tutorial on Fibre Channel uses of company_ID submitted to IEEE by T11.

http://standards.ieee.org/regauth/oui/index.shtml

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

404

24.5 Guidelines for Fibre Channel Use of the Company_ID

24.5.1 Overview

Fibre Channel standards support several identifier formats that incorporate IEEE OUI/Company_ID values.
These are summarized in table H.1.

24.5.2 OUI-based IEEE formats used by Fibre Channel

The Universal LAN Address (ULA or MAC-48) format is shown in table H.2 and is defined in Use of the
IEEE assigned Organizationally Unique Identifier with ANSI/IEEE Std 802-2001 Local and Metropolitan
Area Networks. This format is used by the FC-FS-2 NAA IEEE 48-bit and NAA IEEE Extended
Name_Identifier formats.

Bit 1 of byte 0, which serves as the UNIVERSALLY/LOCALLY ADMINISTERED ADDRESS bit, is set to zero.

Bit 0 of byte 0, which serves as the INDIVIDUAL/GROUP ADDRESS bit, is set to zero.

Table H.1 - Fibre Channel identifiers using OUI

NAA Type NAA Code
size of

identifier
Reference

NAA IEEE
48-bit

1h 8 bytes table H.4

NAA IEEE
Extended

2h 8 bytes table H.5

NAA IEEE
Registered

5h 8 bytes table H.6

NAA IEEE
Registered
Extended

6h 16 bytes table H.7

NAA EUI-64
Mapped

Ch, Dh, Eh,
and Fh

8 bytes table H.8

Table H.2 - ULA (i.e., MAC-48) format

Byte\Bit 7 6 5 4 3 2 1 0

0 (MSB)

IEEE COMPANY ID1

2 (LSB)

3 (MSB)

VENDOR-SPECIFIC EXTENSION IDENTIFIER4

5 (LSB)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

405

The EUI-64 format is shown in table H.3 and is defined in Guidelines for 64-bit Global Identifier (EUI-64™)
Registration Authority. This format is used by the FC-FS-2 NAA EUI-64 mapped Name_Identifier formats.

Bit 1 of byte 0, which serves as the UNIVERSALLY/LOCALLY ADMINISTERED ADDRESS bit, is set to zero.

Bit 0 of byte 0, which serves as the INDIVIDUAL/GROUP ADDRESS bit, is set to zero.

24.5.3 Name_Identifier formats

Name_Identifiers are defined in FC-FS-2 and are used to identify Fibre Channel entities (e.g., Nx_Ports,
nodes, Fx_Ports, E_Ports, B_Ports, Switches, and Fabrics). Name_Identifiers are used in several
protocols specified in Fibre Channel standards. Name_Identifiers are NAA format identifiers that may
include IEEE OUI/Company_IDs.

The NAA IEEE 48-bit address format is shown in table H.4.

Bit 1 of byte 2, which serves as the UNIVERSALLY/LOCALLY ADMINISTERED ADDRESS bit, is always set to
zero.

Bit 0 of byte 2, which serves as the INDIVIDUAL/GROUP ADDRESS bit, is always set to zero.

Table H.3 - EUI-64 format

Byte\Bit 7 6 5 4 3 2 1 0

0 (MSB)

IEEE COMPANY ID1

2 (LSB)

3 (MSB)

VENDOR-SPECIFIC EXTENSION IDENTIFIER
.
.
.

7 (LSB)

Table H.4 - NAA IEEE 48-bit address format

Byte\Bit 7 6 5 4 3 2 1 0

0 NAA (1h) 0h

1 00h

2

ULA (see table H.224.5.1).
.
.

7

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

406

The NAA IEEE Extended format is shown in table H.5.

Bit 1 of byte 2, which serves as the UNIVERSALLY/LOCALLY ADMINISTERED ADDRESS bit, is always set to
zero.

Bit 0 of byte 2, which serves as the INDIVIDUAL/GROUP ADDRESS bit, is always set to zero.

The NAA IEEE Registered format is shown in table H.6.

Bit 5 of byte 1, which serves as the UNIVERSALLY/LOCALLY ADMINISTERED ADDRESS bit, is always set to
zero.

Bit 4 of byte 1, which serves as the INDIVIDUAL/GROUP ADDRESS bit, is always set to zero.

Table H.5 - NAA IEEE Extended format

Byte\Bit 7 6 5 4 3 2 1 0

0 NAA (2h) (MSB)

1 VENDOR-SPECIFIC IDENTIFIER (LSB)

2

ULA (see table H.224.5.1).
.
.

7

Table H.6 - NAA IEEE Registered format

Byte\Bit 7 6 5 4 3 2 1 0

0 NAA (5h) (MSB)

1
IEEE COMPANY ID

2

3 (LSB) (MSB)

4

VENDOR-SPECIFIC IDENTIFIER
.
.
.

7 (LSB)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

407

The NAA IEEE Registered Extended format is shown in table H.7.

Bit 5 of byte 1, which serves as the UNIVERSALLY/LOCALLY ADMINISTERED ADDRESS bit, is always set to
zero.

Bit 4 of byte 1, which serves as the INDIVIDUAL/GROUP ADDRESS bit, is always set to zero.

The EUI-64 Mapped format is shown in table H.8.

Bits 7-4 of byte 0 are also interpreted as the NAA, which may take on value Ch, Dh, Eh, or Fh, depending
on bits 23 and 22 of the IEEE Company_ID from the EUI-64 (see table H.3) that is being mapped.

The IEEE Company ID is the IEEE Company ID from the EUI-64 that is being mapped, with the following
modifications:

a) bit 17 of the IEEE company_ID from the EUI-64 (see table H.3) that is being mapped, which
serves as the UNIVERSALLY/LOCALLY ADMINISTERED ADDRESS bit, is assumed to be set to zero
and is omitted; and

Table H.7 - NAA IEEE Registered Extended format

Byte\Bit 7 6 5 4 3 2 1 0

0 NAA (6h) (MSB)

1
IEEE COMPANY ID

2

3 (LSB) (MSB)

4

VENDOR-SPECIFIC IDENTIFIER
.
.
.

7 (LSB)

8 (MSB)

VENDOR-SPECIFIC IDENTIFIER EXTENSION
.
.
.

15 (LSB)

Table H.8 - NAA EUI-64 Mapped format

Byte\Bit 7 6 5 4 3 2 1 0

0 11b IEEE COMPANY ID (BITS 23 TO 18)

1 IEEE COMPANY ID (bits 15 to 8)

2 IEEE COMPANY ID (bits 7 to 0)

3 (MSB)

VENDOR-SPECIFIC IDENTIFIER
.
.
.

7 (LSB)

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

408

b) bit 16 of the IEEE company_ID from the EUI-64 (see table H.3) that is being mapped, which
serves as the INDIVIDUAL/GROUP ADDRESS bit, is assumed to be set to zero and is omitted.

VENDOR-SPECIFIC IDENTIFIER is the vendor specific identifier from the EUI-64 (see table H.3) that is being
mapped.

24.5.4 References

Fibre Channel standards:

ISO/IEC 14165-252, Fibre Channel Framing and Signaling-2 (FC-FS-2) (ANSI T11/1619-D)

Fibre Channel standards are developed by the INCITS (http://www.incits.org) T11 committee (http://
www.t11.org). Questions about this tutorial may be directed to the T11.3 email reflector at
t11_3@mail.t11.org.

Fibre Channel standards are published by ANSI (http://www.ansi.org) and ISO/IEC (http://www.iso.int). To
obtain copies of these documents, contact Global Engineering at 15 Inverness Way, East Englewood, CO
80112-5704 at 303-792-2181 (phone), 800-854-7179 (phone), or 303-792-2192 (fax) or see http://
www.incits.org.

Other documents:

Use of the IEEE assigned Organizationally Unique Identifier with ANSI/IEEE Std 802-2001 Local and
Metropolitan Area Networks by the IEEE Standards Association. Available at http://standards.ieee.org/
regauth/oui/tutorials/lanman.html.

Guidelines for 64-bit Global Identifier (EUI-64™) Registration Authority by the IEEE Standards Association.
Available at http://standards.ieee.org/regauth/oui/tutorials/EUI64.html.

SCSI OUI/Company_ID tutorial by the IEEE Standards Association. Available at http://standards.ieee.org/
regauth/oui/tutorials/SCSI.html.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

409

Annex I
(informative)

WWN-to-EUI-64 Mapping

I.1 Background

To permit the interoperable implementation of bridges between Fibre Channel and other technologies that
use EUI-64 as addressing format, there is the need for a standard method to map EUI-64 addresses in FC
WWNs and vice versa. See 18.8 on how to solve the problem of how to map EUI-64 addresses in FC
WWNs, permitting to a FC bridge to give a unique FC name to non-FC devices. However, there is still the
need of a standard method to map FC WWNs in EUI-64 addresses, to permit to a bridge to map FC
devices over the non-FC network.

Another reason to define this mapping is the fact that vendors require a method to avoid the assignment of
overlapping names on the EUI-64 address space and in the FC name space. Several techniques may be
used to rearrange a FC WWN in a EUI-64 address, and this may lead to several EUI-64 addresses derived
from the same FC WWN. Standardizing a single method allows to map one FC WWN in a single EUI-64
address.

I.2 Solution

This algorithm defines a mapping of the most widely used FC Name_Identifier formats to EUI-64
addresses. The considered formats are:

a) IEEE 48 bit address (NAA = 1);

b) IEEE Extended (NAA = 2); and

c) IEEE Registered (NAA = 5).

The first step is to rearrange the FC WWN in a EUI-64 address. In this manner each FC WWN is mapped
in a single EUI-64 address shown in table I.1, table I.2, table I.3, table I.4, table I.5 and table I.6.

Table I.1 - NAA IEEE 48-bit Address Name_Identifier format (see 18.3)

 Bits
Word

31 .. 28 27 .. 24 23 .. 16 15 .. 08 07 .. 00

0 NAA = 1h 000h OUI

1 OUI VSID

Table I.2 - EUI-64 containing mapped NAA IEEE 48-bit Address Name_Identifier

 Bits
Word

31 .. 12 11 .. 08 07 .. 04 03 .. 00

0 OUI NAA = 1h VSID

1 VSID 000h

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

410

If this mapped EUI-64 address has to be used by a bridge, and the vendor who assigned the FC WWN did
not assign consistently the EUI-64 addresses in other devices that he manufactured, then there is the
possibility that the EUI-64 address derived from the FC WWN conflicts with a “native” EUI-64 address. To
solve this collision, a possible solution is to set to 1 the Universal/Local bit in the OUI part of the WWN in
the mapped EUI-64 address. This is permitted by IEEE, as per Std 802-2001 (see IEEE 802).

I.3 Case Study

Consider the following case study to show how the algorithm works. Three hosts have globally unique
names WWN(A), WWN(C) and EUI-64(B) as shown in figure I.1.

Table I.3 - NAA IEEE Extended Name_Identifier format (see 18.4)

 Bits
Word

31 .. 28 27 .. 24 23 .. 16 15 .. 08 07 .. 00

0 NAA = 2h Vendor Specific OUI

1 OUI VSID

Table I.4 - EUI-64 containing mapped NAA IEEE Extended Name_Identifier

 Bits
Word

31 .. 12 11 .. 08 07 .. 04 03 .. 00

0 OUI NAA = 2h VSID

1 VSID Vendor Specific

Table I.5 - NAA IEEE Registered Name_Identifier format (see 18.6)

 Bits
Word

31 .. 28 27 .. 04 03 .. 00

0 NAA = 5h OUI VSID

1 VSID

Table I.6 - EUI-64 containing mapped NAA IEEE Registered Name_Identifier

 Bits
Word

31 .. 08 07 .. 04 03 .. 00

0 OUI NAA = 5h VSID

1 VSID

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

411

Bridge 1 maps, in the non FC network, WWN(A) in a “local” EUI-64(A), with the local bit set, and Bridge 2
does the same for WWN(C), obtaining a “local” EUI-64(C) address. Being the WWNs globally unique, as
the EUI-64 addresses connected to the non-FC network, there are no address conflicts on this network.

Bridge 1 maps, in the FC Fabric, EUI-64(B) in a WWN(B) using the rules defined 18.8, and, recognizing
the local bit set to 1, the “local” EUI-64(C) in WWN(C). So, there are no name conflicts in the first FC
Fabric.

Bridge 2 performs the corresponding functions for the second FC Fabric, and also in this case there are no
name conflicts.

Figure I.1 - Case Study

Bridge 2Bridge 1

Host CHost BHost A

FC Fabric Non FC network FC Fabric

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

412

Annex J
(Informative)

Fibre Channel LAN Protocols Support

J.1 Overview

There is the possibility to use Fibre Channel as a cluster interconnect or as a generic network technology
for protocols other than IPv6 and IPv4. Some cluster protocols are designed to operate over Ethernet and
are mapped directly over the link level. In a similar manner, the IS-IS routing protocol may be used for IP
routing, but its messages are mapped directly over the link level, they are not encapsulated in IP packets.
This annex provides some guidance to people interested in mapping such protocols over Fibre Channel in
a manner consistent with the latest IP over FC specifications (see RFC 4338).

This annex does not apply to transport of IPv4, IPv6, and ARP packets over Fibre Channel. For those
protocols, see RFC 4338.

J.2 LAN Capable Nx_Ports

A LAN capable Nx_Port:

a) should support Class 3;

b) should support continuously increasing SEQ_CNT; and

c) should support a Receive Data_Field Size for Device_Data FC frames of at least 1024 bytes.

Given that some LAN protocols carry the MAC address also in the LAN Data field (see J.3.1), it is
recommended for a LAN capable Nx_Port to have an IEEE 48-bit format N_Port_Name (type 1h, see
18.3).

J.3 LAN Encapsulation

J.3.1 LAN Packet Formats

Most LAN protocols are encapsulated in Ethernet packets, having the format shown in table J.1.

Table J.1 - Ethernet Packet Format

Item Size (Bytes)

Destination MAC Address 6

Source MAC Address 6

EtherType 2

LAN Data 46 .. 1500

FCS 4

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

413

IS-IS messages are encapsulated instead in IEEE 802.3 packets, having the format shown in table J.2.

J.3.2 FC Sequence Format for LAN Packets

A LAN packet is mapped to an Information Unit at the FC-4 level of Fibre Channel, which in turn is mapped
to a Sequence by the FC-2 level.

An Information Unit mapping an Ethernet packet should carry the Network_Header (see 14.4) and the
LLC/SNAP header (see J.3.3), resulting in the Information Unit format shown in table J.3.

An Information Unit mapping an IEEE 802.3 packet should carry the Network_Header (see 14.4) and the
LLC header (see J.3.4), resulting in the Information Unit format shown in table J.4.

The ESP_Header (see 14.3) may be used to secure the FC frames composing the LAN Sequence. Other
types of Optional Header should not be used in a LAN Sequence.

A LAN Sequence may consist of more than one frame. In this case the first frame of the Sequence should
include the Network_Header and the LLC/SNAP header, while the other frames should not include them.

LAN packets should be mapped to Sequences sent in Class 3.

Table J.2 - IEEE 802.3 Packet Format

Item Size (Bytes)

Destination MAC Address 6

Source MAC Address 6

Length 2

LLC Header 3

LAN Data 46 .. 1500

FCS 4

Table J.3 - FC Information Unit Mapping an Ethernet Packet

Item Size (Bytes)

Network_Header 16

LLC/SNAP Header 8

LAN Data 46 .. 1500

Table J.4 - FC Information Unit Mapping an IEEE 802.3 Packet

Item Size (Bytes)

Network_Header 16

LLC Header 3

LAN Data 46 .. 1500

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

414

J.3.3 LLC/SNAP Header

The fields of the LLC/SNAP Header (see Reasons to terminate a long lived Exchange include the
termination of Port Login and the completion of the LAN communication. A long lived Exchange may be
terminated by setting to one the Last_Sequence bit in the F_CTL field of the Frame_Header, or via the
ABTS (Abort Sequence) protocol. A long lived Exchange should not be terminated by transmitting the
LOGO ELS, since this may terminate active Exchanges on other FC-4s (see FC-LS-3).) are shown in table
J.5.

To map an Ethernet packet over Fibre Channel the following code points apply:

a) DSAP: AAh;

b) SSAP: AAh;

c) CTRL: 03h;

d) OUI: 000000h; and

e) PID: the ETHER TYPE identifying the Ethernet protocol (see Reasons to terminate a long lived
Exchange include the termination of Port Login and the completion of the LAN communication. A
long lived Exchange may be terminated by setting to one the Last_Sequence bit in the F_CTL field
of the Frame_Header, or via the ABTS (Abort Sequence) protocol. A long lived Exchange should
not be terminated by transmitting the LOGO ELS, since this may terminate active Exchanges on
other FC-4s (see FC-LS-3).).

J.3.4 LLC Header

The fields of the LLC Header (see Reasons to terminate a long lived Exchange include the termination of
Port Login and the completion of the LAN communication. A long lived Exchange may be terminated by
setting to one the Last_Sequence bit in the F_CTL field of the Frame_Header, or via the ABTS (Abort
Sequence) protocol. A long lived Exchange should not be terminated by transmitting the LOGO ELS, since
this may terminate active Exchanges on other FC-4s (see FC-LS-3).) are shown in table J.6.

Table J.5 - LLC/SNAP Header Format

Item Size (Bytes)

DSAP 1

SSAP 1

CTRL 1

OUI 3

PID 2

Table J.6 - LLC Header Format

Item Size (Bytes)

DSAP 1

SSAP 1

CTRL 1

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

415

To map an IS-IS packet over Fibre Channel the following code points apply:

a) DSAP: FEh;

b) SSAP: FEh; and

c) CTRL: 03h.

J.3.5 Frame_Header Code Points

To map a LAN packet over Fibre Channel the following code points apply:

a) R_CTL: 04h (Device_Data frame with Unsolicited Data Information Category);

b) TYPE: 05h (IP over Fibre Channel);

c) CS_CTL/Prio: 00h is the default. See 12.5 for other values;

d) DF_CTL: If the ESP_Header is not used, then 20h (Network_Header) for the first frame of a LAN
Sequence, 00h for the following frames. If the ESP_Header is used, then 60h for the first frame of
a LAN Sequence, 40h for the following frames;

e) F_CTL, SEQ_ID, SEQ_CNT, OX_ID, RX_ID: see J.5 and J.6; and

f) Parameter: if Relative Offset is not used, the content of this field should be ignored by the receiver,
and should be set to zero by the sender. If Relative Offset is used, see 12.13.

J.4 Multicast and Broadcast Mapping

LAN multicast and broadcast packets should be mapped to FC Sequences addressed to the broadcast
N_Port_ID FFFFFFh, sent in Class 3 in a unidirectional Exchange (see J.6). The Destination
N_Port_Name field of the Network_Header should be set to the value 1000-FFFF-FFFF-FFFFh for LAN
broadcast packets, and to the LAN multicast address prepended with 1000h for LAN multicast packets.

An Nx_Port supporting LAN protocols should be able to map a received broadcast Class 3 Device_Data
frame to an implicit Port Login context in order to handle LAN multicast or broadcast packets. The Receive
Data_Field Size of this implicit Port Login should be the same across all the Nx_Ports connected to the
same Fabric, otherwise FC broadcast transmission does not work. In order to reduce the need for FC
Sequence segmentation, the Receive Data_Field Size of this implicit Port Login should be 1024 bytes.
This Receive Data_Field Size requirement applies to broadcast Device_Data frames, not to ELSs.

J.5 Sequence Management

FC Sequences carrying LAN packets should be non-streamed. In order to avoid missing frame aliasing by
Sequence_ID reuse, an Nx_Port supporting LAN packets should use continuously increasing SEQ_CNT.
Each Exchange should start by setting SEQ_CNT to zero in the first frame, and every frame transmitted
after that should increment the previous SEQ_CNT by one.

J.6 Exchange Management

To transmit LAN packets to another Nx_Port or to a multicast/broadcast address, an Nx_Port should use
dedicated unidirectional Exchanges (i.e., Exchanges dedicated to LAN packet transmission and that do not
transfer Sequence Initiative). As such, the Sequence Initiative bit in the F_CTL field of the Frame_Header
should be set to zero. The RX_ID field of the Frame_Header should be set to FFFFh.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

416

Unicast FC Sequences carrying unicast Control Protocol packets should be sent in short lived
unidirectional Exchanges (i.e., Exchanges containing only one Sequence, in which both the
First_Sequence and Last_Sequence bits in the F_CTL field of the Frame_Header are set to one). Unicast
FC Sequences carrying other LAN packets should be sent in a long lived unidirectional Exchange (i.e., an
Exchange containing one or more Sequences). LAN multicast packets should not be carried in unicast
Sequences (see J.4).

Broadcast FC Sequences carrying multicast or broadcast Control Protocol packets should be sent in short
lived unidirectional Exchanges. Broadcast FC Sequences carrying other LAN multicast traffic may be sent
in long lived unidirectional Exchanges to enable a more efficient multicast distribution.

Reasons to terminate a long lived Exchange include the termination of Port Login and the completion of
the LAN communication. A long lived Exchange may be terminated by setting to one the Last_Sequence
bit in the F_CTL field of the Frame_Header, or via the ABTS (Abort Sequence) protocol. A long lived
Exchange should not be terminated by transmitting the LOGO ELS, since this may terminate active
Exchanges on other FC-4s (see FC-LS-3).

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

417

Annex K
(Informative)

RS-FEC Code Word Examples

K.1 32GFC - Idle Pattern with 64B/66B Scrambler Bypass Disabled (scr_bypass=0)

K.1.1 Overview

This annex provides example RS-FEC codewords produced by 64B/66B to 256B/257B transcoding (see
5.4.2), Reed-Solomon encoding (see 5.4.3) and scrambling (see 5.4.4) computations. Results of each
computation are provided in a tabular form. The contents of the tables are transmitted from left to right
within each row starting from the top row and ending at the bottom row. The tables contain both binary and
hexadecimal representations of the data. For the hexadecimal representation, the most significant bit of
each hex symbol is transmitted first.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

418

K.1.2 Input to the 64B/66B to 256B/257B transcoder

Table K.1 contains a sequence of 80 66-bit blocks corresponding to the PCS transmission of Idle control
characters. The initial value of the scrambler was set to 0x0ea1e77eed301ec, which corresponds to bits 6
to 63 of the first 64-bit payload in the first row of 802.3-2012, Annex 74A, Table 74A–2. Bit 6 is assigned to
S57 and bit 63 is assigned to S0 Table 5.3.3.

Table K.1 - 64B/66B to 256B/257B transcoder input

Sync
<0:1>

64-bit payload,
hex<2:65>

Sync
<0:1>

64-bit payload,
hex<2:65>

Sync
<0:1>

64-bit payload,
hex<2:65>

Sync
<0:1>

64-bit payload,
hex<2:65>

10 ad5a3bf86d9acf5c 10 de55cb85df0f7ca0 10 e6ccff8e8212b1c6 10 d63bc6c309000638

10 70e3b0ce30e0497d 10 dc8df31ec3ab4491 10 66fb9139c81cd37b 10 b57477d4f05e3602

10 8cfd495012947a31 10 e7777cf0c6d06280 10 44529cf4b4900528 10 85ce1d27750ad61b

10 456d5c71743f5c69 10 c1bf62e5dc5464b5 10 dc6011be7ea1ed54 10 1cf92c450042a75f

10 cc4b940eaf3140db 10 77bb612a7abf401f 10 c22d341e90545d98 10 ce6daf1f248bbd6d

10 dd22d0b3f9551ed6 10 574686c3f9e93898 10 2e52628f4a1282ce 10 f20c86d71944aab1

10 55133c9333808a2c 10 1aa825d8b817db4d 10 637959989f3021eb 10 976806641b26aae9

10 6a37d4531b7ed5f2 10 53c3e96d3b12fb46 10 528c7eb8481bc969 10 ab8f9980d5a54559

10 9a4d2abfda65cc33 10 94fe646efe5af02d 10 9a65ae5fcd88c03a 10 5ef08673168def9b

10 220c871a953fffc6 10 ce0bb95ac263e6c1 10 4f6a917d1a676571 10 5890918c7b687d75

10 44d2b3e43096f836 10 84cdd4fc48b79608 10 b3e4503e3c824a8c 10 fd6d0b1a39687929

10 1730167c08302a69 10 4c15ff56de92b1ad 10 d0c2f0d4ff0dee95 10 e1422ee2e8b92125

10 ed5acaf86592fcee 10 de799be0b903c880 10 2714ffbf40bc09f6 10 c3be97c3c285009f

10 1020faf19f606631 10 93007cabbb3f8c9d 10 ef6955f7f43df5d0 10 4dbd0616afe60e1f

10 3a1e49b7c7f7bb5d 10 901d828746ceec61 10 71ed3c097158c224 10 11adb3d81e13d263

10 a350d1a343b2394b 10 eab30ca27b5b34e3 10 90359ef711ed53d9 10 9b446763c8627ea8

10 6e891c0f4842b823 10 c4d786a25727a7fc 10 094fe7da31fb60cd 10 9f9a004de5e70767

10 054bdd77b7cb4e7b 10 c598cb710558af67 10 fc386d1f99d3a925 10 4928e0b43e781893

10 5a44dd3eb8b2ad6c 10 94462af4f583d770 10 8061ba9381f51f55 10 476d4eded7c90fcc

10 1efc25aa6a7e0b4c 10 93dd968c06a56809 10 9768e9d1ba74d3b6 10 014e9dc9f13670bb

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

419

K.1.3 Output of the 64B/66B to 256B/257B transcoder

Table K.2 contains a series of 257-bit transmission words. Each row of the table is a set of 4 66-bit blocks,
representing Idle control characters output by the PCS, that has been converted to one 257-bit block (see
5.4.2). The resulting set of 20 257-bit blocks is input to the RS(528,514) encoder.

Table K.2 - 64B/66B to 256B/257B transcoder output

Header
<0:4>

Payload, hex
<5:64>

Payload, hex
<65:128>

Payload, hex
<129:192>

Payload, hex
<193:256>

00000 a5a3bf86d9acf5c de55cb85df0f7ca0 e6ccff8e8212b1c6 d63bc6c309000638

00000 7e3b0ce30e0497d dc8df31ec3ab4491 66fb9139c81cd37b b57477d4f05e3602

00000 8fd495012947a31 e7777cf0c6d06280 44529cf4b4900528 85ce1d27750ad61b

00000 46d5c71743f5c69 c1bf62e5dc5464b5 dc6011be7ea1ed54 1cf92c450042a75f

00000 c4b940eaf3140db 77bb612a7abf401f c22d341e90545d98 ce6daf1f248bbd6d

00000 d22d0b3f9551ed6 574686c3f9e93898 2e52628f4a1282ce f20c86d71944aab1

00000 5133c9333808a2c 1aa825d8b817db4d 637959989f3021eb 976806641b26aae9

00000 637d4531b7ed5f2 53c3e96d3b12fb46 528c7eb8481bc969 ab8f9980d5a54559

00000 94d2abfda65cc33 94fe646efe5af02d 9a65ae5fcd88c03a 5ef08673168def9b

00000 20c871a953fffc6 ce0bb95ac263e6c1 4f6a917d1a676571 5890918c7b687d75

00000 4d2b3e43096f836 84cdd4fc48b79608 b3e4503e3c824a8c fd6d0b1a39687929

00000 130167c08302a69 4c15ff56de92b1ad d0c2f0d4ff0dee95 e1422ee2e8b92125

00000 e5acaf86592fcee de799be0b903c880 2714ffbf40bc09f6 c3be97c3c285009f

00000 120faf19f606631 93007cabbb3f8c9d ef6955f7f43df5d0 4dbd0616afe60e1f

00000 31e49b7c7f7bb5d 901d828746ceec61 71ed3c097158c224 11adb3d81e13d263

00000 a50d1a343b2394b eab30ca27b5b34e3 90359ef711ed53d9 9b446763c8627ea8

00000 6891c0f4842b823 c4d786a25727a7fc 094fe7da31fb60cd 9f9a004de5e70767

00000 04bdd77b7cb4e7b c598cb710558af67 fc386d1f99d3a925 4928e0b43e781893

00000 544dd3eb8b2ad6c 94462af4f583d770 8061ba9381f51f55 476d4eded7c90fcc

00000 1fc25aa6a7e0b4c 93dd968c06a56809 9768e9d1ba74d3b6 014e9dc9f13670bb

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

420

K.1.4 Output of the RS(528,514) encoder

Table K.3 contains an RS(528,514) codeword. The resulting set of 20 257-bit blocks constitute the
message portion of the codeword. The parity is computed (see 5.4.3) and is appended to the message to
complete the codeword.

Table K.3 - RS(528,514) codeword output

Header <0:4>
Payload, hex

<5:64>
Payload, hex

<65:128>
Payload, hex

<129:192>
Payload, hex

<193:256>

00000 a5a3bf86d9acf5c de55cb85df0f7ca0 e6ccff8e8212b1c6 d63bc6c309000638

00000 7e3b0ce30e0497d dc8df31ec3ab4491 66fb9139c81cd37b b57477d4f05e3602

00000 8fd495012947a31 e7777cf0c6d06280 44529cf4b4900528 85ce1d27750ad61b

00000 46d5c71743f5c69 c1bf62e5dc5464b5 dc6011be7ea1ed54 1cf92c450042a75f

00000 c4b940eaf3140db 77bb612a7abf401f c22d341e90545d98 ce6daf1f248bbd6d

00000 d22d0b3f9551ed6 574686c3f9e93898 2e52628f4a1282ce f20c86d71944aab1

00000 5133c9333808a2c 1aa825d8b817db4d 637959989f3021eb 976806641b26aae9

00000 637d4531b7ed5f2 53c3e96d3b12fb46 528c7eb8481bc969 ab8f9980d5a54559

00000 94d2abfda65cc33 94fe646efe5af02d 9a65ae5fcd88c03a 5ef08673168def9b

00000 20c871a953fffc6 ce0bb95ac263e6c1 4f6a917d1a676571 5890918c7b687d75

00000 4d2b3e43096f836 84cdd4fc48b79608 b3e4503e3c824a8c fd6d0b1a39687929

00000 130167c08302a69 4c15ff56de92b1ad d0c2f0d4ff0dee95 e1422ee2e8b92125

00000 e5acaf86592fcee de799be0b903c880 2714ffbf40bc09f6 c3be97c3c285009f

00000 120faf19f606631 93007cabbb3f8c9d ef6955f7f43df5d0 4dbd0616afe60e1f

00000 31e49b7c7f7bb5d 901d828746ceec61 71ed3c097158c224 11adb3d81e13d263

00000 a50d1a343b2394b eab30ca27b5b34e3 90359ef711ed53d9 9b446763c8627ea8

00000 6891c0f4842b823 c4d786a25727a7fc 094fe7da31fb60cd 9f9a004de5e70767

00000 04bdd77b7cb4e7b c598cb710558af67 fc386d1f99d3a925 4928e0b43e781893

00000 544dd3eb8b2ad6c 94462af4f583d770 8061ba9381f51f55 476d4eded7c90fcc

00000 1fc25aa6a7e0b4c 93dd968c06a56809 9768e9d1ba74d3b6 014e9dc9f13670bb

Parity, hex <0:63>
Parity, hex
<64:127>

Parity, hex
<128:139>

0be96448a1153f95 d8adb9032ab47d9c d0b

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

421

K.1.5 Output of the PN-5280 scrambler

Table K.4 contains the RS(528,514) codeword scrambled according to the PN-5280 scrambler with the
initial value defined in 5.4.4.

K.2 32GFC - Idle and LPI Patterns with 64B/66B Scrambler Bypass Enabled
(scr_bypass=1)

Table K.4 - Scrambled RS(528,514) codeword output

Scrambled Header
<0:4>

Scrambled
Payload, hex

<5:64>

Scrambled
Payload, hex

<65:128>

Scrambled
Payload, hex

<129:192>

Scrambled
Payload, hex

<193:256>

11111 5a5c407933065dc de57612f75a5d9f5 b333006e82101b6c 69c43b965cd5536d

01010 d4a4f318f1fb028 898df30396ff11c4 1c513ec637fcd37a e020482b0af49e28

10101 d081c0ded6b85ce 21ddd470c6a2c820 eef859a1e96ff888 85c4b78b4af5ab4e

01011 1c7f79bdeeaa393 7e4033b09c5464b8 893444ee640b46ab e9d92d14550218a0

11101 91e3e5bf0c4147a 886e1ed4c415c29f ca0f9eb43ae4b8cf 9392647f2609172c

10111 2cd6a1bbeffe17c fc27792d460011cd 2b524b721a52d7dc 48a679292c24bbe0

01010 8b943ccc6d37679 cfdd55dd474224d8 35dbf31860e281eb 3e3d031beedc00c9

10101 362810164816f0d a26942873b1f11ed ec269fed1c1c3644 ab9fc32b8e5aaeac

01010 c0f80bdf0dab3ce c0019a1bab2cf084 4f30df0bc3a240ad a3b08671b3d74a64

01010 899ecdfc5382abb e1f147a439c94c77 4c227b969ccb5924 5da773157a6d07f1

01111 b27ea8ea3d450bb acbd0b09824d54fd 444658c969ddb3e0 fb45893db69a732c

11000 b4ecd93e621d53c 0c7f2753f06db14d c0290f9e80ec016f 4f423fa2e59edfac

00000 e66f504d26dc011 28199ab4b920377f 1714ed40b623f61f 3c5717c1b68529e0

11111 c30fb6e608ef9cd e8ffc66bb86f8cf6 908145f7f6c23f2f b7bcf983efe0b21e

10101 6e199e7c2024428 4fe27d78d00ecee9 713f43a9d151c4db 647249fde2b9d24a

00111 25f6b5db24232a0 14be5309d0a5d4a3 443589dd6ffd43c2 cfbd8ddc7acf8ba8

01000 4b6f4021fbc47d3 5182780849b2f024 080d67f224ac13cd 9f10a4aeb03ad22e

11100 84edb887eb1e084 3b4b81dea40eb60d 17a86ac51982d390 1829b4e14084b76f

11101 015053e354ff0a9 c12bd06c007e7dd0 eaf4e7fbbe4a9df5 32456bd478c3f79b

01011 f528b1cb27f7dbe 55c639d7e374e3e6 a6489c3f10746891 9407e7153e322bab

Scrambled Parity,
hex <0:63>

Scrambled Parity,
hex <64:127>

Scrambled Parity,
hex <128:139>

e029dbcd41d47ad0 2343daf19112f025 ce5

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

422

K.2.1 Overview

This annex provides example RS-FEC codewords produced by 64B/66B to 256B/257B transcoding (see
5.4.2), Reed-Solomon encoding (see 5.4.3) and PN-5280 scrambling (see 5.4.4) computations. Results of
each computation are provided in a tabular form. The contents of the tables are transmitted from left to
right within each row starting from the top row and ending at the bottom row. The tables contain both binary
and hexadecimal representations of the data. For the hexadecimal representation, the most significant bit
of each hex symbol is transmitted first.

K.2.2 Input to the 64B/66B to 256B/257B transcoder

Table K.5 contains a sequence of 80 66-bit blocks corresponding to the PCS transmission of Idle Control
characters with the 64B/66B scrambler (see 5.3.3) bypassed.

Table K.5 - 64B/66B to 256B/257B transcoder Idle input

Sync
<0:1>

64-bit payload,
hex <2:65>

Sync
<0:1>

64-bit payload,
hex <2:65>

Sync
<0:1>

64-bit payload,
hex <2:65>

Sync
<0:1>

64-bit payload,
hex <2:65>

10 7800000000000000 10 7800000000000000 10 7800000000000000 10 7800000000000000

10 7800000000000000 10 7800000000000000 10 7800000000000000 10 7800000000000000

10 7800000000000000 10 7800000000000000 10 7800000000000000 10 7800000000000000

10 7800000000000000 10 7800000000000000 10 7800000000000000 10 7800000000000000

10 7800000000000000 10 7800000000000000 10 7800000000000000 10 7800000000000000

10 7800000000000000 10 7800000000000000 10 7800000000000000 10 7800000000000000

10 7800000000000000 10 7800000000000000 10 7800000000000000 10 7800000000000000

10 7800000000000000 10 7800000000000000 10 7800000000000000 10 7800000000000000

10 7800000000000000 10 7800000000000000 10 7800000000000000 10 7800000000000000

10 7800000000000000 10 7800000000000000 10 7800000000000000 10 7800000000000000

10 7800000000000000 10 7800000000000000 10 7800000000000000 10 7800000000000000

10 7800000000000000 10 7800000000000000 10 7800000000000000 10 7800000000000000

10 7800000000000000 10 7800000000000000 10 7800000000000000 10 7800000000000000

10 7800000000000000 10 7800000000000000 10 7800000000000000 10 7800000000000000

10 7800000000000000 10 7800000000000000 10 7800000000000000 10 7800000000000000

10 7800000000000000 10 7800000000000000 10 7800000000000000 10 7800000000000000

10 7800000000000000 10 7800000000000000 10 7800000000000000 10 7800000000000000

10 7800000000000000 10 7800000000000000 10 7800000000000000 10 7800000000000000

10 7800000000000000 10 7800000000000000 10 7800000000000000 10 7800000000000000

10 7800000000000000 10 7800000000000000 10 7800000000000000 10 7800000000000000

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

423

Table K.6 contains a sequence of 80 66-bit blocks corresponding to the PCS transmission of LPI Control
characters with the 64B/66B scrambler (see 5.3.3) bypassed.

Table K.6 - 64B/66B to 256B/257B transcoder LPI input

Sync
<0:1>

64-bit payload,
hex <2:65>

Sync
<0:1>

64-bit payload,
hex <2:65>

Sync
<0:1>

64-bit payload,
hex <2:65>

Sync
<0:1>

64-bit payload,
hex <2:65>

10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830

10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830

10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830

10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830

10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830

10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830

10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830

10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830

10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830

10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830

10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830

10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830

10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830

10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830

10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830

10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830

10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830

10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830

10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830

10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830 10 7860c183060c1830

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

424

K.2.3 Output of the 64B/66B to 256B/257B transcoder

Table K.7 contains a series of 257-bit transmission words. Each row of the table is a set of 4 66-bit blocks,
representing Idle control characters output by the PCS, that has been converted to one 257-bit block (see
5.4.2). The resulting set of 20 257-bit blocks is input to the RS(528,514) encoder.

Table K.7 - 64B/66B to 256B/257B transcoder Idle output

Header
<0:4>

Payload,
hex <5:64>

Payload,
hex <65:128>

Payload,
hex <129:192>

Payload,
hex <193:256>

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

425

Table K.8 contains a series of 257-bit transmission words. Each row of the table is a set of 4 66-bit blocks,
representing LPI control characters output by the PCS, that has been converted to one 257-bit block (see
5.4.2). The resulting set of 20 257-bit blocks is input to the RS(528,514) encoder.

Table K.8 - 64B/66B to 256B/257B transcoder LPI output

Header
<0:4>

Payload,
hex <5:64>

Payload,
hex <65:128>

Payload,
hex <129:192>

Payload,
hex <193:256>

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

426

K.2.4 Output of the RS(528,514) encoder

Table K.9 contains an RS(528,514) codeword output result using input from Table K.7 - 64B/66B to 256B/
257B transcoder Idle output. The resulting set of 20 257-bit blocks constitute the message portion of the
codeword. The parity is computed (see 5.4.3) and is appended to the message to complete the codeword.

Table K.9 - RS(528,514) codeword Idle output

Header
<0:4>

Payload,
hex <5:64>

Payload,
hex <65:128>

Payload,
hex <129:192>

Payload,
hex <193:256>

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

00000 700000000000000 7800000000000000 7800000000000000 7800000000000000

Parity,
hex <0:63>

Parity,
hex <64:127>

Parity,
hex <128:139>

d2dc96cbdac17213 73bea79e7d8a84cb e1c

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

427

Table K.10 contains an RS(528,514) codeword output result using input from Table K.8 - 64B/66B to 256B/
257B transcoder LPI output. The resulting set of 20 257-bit blocks constitute the message portion of the
codeword. The parity is computed (see 5.4.3) and is appended to the message to complete the codeword.

Table K.10 - RS(528,514) codeword LPI output

Header
<0:4>

Payload,
hex <5:64>

Payload,
hex <65:128>

Payload,
hex <129:192>

Payload,
hex <193:256>

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

00000 760C183060C1830 7860C183060C1830 7860C183060C1830 7860C183060C1830

Parity,
hex <0:63>

Parity,
hex <64:127>

Parity,
hex <128:139>

539673db0d14ee06 f37c97404d327cd7 b96

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

428

K.2.5 Output of the PN-5280 scrambler

Table K.11 contains the RS(528,514) codeword scrambled according to the PN-5280 scrambler with the
initial value defined in 5.4.4.

Table K.11 - FEC block scrambled with PN-5280 sequence for IDLE

Header
<0:4>

Payload,
hex <5:64>

Payload,
hex <65:128>

Payload,
hex <129:192>

Payload,
hex <193:256>

11111 8FFFFFFFEAAAA80 7802AAAAAAAAA555 2DFFFFE00002AAAA C7FFFD5555D55555

01010 DA9FFFFBFFFF955 2D00001D55545555 02AAAFFFFFE00001 2D543FFFFAAAA82A

10101 2F5555DFFFFFFFF BEAAA8800072AAA0 D2AAC5555DFFFDA0 780AAAAC3FFF7D55

01011 2AAABEAAAD5FFFA C7FF51554000000D 2D5455501AAAABFF 8D2001515540BFFF

11101 255AA555FF554A1 87D57FFEBEAA8280 7022AAAAAAB0E557 25FFCB600282AA41

10111 8EFBAA847AAFFAA D361FFEEBFE92955 7D0029FD50405512 C2AAFFFE35601151

01010 AAA7F5FF553FC55 AD757005FF55FF95 2EA2AA80FFD2A000 D155057FF5FAAA20

10101 25555527FFFBAFF 89AAABEA000DEAAB C6AAE1555407FF2D 78105AAB5BFFEBF5

01010 242AA022ABF7FFD 2CFFFE75557600A9 AD5571540E2A8097 85400002A55AA5FF

01010 D956BC55007D57D 57FAFEFEFBAAAAB6 7B48EAEB86AC3C55 7D37E29901057A84

01111 8F5596A9342A88D 5070DFF5CAFAC2F5 8FA208F7555FF96C 7E2882278FF20A05

11000 D7EDBEFEE11FF55 386AD8052EFF00E0 68EBFF4A7FE1EFFA D60011400D27FE89

00000 73C3FFCB7FF3CFF 8E6001540023FFFF 480012FFF69FFFE9 87E980027400297F

11111 A10019FFFEE9FFC 03FFBAC00350006B 07E8100002FFCAFF 8201FF954006BC01

10101 2FFD05005F5FF75 A7FFFFFF96C02288 78D27FA0A00906FF 0DDFFA25FCAA0029

00111 F0FBAFEF1F00BEB 860D5FABABFEE040 AC00172A7E10101B 2CF9EABFB2ADF500

01000 53FE80D57FEFFF0 ED55FEAA1E9557D8 7942802815577300 788AA4E355DDD549

11100 F0506FFC97AAEFF 86D34AAFA156196A 939007DA80517AB5 290154557EFCAFFC

11101 251D8008DFD5DC5 2D6DFA98F5FDAAA0 12955D683FBF82A0 0D28250AAF0AF857

01011 9AEAEB6D80176F2 BE1BAF5BE5D18BEF 492075EEAA00BB27 ED497ADCCF045B10

Parity,
hex <0:63>

Parity,
hex <64:127>

Parity,
hex <128:139>

391C294E3A003756 8850C46CC62C0972 FF2

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

429

Table K.12 contains the RS(528,514) codeword scrambled according to the PN-5280 scrambler with
theinitial value defined in 5.4.4.

K.3 128GFC

See IEEE 802.3bj-2014, Annex 91A, Sections 91A.1 and 91A.2 for example RS-FEC codewords.

Table K.12 - FEC block scrambled with PN-5280 sequence for LPI

Header
<0:4>

Payload,
hex <5:64>

Payload,
hex <65:128>

Payload,
hex <129:192>

Payload,
hex <193:256>

11111 89F3E7CF8A6B2B0 78626B29ACA6BD65 2D9F3E63060EB29A C79F3CD653D94D65

01010 DC93E7CB9F3E165 2D60C19E53584D65 02CA6E7CF9EC1831 2D34FE7CFCA6B01A

10101 29594DEF9F3E7CF BECA6903067EB290 D2CA04D65BF3E590 786A6B2F39F36565

01011 2CA6A69ACD9E7CA C79F90D6460C183D 2D3494D31CA6B3CF 8D40C0D2534CA7CF

11101 2356BD659F94C91 87B5BE7DB8A69AB0 70426B29ACBCFD67 259F0AE3048EB271

10111 88F7B2B41A6E79A D3013E6DB9E53165 7D60E87E564C4D22 C2CA3E7D336C0961

01010 ACABEDCF35FE465 AD15B186F959E7A5 2EC26B03F9DEB830 D135C4FCF3F6B210

10101 23594D179F3A2CF 89CA6A690601F29B C6CA20D6520BE71D 78709B285DF3F3C5

01010 2226B812CB367CD 2C9F3FF6537A1899 AD35B0D7082698A7 8520C181A356BDCF

01010 DF5AA46560BCD4D 579A3F7DFDA6B286 7B282B6880A02465 7D57231A070962B4

01111 89598E9954EB0BD 50101E76CCF6DAC5 8FC2C9745353E15C 7E4843A489FE1235

11000 D1E1A6CE81DE765 380A198628F318D0 688B3EC979EDF7CA D660D0C30B2BE6B9

00000 75CFE7FB1F324CF 8E00C0D7062FE7CF 4860D37CF093E7D9 87894181720C314F

11111 A70C01CF9E287CC 039F7B43055C185B 0788D18304F3D2CF 82613E16460AA431

10101 29F11D303F9E745 A79F3E7C90CC3AB8 78B2BE23A6051ECF 0DBF3BA6FAA61819

00111 F6F7B7DF7FC13DB 866D9E28ADF2F870 AC60D6A9781C082B 2C992B3CB4A1ED30

01000 55F298E51F2E7C0 ED353F2918994FE8 792241AB135B6B30 78EA656053D1CD79

11100 F65C77CCF76B6CF 86B38B2CA75A015A 93F0C659865D6285 296195D678F0B7CC

11101 23119838BF145F5 2D0D3B1BF3F1B290 12F59CEB39B39A90 0D48E489A906E067

01011 9CE6F35DE0D6EC2 BE7B6ED8E3DD93DF 4940B46DAC0CA317 ED29BB5FC9084320

Parity,
hex <0:63>

Parity,
hex <64:127>

Parity,
hex <128:139>

B856CC5EEDD5AB43 0892F4B2F694F16E A78

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

430

Annex L
(Informative)

Bibliography

1) Lin, Shu and Daniel J. Costello, Error Control Coding, Prentice Hall; 2nd edition, April 1, 2004.

This is T11 document T11/15-253v2 Project T11/2238-D Rev 1.40

431

	Revision History
	Rev 0.10 - 17 April 2012

	Table of Contents
	List of Figures
	List of Tables
	FOREWORD
	1 Scope
	2 References
	2.1 Qualification and availability of references
	2.2 Approved references
	2.3 References under development
	2.4 Other references

	3 Definitions, abbreviations, conventions and keywords
	3.1 Definitions
	128GFC
	16GFC
	256B/257B
	32GFC
	64B/66B
	8B/10B
	acknowledged class of service
	address identifier
	Arbitrated Loop topology
	buffer-to-buffer Credit (BB_Credit)
	buffer-to-buffer Credit_Count (BB_Credit_CNT)
	B_Port
	bridge
	buffer
	character
	circuit
	class of service
	Class 2 service
	Class 3 service
	Class F service
	code violation
	comma
	continuously increasing relative offset
	Core N_Port_Name
	Credit
	current running disparity
	data byte
	data character
	Data frame
	decoding
	delimiter
	descrambling
	Destination_Identifier (D_ID)
	destination Nx_Port
	discard policy
	disparity
	Domain Controller
	Domain_ID
	Emission Lowering Protocol
	encoding
	end-to-end Credit (EE_Credit)
	end-to-end Credit_Count (EE_Credit_CNT)
	End-to-end ESP_Header
	E_Port
	Exchange
	Exchange_Identifier (X_ID)
	Exchange Status Block
	Extended_Header
	F_Port
	Fabric
	Fabric_Name
	FC-0 level
	FC-1 level
	FC-2 level
	FC-2 Multiplexer sublevel
	FC-2 Physical sublevel
	FC-2 Virtual sublevel
	FC-3 level
	FC-4 level
	FC_Port
	FL_Port
	F_Port_Name
	fibre
	Fibre Channel interaction space
	Fibre Channel Protocol (FCP)
	Fill Word
	Forward Error Correction (FEC)
	frame
	frame content
	Frame_Header
	Frame Scrambling
	Fx_Port
	gateway
	Host
	hub
	Idle
	Infinite buffer
	Information Category
	Information Unit
	initial relative offset
	Internet Protocol
	IP address
	lane
	link
	Link-by-link ESP_Header
	Link Control Facility (LCF)
	local Fx_Port
	Low Power Idle (LPI)
	LPI Mode
	L_Port
	Multiplexer
	Name_Identifier
	Network_Address_Authority (NAA)
	Network_Address_Authority (NAA) identifier
	NL_Port
	node
	Node_Name
	N_Port
	N_Port_ID
	N_Port_ID Virtualization (NPIV)
	N_Port_Name
	Nx_Port
	open
	Ordered Set
	Originator
	Originator Exchange_ID (OX_ID)
	payload
	PE_Port
	PF_Port
	Platform
	PN_Port
	Policy
	Port VF_ID
	Primitive Sequence
	Primitive Signal
	Private NL_Port
	Public NL_Port
	Quality of Service (QoS)
	random relative offset
	receiver
	Recovery_Qualifier
	relative offset
	relative offset space
	remote Fx_Port
	Responder
	Responder Exchange_ID (RX_ID)
	run length
	running disparity
	scrambling
	Sequence
	Sequence_ID (SEQ_ID)
	Sequence Initiator
	Sequence_Qualifier
	Sequence Recipient
	Sequence Status Block
	Signal Failure
	Small Computer System Interface (SCSI)
	Source_Identifier (S_ID)
	source Nx_Port
	special character
	special code
	Special Function
	streamed Sequence
	storage device
	Switch
	synchronization
	topology
	Training Frame
	Training Pattern
	Transmission Character
	transmission code
	Transmission Word
	transmitter
	Transmitter Training Signal
	Training Unit Interval (TUI)
	Unrecognized Ordered Set
	upper level
	Upper Level Protocol (ULP)
	valid frame
	VFT_Header
	VFT Tagging PF_Port
	VFT Tagging PN_Port
	Virtual Fabric (VF)
	Virtual Fabric Identifier (VF_ID)
	Virtual Fabric Tagging Header (VFT_Header)
	VN_Port
	vnode
	well-known addresses
	word
	Worldwide_Name

	3.2 Editorial conventions
	3.3 State machines
	3.3.1 Overview
	3.3.2 States
	3.3.3 State variables
	3.3.4 State timers
	3.3.5 State transitions
	3.3.6 State diagram conventions

	3.4 Abbreviations, acronyms, and symbols
	3.4.1 Acronyms and other abbreviations
	3.4.2 Symbols

	3.5 Keywords

	4 Structure and Concepts
	4.1 Introduction
	4.2 Functional levels
	4.2.1 Overview
	4.2.2 FC-0 general description
	4.2.3 FC-1 general description
	4.2.4 FC-2 general description
	4.2.5 FC-3 general description
	4.2.6 FC-4 general description

	4.3 Architectural components of nodes
	4.4 Physical model
	4.5 Communication models
	4.6 Topology
	4.6.1 Types
	4.6.2 Point-to-point topology
	4.6.3 Fabric topology
	4.6.4 Arbitrated Loop topology

	4.7 Classes of service
	4.7.1 General
	4.7.2 Class 2 service - multiplex
	4.7.3 Class 3 service - datagram
	4.7.4 Class F service - Fabric

	4.8 General Fabric model
	4.8.1 General
	4.8.2 Fabric Ports (Fx_Ports)
	4.8.3 Frame delivery service

	4.9 Generic Services
	4.10 Building Blocks
	4.10.1 Building block hierarchy
	4.10.2 Frame
	4.10.3 Sequence
	4.10.3.1 Introduction
	4.10.3.2 Sequence_Identifier (SEQ_ID)
	4.10.3.3 Sequence Status Blocks

	4.10.4 Exchange
	4.10.4.1 Introduction
	4.10.4.2 Exchange_Identifiers (OX_ID and RX_ID)
	4.10.4.3 Exchange Status Blocks

	4.10.5 Protocols
	4.10.5.1 Primitive Sequence protocols
	4.10.5.2 Fabric Login protocol
	4.10.5.3 Additional N_Port_ID protocol
	4.10.5.4 N_Port Login protocol
	4.10.5.5 Data transfer protocol
	4.10.5.6 Nx_Port Logout protocol
	4.10.5.7 Fabric Logout protocol

	4.11 Segmentation and reassembly of application data
	4.12 Error detection and recovery

	5 FC-1 transmission codes
	5.1 Overview
	5.2 8B/10B transmission code
	5.2.1 Overview
	5.2.2 Notation conventions
	5.2.3 Valid 8B/10B Transmission Characters
	5.2.4 Running disparity
	5.2.5 Generating Transmission Characters
	5.2.6 Validity of received Transmission Characters
	5.2.7 8B/10B Ordered Sets
	5.2.7.1 General
	5.2.7.2 8B/10B Frame delimiters
	5.2.7.3 8B/10B Primitive Signals
	5.2.7.4 Idle
	5.2.7.5 8B/10B Primitive Sequences

	5.3 64B/66B transmission code
	5.3.1 Overview
	5.3.2 64B/66B Transmission Word format
	5.3.3 64B/66B scrambling
	5.3.4 Invalid Synchronization Header
	5.3.5 Data Transmission Words
	5.3.6 Control Transmission Words
	5.3.6.1 Idle or LPI followed by Idle or LPI
	5.3.6.2 Idle followed by SOF
	5.3.6.3 EOF followed by Idle or LPI
	5.3.6.4 Idle / other Special Function
	5.3.6.5 Other Special Function / Idle
	5.3.6.6 Other Special Function / other Special Function
	5.3.6.7 Other Special Function / SOF
	5.3.6.8 SOF / data
	5.3.6.9 Data / EOF
	5.3.6.10 Receiver error reporting

	5.3.7 64B/66B representation of Special Functions
	5.3.7.1 64B/66B frame delimiters
	5.3.7.2 64B/66B Primitive Signals
	5.3.7.3 64B/66B Primitive Sequences

	5.4 256B/257B transmission code
	5.4.1 Overview
	5.4.2 64B/66B to 256B/257B Transcoding
	5.4.3 Reed-Solomon encoder
	5.4.4 Scrambler
	5.4.5 Descrambler
	5.4.6 Reed-Solomon decoder
	5.4.7 256B/257B to 64B/66B transcoder
	5.4.8 Transmit Bit Ordering
	5.4.9 Receive Bit Ordering

	5.5 Transmitter Training Signal
	5.5.1 Overview
	5.5.2 Training Frame
	5.5.3 Training Pattern

	5.6 FEC for 128GFC
	5.6.1 Overview
	5.6.2 Functional block diagram
	5.6.2.1 64B/66B to 256B/257B Transcoder
	5.6.2.2 Alignment marker mapping and insertion
	5.6.2.3 Reed-Solomon encoder
	5.6.2.4 Symbol distribution
	5.6.2.5 Transmit bit ordering
	5.6.2.6 Alignment lock and deskew
	5.6.2.7 Lane reorder
	5.6.2.8 Reed-Solomon decoder
	5.6.2.9 Alignment marker removal
	5.6.2.10 256B/257B to 64B/66B transcoder
	5.6.2.11 Receive bit ordering

	6 FC-1 Transmission Word Synchronization
	6.1 Scope
	6.2 Introduction
	6.3 8B/10B Transmission Word Synchronization
	6.3.1 State Diagram Overview
	6.3.2 Operational and not operational conditions
	6.3.3 Transmission Word Synchronization Procedure
	6.3.3.1 Bit Synchronization
	6.3.3.2 Transmission Word Synchronization detection
	6.3.3.2.1 Introduction
	6.3.3.2.2 Achieving Transmission Word Synchronization
	6.3.3.2.3 8B/10B Transmission Word Synchronization for speed negotiation
	6.3.3.2.4 Transmission Word alignment methods
	6.3.3.2.4.1 Continuous-mode alignment
	6.3.3.2.4.2 Explicit-mode alignment

	6.3.4 Loss of Transmission Word Synchronization
	6.3.4.1 Introduction
	6.3.4.2 Detection of an invalid Transmission Word

	6.3.5 State transitions
	6.3.5.1 Default State
	6.3.5.2 Loss of Synchronization state
	6.3.5.3 Word Synchronization Acquired states
	6.3.5.3.1 Loss-of-Synchronization procedure
	6.3.5.3.2 No Invalid Transmission Word Detected state
	6.3.5.3.3 First Invalid Transmission Word Detected state
	6.3.5.3.4 Second Invalid Transmission Word Detected state
	6.3.5.3.5 Third Invalid Transmission Word Detection state

	6.3.5.4 Reset state

	6.4 64B/66B Transmission Word Synchronization
	6.4.1 Overview
	6.4.2 64B/66B Transmission Word Synchronization for speed negotiation
	6.4.3 Detection of an invalid 64B/66B Transmission Word

	6.5 Transmitter Training Signal Transmission Word Synchronization
	6.5.1 Introduction
	6.5.2 Transmitter Training Transmission Word Synchronization for speed negotiation

	6.6 256B/257B Transmission Word Synchronization
	6.6.1 Overview
	6.6.2 RS-FEC rapid code Word Synchronization process

	7 FC_Port state machine
	7.1 Scope
	7.2 Introduction
	7.3 Normal operation states
	7.4 Active State (AC)
	7.5 Link Recovery
	7.5.1 Link Recovery hierarchy
	7.5.2 LR Transmit State (LR1)
	7.5.3 LR Receive State (LR2)
	7.5.4 LRR Receive State (LR3)

	7.6 Link Failure
	7.6.1 NOS Receive State (LF1)
	7.6.2 NOS Transmit State (LF2)

	7.7 Offline
	7.7.1 General
	7.7.2 OLS Transmit State (OL1)
	7.7.3 OLS Receive State (OL2)
	7.7.4 Wait for OLS State (OL3)

	7.8 Primitive Sequence Protocols
	7.8.1 Functions
	7.8.2 Link Initialization Protocol
	7.8.3 Link Reset Protocol
	7.8.4 Link Failure Protocol
	7.8.5 Online-to-offline Protocol

	8 Link speed negotiation
	8.1 Scope
	8.2 Speed negotiation overview
	8.3 Link physical architecture and requirements
	8.4 Speed negotiation requirements on L_Ports
	8.5 Primitives
	8.5.1 Overview
	8.5.2 32GFC speed negotiation
	8.5.3 128GFC speed negotiation

	8.6 Speed negotiation algorithm
	8.6.1 Algorithm overview
	8.6.2 Speed Negotiation stage specification conventions
	8.6.2.1 Diagramming conventions
	8.6.2.2 Terminology

	8.6.3 Stage 1 - Wait_for_signal
	8.6.4 Stage 2 - Negotiate_master and Watchdog timer
	8.6.5 Stage 3 - Negotiate_follow
	8.6.6 Optional Stage 5 - Slow_wait
	8.6.7 Timing requirements

	9 Transmitter training
	9.1 Scope
	9.2 Overview
	9.3 Transmitter training state machines
	9.3.1 Overview
	9.3.2 Timers
	9.3.3 Variables
	9.3.4 Training_Sequencer state machine
	9.3.4.1 Overview
	9.3.4.2 States
	9.3.4.2.1 Train_Init
	9.3.4.2.2 Train_Lock
	9.3.4.2.3 Train_Local
	9.3.4.2.4 Train_Remote
	9.3.4.2.5 Link_Ready

	9.3.5 Cn_Controller state machines
	9.3.5.1 Overview
	9.3.5.2 States
	9.3.5.2.1 Tx_Ready
	9.3.5.2.2 Command
	9.3.5.2.3 Clear
	9.3.5.2.4 GlobalCommand
	9.3.5.2.5 GlobalClear

	9.3.6 Cn_Responder state machines
	9.3.6.1 Overview
	9.3.6.2 States
	9.3.6.2.1 Rx_Ready
	9.3.6.2.2 Update
	9.3.6.2.3 Acknowledge

	9.3.7 Link_Qual_Check state machine
	9.3.7.1 Overview
	9.3.7.2 States
	9.3.7.2.1 Link_Test

	10 Energy Efficient Fibre Channel
	10.1 Overview
	10.2 Energy Efficient Negotiation
	10.3 Energy Efficient Fibre Channel and FEC
	10.4 Alert Signal
	10.5 Transmitter Turn Off
	10.6 LPI Mode
	10.6.1 Overview
	10.6.2 LPI Mode Entry
	10.6.3 LPI Mode Timing Parameters
	10.6.4 Energy Efficient Fibre Channel State Diagrams
	10.6.4.1 Energy Efficient State Variables
	10.6.4.2 LPI Mode Transmitter State Diagram
	10.6.4.3 LPI Mode Receiver State Diagram

	11 Frame Transmission and Reception
	11.1 Scope
	11.2 General frame format
	11.3 Frame transmission and reception
	11.3.1 Overview
	11.3.2 Fill Words
	11.3.3 Frame Transmission
	11.3.4 Frame byte order
	11.3.5 Emission Lowering Protocol
	11.3.6 Frame Scrambling
	11.3.7 Start-of-Frame (SOF) delimiter
	11.3.7.1 Introduction
	11.3.7.2 SOF Initiate (SOFix)
	11.3.7.2.1 Applicability
	11.3.7.2.2 SOF Initiate Class 2 (SOFi2)
	11.3.7.2.3 SOF Initiate Class 3 (SOFi3)

	11.3.7.3 SOF Normal (SOFnx)
	11.3.7.3.1 Applicability
	11.3.7.3.2 SOF Normal Class 2 (SOFn2)
	11.3.7.3.3 SOF Normal Class 3 (SOFn3)

	11.3.7.4 SOF Fabric (SOFf)

	11.3.8 End-of-Frame (EOF) delimiter
	11.3.8.1 Introduction
	11.3.8.2 Valid frame content
	11.3.8.2.1 EOF Normal (EOFn)
	11.3.8.2.2 EOF Terminate (EOFt)

	11.3.8.3 Invalid frame content
	11.3.8.3.1 General
	11.3.8.3.2 End of Frame Abort (EOFa)
	11.3.8.3.3 EOF Invalid (EOFni)

	11.3.9 Frame reception
	11.3.9.1 Rules
	11.3.9.2 Frame validity
	11.3.9.3 Invalid frame processing

	11.4 Frame Content
	11.4.1 Scope
	11.4.2 Extended_Headers
	11.4.3 Frame_Header
	11.4.4 Data_Field
	11.4.5 CRC

	12 Frame_Header
	12.1 Scope
	12.2 Introduction
	12.3 Routing Control (R_CTL)
	12.3.1 Introduction
	12.3.2 ROUTING Field
	12.3.3 INFORMATION Field

	12.4 Address identifiers (D_ID, S_ID)
	12.4.1 General
	12.4.2 Reserved address identifiers
	12.4.3 Destination_ID (D_ID)
	12.4.4 Source_ID (S_ID)

	12.5 Class Specific Control (CS_CTL)/Priority
	12.5.1 Introduction
	12.5.1.1 CS_CTL

	12.5.2 Priority

	12.6 Data structure type (TYPE)
	12.7 Frame Control (F_CTL)
	12.7.1 Introduction
	12.7.2 Exchange Context
	12.7.3 Sequence Context
	12.7.4 First_Sequence
	12.7.5 Last_Sequence
	12.7.6 End_Sequence
	12.7.7 CS_CTL/Priority Enable
	12.7.8 Sequence Initiative
	12.7.9 ACK_Form
	12.7.10 Abort Sequence Condition
	12.7.11 Relative offset present
	12.7.12 Exchange reassembly
	12.7.13 Fill Bytes
	12.7.14 F_CTL bits on Data frames
	12.7.15 F_CTL bits on Link_Control frames

	12.8 Sequence_ID (SEQ_ID)
	12.9 Data Field Control (DF_CTL)
	12.10 Sequence count (SEQ_CNT)
	12.11 Originator Exchange_ID (OX_ID)
	12.12 Responder Exchange_ID (RX_ID)
	12.13 Parameter

	13 Extended_Headers
	13.1 Scope
	13.2 Introduction
	13.3 VFT_Header and Virtual Fabrics
	13.3.1 Overview
	13.3.2 VFT Tagging PN_Port Logical Model
	13.3.3 Tagging Process
	13.3.4 VFT_Header Format

	13.4 Inter-Fabric Routing Extended Header (IFR_Header)
	13.4.1 Overview
	13.4.2 IFR_Header format

	13.5 Encapsulation Extended Header (Enc_Header)

	14 Optional headers
	14.1 Scope
	14.2 Introduction
	14.3 ESP_Header
	14.3.1 Overview
	14.3.2 Application of End-to-end ESP_Header processing
	14.3.3 Application of Link-by-link ESP_Header processing to a frame with an Enc_Header
	14.3.4 Application of Link-by-link ESP_Header processing to a frame with a VFT_Header

	14.4 Network_Header
	14.5 Device_Header

	15 Data frames and responses
	15.1 Scope
	15.2 Data frames
	15.2.1 Introduction
	15.2.2 Frame Delimiters
	15.2.3 Addressing
	15.2.4 Data_Field
	15.2.5 Payload size
	15.2.6 Responses
	15.2.6.1 Introduction
	15.2.6.2 ACK frames - successful Data frame delivery
	15.2.6.3 Link_Response frames - Unsuccessful Data frame delivery

	15.3 Link_Control Frames
	15.3.1 Introduction
	15.3.2 Link_Continue function
	15.3.2.1 Introduction
	15.3.2.2 Acknowledge (ACK)
	15.3.2.2.1 General
	15.3.2.2.2 ACK_1
	15.3.2.2.3 ACK_0
	15.3.2.2.4 Header definition for all ACK forms
	15.3.2.2.4.1 Addressing
	15.3.2.2.4.2 F_CTL
	15.3.2.2.4.3 SEQ_ID
	15.3.2.2.4.4 SEQ_CNT
	15.3.2.2.4.5 Parameter field

	15.3.2.2.5 Responses

	15.3.3 Link_Response
	15.3.3.1 Introduction
	15.3.3.2 Fabric Busy (F_BSY)
	15.3.3.2.1 Description
	15.3.3.2.2 Responses

	15.3.3.3 N_Port Busy (P_BSY)
	15.3.3.3.1 Description
	15.3.3.3.2 Responses

	15.3.3.4 Reject (P_RJT, F_RJT)
	15.3.3.4.1 Introduction
	15.3.3.4.2 Parameter field
	15.3.3.4.2.1 Reject Code format
	15.3.3.4.2.2 Invalid D_ID
	15.3.3.4.2.3 Invalid S_ID
	15.3.3.4.2.4 Nx_Port not available, temporary
	15.3.3.4.2.5 Nx_Port not available, permanent
	15.3.3.4.2.6 Class not supported
	15.3.3.4.2.7 Delimiter usage error
	15.3.3.4.2.8 TYPE not supported
	15.3.3.4.2.9 Invalid Link_Control
	15.3.3.4.2.10 Invalid R_CTL field
	15.3.3.4.2.11 Invalid F_CTL field
	15.3.3.4.2.12 Invalid OX_ID
	15.3.3.4.2.13 Invalid RX_ID
	15.3.3.4.2.14 Invalid SEQ_ID
	15.3.3.4.2.15 Invalid DF_CTL
	15.3.3.4.2.16 Invalid SEQ_CNT
	15.3.3.4.2.17 Invalid Parameter field
	15.3.3.4.2.18 Exchange Error
	15.3.3.4.2.19 Protocol Error
	15.3.3.4.2.20 Incorrect length
	15.3.3.4.2.21 Unexpected ACK
	15.3.3.4.2.22 Class of service not supported by entity at FF FF FEh
	15.3.3.4.2.23 Login Required
	15.3.3.4.2.24 Excessive Sequences attempted
	15.3.3.4.2.25 Unable to Establish Exchange
	15.3.3.4.2.26 Fabric path not available
	15.3.3.4.2.27 Invalid CS_CTL Field
	15.3.3.4.2.28 Invalid class of service
	15.3.3.4.2.29 Invalid Attachment
	15.3.3.4.2.30 Vendor Specific Reject

	15.3.3.4.3 Responses

	15.3.4 Link_Control commands
	15.3.4.1 Introduction
	15.3.4.2 Link Credit Reset (LCR)
	15.3.4.2.1 Description
	15.3.4.2.2 Protocol
	15.3.4.2.3 Request Sequence
	15.3.4.2.4 Responses

	15.4 ACK generation assistance
	15.4.1 Introduction
	15.4.2 Capability Indication
	15.4.3 Applicability
	15.4.4 F_CTL bits
	15.4.5 Login rules
	15.4.6 ACK_Form errors

	16 Basic Link Services
	16.1 Scope
	16.2 Introduction
	16.3 Basic Link Service commands
	16.3.1 Introduction
	16.3.2 Abort Sequence (ABTS)
	16.3.2.1 Overview
	16.3.2.2 Aborting Sequences using ABTS
	16.3.2.2.1 Introduction
	16.3.2.2.2 ABTS Initiator
	16.3.2.2.3 ABTS Recipient
	16.3.2.2.4 Recovery Qualifier
	16.3.2.2.5 Protocol
	16.3.2.2.6 Request Sequence
	16.3.2.2.7 Reply Sequence

	16.3.2.3 Aborting Exchanges using ABTS
	16.3.2.3.1 Introduction
	16.3.2.3.2 ABTS sent by the last Sequence Initiator in an open Sequence
	16.3.2.3.3 ABTS sent by the last Sequence Initiator in a new Sequence
	16.3.2.3.4 ABTS sent in an open or new Sequence
	16.3.2.3.5 ABTS by the last Sequence Recipient
	16.3.2.3.6 Request Sequence
	16.3.2.3.7 Reply Sequence

	16.3.3 Basic Accept (BA_ACC)
	16.3.3.1 Description
	16.3.3.2 Protocol
	16.3.3.3 Request Sequence
	16.3.3.4 Reply Sequence

	16.3.4 Basic Reject (BA_RJT)
	16.3.4.1 Description
	16.3.4.2 Protocol
	16.3.4.3 Request Sequence
	16.3.4.4 Reply Sequence

	16.3.5 No Operation (NOP)
	16.3.5.1 Description
	16.3.5.2 Protocol
	16.3.5.3 Request Sequence
	16.3.5.4 Reply Sequence

	17 Classes of service
	17.1 Scope
	17.2 Introduction
	17.3 Class 2 - Multiplex
	17.3.1 Function
	17.3.2 Rules
	17.3.3 Delimiters
	17.3.4 Data_Field size
	17.3.5 Flow control

	17.4 Class 3 - Datagram
	17.4.1 Function
	17.4.2 Rules
	17.4.3 Delimiters
	17.4.4 Data_Field size
	17.4.5 Flow control
	17.4.6 Sequence integrity

	18 Name_Identifier Formats
	18.1 Scope
	18.2 Introduction
	18.3 IEEE 48-bit Address
	18.4 IEEE Extended
	18.5 Locally Assigned
	18.6 IEEE Registered
	18.7 IEEE Registered Extended
	18.8 EUI-64 Mapped
	18.8.1 General
	18.8.2 EUI-64 to WWN Mapping Rules
	18.8.3 Encapsulated MAC-48 and EUI-48 translation

	19 Exchange, Sequence, and sequence count management
	19.1 Scope
	19.2 Introduction
	19.2.1 Data frame transfer
	19.2.2 Frame identification
	19.2.3 Sequence
	19.2.4 Streamed Sequences
	19.2.5 SEQ_CNT
	19.2.6 Exchange
	19.2.7 Sequence Initiative

	19.3 Applicability
	19.4 Exchange rules
	19.4.1 Exchange management
	19.4.2 Exchange origination
	19.4.3 Sequence delimiters
	19.4.4 Sequence initiation
	19.4.5 Sequence management
	19.4.6 SEQ_CNT
	19.4.7 Normal ACK processing
	19.4.8 Normal Sequence completion
	19.4.9 Detection of missing frames
	19.4.10 Sequence errors - Class 2
	19.4.10.1 Rules common to all discard policies
	19.4.10.2 Discard multiple Sequences Error Policy
	19.4.10.3 Discard a single Sequence Error Policy
	19.4.10.4 Process with infinite buffers Error Policy

	19.4.11 Sequence errors - Class 3
	19.4.11.1 Rules common to all discard policies
	19.4.11.2 Process with infinite buffers Error Policy

	19.4.12 Sequence Status Rules
	19.4.13 Exchange termination
	19.4.14 Exchange Status Rules

	19.5 Exchange management
	19.6 Exchange origination
	19.6.1 Introduction
	19.6.2 Exchange Originator
	19.6.3 Exchange Responder
	19.6.4 X_ID assignment
	19.6.5 X_ID interlock

	19.7 Sequence management
	19.7.1 Sequence identification
	19.7.2 Open and active Sequences
	19.7.3 Sequence_Qualifier management
	19.7.4 Sequence Initiative and termination
	19.7.5 Transfer of Sequence Initiative
	19.7.6 Sequence Termination
	19.7.6.1 Introduction
	19.7.6.2 Class 2
	19.7.6.3 Class 3
	19.7.6.4 End_Sequence

	19.8 Exchange termination
	19.8.1 Normal termination
	19.8.2 Abnormal termination

	19.9 Status blocks
	19.9.1 Exchange Status Block
	19.9.2 Sequence Status Block

	20 Flow control management
	20.1 Scope
	20.2 Introduction
	20.2.1 Point-to-point topology
	20.2.2 End-to-end and Buffer-to-buffer flow control
	20.2.3 Flow control dependencies on class of service
	20.2.4 Credit and Credit_Count

	20.3 End-to-end flow control
	20.3.1 End-to-end management rules
	20.3.2 Sequence Initiator
	20.3.3 Sequence Recipient
	20.3.3.1 General
	20.3.3.2 ACK_0
	20.3.3.3 ACK_1
	20.3.3.4 Last ACK timeout
	20.3.3.5 Streamed Sequences

	20.3.4 EE_Credit
	20.3.5 EE_Credit_CNT
	20.3.6 EE_Credit management
	20.3.7 End-to-end flow control model
	20.3.8 EE_Credit recovery
	20.3.9 Procedure to estimate end-to-end Credit
	20.3.9.1 Introduction
	20.3.9.2 Procedure steps
	20.3.9.2.1 General
	20.3.9.2.2 Establish Streaming Sequence
	20.3.9.2.3 Estimate Credit Sequence
	20.3.9.2.4 Advise Credit Sequence

	20.4 Buffer-to-buffer flow control
	20.4.1 Introduction
	20.4.2 Buffer-to-buffer management rules
	20.4.3 BB_Credit
	20.4.4 BB_Credit_CNT
	20.4.5 BB_Credit management
	20.4.6 Buffer-to-buffer flow control model
	20.4.7 Class dependent frame flow
	20.4.8 R_RDY
	20.4.9 BB_Credit Recovery
	20.4.10 Alternate buffer-to-buffer Credit management

	20.5 Combined flow control considerations
	20.5.1 BSY / RJT in flow control
	20.5.2 LCR in flow control
	20.5.3 Integrated Class 2 flow control

	21 Segmentation and reassembly
	21.1 Scope
	21.2 Introduction
	21.3 Identifying and classifying IUs
	21.4 Multiplexing IUs within a Sequence
	21.5 Relative offset of Data_Frames in an IU
	21.6 Transporting portions of an IU out of relative offset order
	21.7 Login
	21.8 Segmentation rules
	21.9 Reassembly rules

	22 Error detection/recovery
	22.1 Scope
	22.2 Introduction
	22.3 Timeout periods
	22.3.1 Scope
	22.3.2 General
	22.3.3 R_T_TOV
	22.3.4 E_D_TOV
	22.3.5 R_A_TOV

	22.4 Link errors
	22.4.1 Scope
	22.4.2 Link Failure timeouts
	22.4.3 Link Failure
	22.4.4 Code violations
	22.4.5 Primitive Sequence protocol error
	22.4.6 Link Error Recovery
	22.4.7 Link Recovery - secondary effects
	22.4.7.1 Class 2
	22.4.7.2 Class 3

	22.4.8 Link Error Status Block
	22.4.9 FEC Status Block
	22.4.10 Bit-Error-Rate Thresholding
	22.4.10.1 Introduction
	22.4.10.2 Types of Link Errors Caused by Bit Errors
	22.4.10.3 Error Intervals
	22.4.10.4 Bit-Error-Rate-Thresholding Measurement

	22.5 Exchange and Sequence errors
	22.5.1 Scope
	22.5.2 Link timeout
	22.5.3 Sequence timeout
	22.5.3.1 Introduction
	22.5.3.2 Class 2
	22.5.3.3 Class 3
	22.5.3.4 End-to-end Class 2 Credit loss

	22.5.4 Exchange Integrity
	22.5.4.1 Applicability
	22.5.4.2 Exchange management
	22.5.4.3 Exchange Error Policies
	22.5.4.3.1 Introduction
	22.5.4.3.2 Discard multiple Sequences
	22.5.4.3.3 Discard a single Sequence
	22.5.4.3.4 Process with infinite buffering

	22.5.4.4 Sequence integrity
	22.5.4.5 Sequence error detection
	22.5.4.6 X_ID processing

	22.5.5 Sequence recovery
	22.5.5.1 Introduction
	22.5.5.2 Abnormal Sequence termination
	22.5.5.2.1 Introduction
	22.5.5.2.2 Abort Sequence Protocol
	22.5.5.2.2.1 General Case
	22.5.5.2.2.2 Special case - new Exchange

	22.5.5.2.3 Recipient abnormal termination
	22.5.5.2.4 End_Sequence

	22.5.5.3 Stop Sequence Protocol
	22.5.5.4 End-to-end Credit loss

	22.6 Integrated error detection / actions
	22.6.1 Errors detected
	22.6.2 Actions by Initiator or Recipient
	22.6.2.1 Discard frame
	22.6.2.2 Transmit P_RJT frame
	22.6.2.3 Process Reject
	22.6.2.4 Transmit P_BSY frame
	22.6.2.5 Process Busy
	22.6.2.6 Perform Link Reset Protocol
	22.6.2.7 Set Abort Sequence Bits
	22.6.2.8 Perform Abort Sequence Protocol
	22.6.2.9 Abnormally terminate Sequence
	22.6.2.10 Retry Sequence
	22.6.2.11 Update LESB
	22.6.2.12 Perform Link Failure Protocol
	22.6.2.13 Error Policy processing

	23 Broadcast
	23.1 Scope
	23.2 Applicability
	23.3 Broadcast operation
	23.4 Other

	24 Clock synchronization service
	24.1 Scope
	24.2 Introduction
	24.2.1 References
	24.2.2 Applicability
	24.2.3 Function
	24.2.4 Assumptions
	24.2.5 Clock Synchronization Quality of Service

	24.3 ELS Command Service
	24.3.1 Scope
	24.3.2 ELS Commands
	24.3.3 Fabric Topology
	24.3.3.1 Model
	24.3.3.2 Clock Synchronization Server Rules
	24.3.3.3 Fabric Rules
	24.3.3.4 Fabric Options
	24.3.3.5 Client Rules
	24.3.3.6 Client Options

	24.3.4 Loop Topology
	24.3.4.1 Model
	24.3.4.2 L_Port Server Rules
	24.3.4.3 L_Port Server Options
	24.3.4.4 L_Port Client Rules
	24.3.4.5 Client Options

	24.4 Primitive Signal Service
	24.4.1 Scope
	24.4.2 Introduction
	24.4.3 Communication Model
	24.4.4 Requirements
	24.4.4.1 Introduction
	24.4.4.2 Clock Synchronization Server Rules
	24.4.4.3 Fabric Rules
	24.4.4.4 Client Rules

	Annex A
	A.1 Extract from FDDI
	A.2 Frame check sequence (FCS)
	A.3 Definitions
	A.3.1 Basic terms
	A.3.2 FCS generation equations
	A.3.3 FCS checking

	A.4 CRC generation example for ACK_1 frame

	Annex B
	B.1 Serial Frame Scrambling and Descrambling Implementations
	B.2 Parallel Frame Scrambling and Descrambling Implementations
	B.3 Scrambler and Descrambler Implementations in C
	B.4 Scrambler and Descrambler Implementation with XORs
	B.5 Scrambled Data Example

	Annex C
	C.1 Frame level protocol
	C.1.1 Class 2 frame level protocol
	C.1.2 Class 3 Frame Level Protocol

	C.2 Sequence level protocol example
	C.3 Class 2 frame level protocol example
	C.4 Class 3 frame level protocol example

	Annex D
	D.1 Introduction
	D.2 Out of order Data frame delivery
	D.3 Out of order ACK transmission

	Annex E
	E.1 Introduction
	E.2 Link Failure Counters
	E.3 Invalid Transmission Word
	E.4 Invalid CRC Count
	E.5 Link Failure Counter Triggers

	Annex F
	F.1 Introduction
	F.2 Discussion
	F.2.1 Introduction
	F.2.2 A Model of an NL_Port
	F.2.3 Hardware-Assisted Clock Synchronization
	F.2.4 A Point-to-Point System
	F.2.4.1 Introduction
	F.2.4.2 Discussion of Errors
	F.2.4.2.1 Introduction
	F.2.4.2.2 Client Oscillator Frequency Error
	F.2.4.2.3 Link Propagation Delay Error
	F.2.4.2.4 Unload Error
	F.2.4.2.5 Load Error
	F.2.4.2.6 R/T Clock Domain Error
	F.2.4.2.7 Server Oscillator Error

	F.2.4.3 Techniques for Reducing Deterministic Errors
	F.2.4.3.1 A Fix for Differences in Oscillator Frequencies
	F.2.4.3.2 A Fix for Link Propagation Delay Error
	F.2.4.3.3 A Fix for Load Error
	F.2.4.3.4 A Fix for Unload Error

	F.2.4.4 Dealing With Non-Deterministic Error
	F.2.4.5 Dealing With Non-Monotonicity

	F.2.5 Fabric Considerations
	F.2.5.1 Introduction
	F.2.5.2 Discussion of Errors
	F.2.5.2.1 Client Oscillator Frequency Error
	F.2.5.2.2 Link Propagation Delay Error
	F.2.5.2.3 Unload Error
	F.2.5.2.4 Load Error
	F.2.5.2.5 R/T Clock Domain Error
	F.2.5.2.6 Server Oscillator Error

	F.2.5.3 Fixes for Fabric Errors

	F.2.6 Loop Considerations
	F.2.6.1 Introduction
	F.2.6.2 Discussion of Errors
	F.2.6.3 Introduction
	F.2.6.3.1 Node Delay
	F.2.6.3.2 Client Oscillator Frequency Error
	F.2.6.3.3 Link Propagation Delay Error
	F.2.6.3.4 Unload Error
	F.2.6.3.5 Load Error
	F.2.6.3.6 R/T Clock Domain Error
	F.2.6.3.7 Server Oscillator Error

	F.2.6.4 Fixes for Loop Errors

	F.3 An Example

	Annex G
	G.1 Scope
	G.2 Basic assumptions
	G.3 Supported configuration
	G.4 Derivation of timing requirements and characteristics
	G.4.1 Introduction and diagram conventions
	G.4.2 Receiver cycle time, t_rxcycl
	G.4.3 Master transmitter cycle time, t_txcycl
	G.4.4 Speed stability time, t_stbl
	G.4.5 Watchdog timer threshold, t_fail
	G.4.6 Watchdog Timer test delay, t_wddly
	G.4.7 Speed recording time, t_ncycl
	G.4.8 Speed recording time initial value, t_ncinit
	G.4.9 Parameters relating to the optional slow_wait stage
	G.4.9.1 Low processing load sleep time, t_sleep
	G.4.9.2 Slow_wait cycle transmit cycle delay, t_txdly
	G.4.9.3 Periodic sync search wake time, t_wake

	G.4.10 Duration of disruption to single loops caused by connecting speed negotiating ports to hubs
	G.4.10.1 Introduction
	G.4.10.2 Maximum single disruption in Wait_for_signal stage
	G.4.10.3 Maximum single disruption in Slow_wait stage
	G.4.10.4 Maximum single disruption in Negotiate_master stage
	G.4.10.5 Maximum single disruption in Negotiate_follow stage
	G.4.10.6 Maximum disruption group - Wait_for_signal
	G.4.10.7 Maximum disruption group - Slow_wait
	G.4.10.8 Maximum disruption group - Negotiate_master
	G.4.10.9 Maximum disruption group - Negotiate_follow
	G.4.10.10 Maximum single disruption overall
	G.4.10.11 Maximum disruption group overall
	G.4.10.12 Summary of loop disruption

	G.4.11 Algorithm convergence time

	G.5 Ports using separate PMD components
	G.6 Implementation notes

	Annex H
	H.1 Overview
	H.2 Uses of IEEE registered Company_ID other than Name_Identifiers
	H.3 IEEE tutorial on Fibre Channel uses of company_ID
	24.5 Guidelines for Fibre Channel Use of the Company_ID
	24.5.1 Overview
	24.5.2 OUI-based IEEE formats used by Fibre Channel
	24.5.3 Name_Identifier formats
	24.5.4 References

	Annex I
	I.1 Background
	I.2 Solution
	I.3 Case Study

	Annex J
	J.1 Overview
	J.2 LAN Capable Nx_Ports
	J.3 LAN Encapsulation
	J.3.1 LAN Packet Formats
	J.3.2 FC Sequence Format for LAN Packets
	J.3.3 LLC/SNAP Header
	J.3.4 LLC Header
	J.3.5 Frame_Header Code Points

	J.4 Multicast and Broadcast Mapping
	J.5 Sequence Management
	J.6 Exchange Management

	Annex K
	K.1 32GFC - Idle Pattern with 64B/66B Scrambler Bypass Disabled (scr_bypass=0)
	K.1.1 Overview
	K.1.2 Input to the 64B/66B to 256B/257B transcoder
	K.1.3 Output of the 64B/66B to 256B/257B transcoder
	K.1.4 Output of the RS(528,514) encoder
	K.1.5 Output of the PN-5280 scrambler

	K.2 32GFC - Idle and LPI Patterns with 64B/66B Scrambler Bypass Enabled (scr_bypass=1)
	K.2.1 Overview
	K.2.2 Input to the 64B/66B to 256B/257B transcoder
	K.2.3 Output of the 64B/66B to 256B/257B transcoder
	K.2.4 Output of the RS(528,514) encoder
	K.2.5 Output of the PN-5280 scrambler

	K.3 128GFC

	Annex L

