

InterNational Committee for Information Technology Standards (INCITS)
Secretariat: Information Technology Industry Council (ITI)

1101 K Street NW, Suite 610, Washington, DC 20005
www.INCITS.org

eb-2014-00267

Document Date: 5/2/2014

To: INCITS Members

Reply To: Rachel Porter

Subject: Public Review and Comments Register for the Approval of:

INCITS 526-201x, Information technology - Next Generation Access Control - Generic Operations
and Data Structures (NGAC-GOADS)

Due Date:

The public review is from May 16, 2014 – June 30, 2014.

Action: The InterNational Committee for Information Technology Standards (INCITS) announces that the
subject-referenced document(s) is being circulated for a 45-day public review and comment
period. Comments received during this period will be considered and answered. Commenters
who have objections/suggestions to this document should so indicate and include their reasons.

All comments should be forwarded not later than the date noted above to the following address:

INCITS Secretariat/ITI
1101 K Street NW - Suite 610
Washington DC 20005-3922
Email: comments@itic.org (preferred)

This public review also serves as a call for patents and any other pertinent issues (copyrights,
trademarks). Correspondence regarding intellectual property rights may be emailed to the INCITS
Secretariat at patents@itic.org.

mailto:rporter@itic.org
http://www.incits.org/
mailto:comments@itic.org
mailto:patents@itic.org

Working Draft Project

American National CS1/2195-D

Standard
Revision 1.30

11 April 2014

Information technology -

Next Generation Access Control - Generic Operations

and Data Structures (NGAC-GOADS)

This is an internal working document of CS1, a Technical Committee of Accredited Standards Committee

INCITS (InterNational Committee for Information Technology Standards). As such this is not a completed

standard and has not been approved. The contents may be modified by the CS1 Technical Committee.

The contents are actively being modified by CS1. This document is made available for review and

comment only.

Permission is granted to members of INCITS, its technical committees, and their associated task groups to

reproduce this document for the purposes of INCITS standardization activities without further permission,

provided this notice is included. All other rights are reserved. Any duplication of this document for

commercial or for-profit use is strictly prohibited.

CS1 Technical Editor: Wayne Jansen

Booz Allen & Hamilton

8283 Greensboro Drive

McLean, VA 22102

USA

Telephone: 703-377-0375

Email: Jansen_Wayne@bah.com

Reference number

ANSI INCITS.***:200x

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures ii

Points of Contact

InterNational Committee for Information Technology Standards (INCITS) CS1 Technical Committee

CS1 Chair CS1 Vice-Chair

Dan Benigni Sal Francomacaro

NIST NIST

Stop 8930 Stop 8930

Gaithersburg, MD 20899-8930 Gaithersburg, MD 20899-8930

USA USA

Telephone: (301) 975-3279 Telephone: (301) 975-6414

Email: dbegnini@nist.gov Email: salvatore.francomacaro@nist.gov

CS1 Web Site: http://cs1.incits.org/

CS1 E-mail reflector: cyber-security@standards.incits.org

INCITS Secretariat

Suite 200

1250 Eye Street, NW

Washington, DC 20005

USA

Telephone: 202-737-8888

Web site: http://www.incits.org

Email: incits@itic.org

Information Technology Industry Council

Web site: http://www.itic.org

Document Distribution

INCITS Online Store

managed by Techstreet

1327 Jones Drive

Ann Arbor, MI 48105

USA

Web site: http://www.techstreet.com/incits.html

Telephone: (734) 302-7801 or (800) 699-9277

mailto:dbegnini@nist.gov
http://cs1.incits.org/
mailto:cyber-security@standards.incits.org
http://www.incits.org/
mailto:incits@itic.org
http://www.itic.org/
http://www.techstreet.com/incits.html

CS1/2195-D Revision 1.30 11 April 2014

iii dpANS Next Generation Access Control - Generic Operations and Data Structures

Revision Information

Version 0.10 (23 July, 2010)

Initial Draft

Version 1.20 (31 January, 2014)
Draft for Letter Ballot

Version 1.30 (11 April 2014)
Corrected Letter Ballot Draft: Fixed noted typographical errors, access request parameter

inconsistencies and minor faults in semantic expressions.

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures iv

Draft

American National Standards
for Information Systems

Next Generation Access Control - Generic Operations

and Data Structures (NGAC-GOADS)

Secretariat

InterNational Committee for Information Technology Standards

Approved mm.dd.yy

American National Standards Institute, Inc.

Abstract

Next Generation Access Control (NGAC) is a fundamental reworking of traditional access control into a

form that suits the needs of the modern distributed interconnected enterprise. NGAC is based on a flexible

infrastructure that can provide access control services for a number of different types of resources, and

when they are accessed by a number of different types of application and user. That infrastructure is

scalable, able to support policies of different types simultaneously, and remain manageable in the face of

almost constant change. This standard contains a complete, detailed description of the definitions and

abstractions needed to realize the architecture defined by the NGAC-FA standard. It details a fixed set of

configurable data relations and a fixed set of functions that are capable of expressing and specifying a

wide range of different types of access control policies of a wide range of complexities.

Draft

dpANS Next Generation Access Control - Generic Operations and Data Structures v

American

National

Standard

Approval of an American National Standard requires verification by ANSI that the

requirements for due process, consensus, and other criteria for approval have been

met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review,

substantial agreement has been reached by directly and materially affected interests.

Substantial agreement means much more than a simple majority, but not necessarily

unanimity. Consensus requires that all views and objections be considered, and that

effort be made towards their resolution.

The use of American National Standards is completely voluntary; their existence does not

in any respect preclude anyone, whether he has approved the standards or not, from

manufacturing, marketing, purchasing, or using products, processes, or procedures not

conforming to the standards.

The American National Standards Institute does not develop standards and will in no

circumstances give interpretation on any American National Standard. Moreover, no

person shall have the right or authority to issue an interpretation of an American National

Standard in the name of the American National Standards Institute. Requests for

interpretations should be addressed to the secretariat or sponsor whose name appears

on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any

time. The procedures of the American National Standards Institute require that action be

taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American

National Standards may receive current information on all standards by calling or writing

the American National Standards Institute.

Caution: The developers of this standard have requested that holders of patents that may be required for the

implementation of the standard disclose such patents to the publisher. However, neither the developers nor the

publisher have undertaken a patent search in order to identify which, if any, patents may apply to this standard. As of the

date of publication of this standard and following calls for the identification of patents that may be required for the

implementation of the standard,

No further patent search is conducted by the developer or publisher in respect to any standard it processes. No

representation is made or implied that licenses are not required to avoid infringement in the use of this standard.

Published by

American National Standards Institute
11 W. 42nd Street, New York, New York 10036

Copyright © 2006 by Information Technology Industry Council (ITI).

All rights reserved.

No part of this publication may be reproduced in any

form, in an electronic retrieval system or otherwise,

without prior written permission of ITI, 1250 Eye Street NW, Suite 200,

Washington, DC 20005.

Printed in the United States of America

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures vi

Table of Contents

Topic Page

Foreword ... ix

Introduction .. xiii

1 Scope ... 1

2 Normative References ... 2

2.1 Normative references ... 2
2.2 Approved references .. 2
2.3 References under development ... 2

3 Definitions, Symbols, Abbreviations, and Conventions .. 3

3.1 Definitions ... 3
3.2 Symbols and abbreviations .. 3
3.3 Keywords .. 4
3.4 Conventions ... 4

4 Abstract Data Structures ... 5

4.1 Overview .. 5
4.2 Basic elements ... 5
4.2.1 Background .. 5
4.2.2 Users .. 5
4.2.3 Processes ... 5
4.2.4 Objects ... 5
4.2.5 Operations .. 6
4.2.6 Access rights .. 6
4.3 Containers .. 6
4.3.1 Background .. 6
4.3.2 User attributes .. 6
4.3.3 Object attributes ... 6
4.3.4 Policy classes ... 6
4.4 Relations .. 7
4.4.1 Background .. 7
4.4.2 Assignment... 7
4.4.3 Association ... 8
4.4.4 Prohibition .. 9
4.4.5 Obligation ... 12
4.5 Access authorization .. 13

5 Administrative Commands .. 16

5.1 Overview .. 16
5.2 Semantic definitions ... 16
5.2.1 Element creation .. 18
5.2.2 Element deletion ... 20
5.2.3 Entity creation ... 22
5.2.4 Entity deletion ... 24
5.2.5 Relation formation .. 26
5.2.6 Relation rescindment .. 28

CS1/2195-D Revision 1.30 11 April 2014

vii dpANS Next Generation Access Control - Generic Operations and Data Structures

Annex A (Informative) Pattern and Response Grammars .. 30

A.1 Overview .. 30
A.2 Event pattern grammar... 31
A.2.1 Base specification .. 31
A.2.2 User specification ... 31
A.2.3 Policy class specification .. 31
A.2.4 Operation specification ... 32
A.2.5 Policy element specification ... 32
A.3 Event response grammar ... 32
A.3.1 Base Specification .. 32
A.3.2 Create action specification ... 33
A.3.3 Assign action specification ... 33
A.3.4 Grant action specification ... 34
A.3.5 Deny action specification .. 34
A.3.6 Delete action specification .. 35
A.4 Grammar considerations .. 35

Annex B (Informative) Mappings of Existing Access Control Schemes... 37

B.1 Overview .. 37
B.2 Chinese wall ... 37
B.2.1 Background .. 37
B.2.2 Mapping considerations .. 38
B.2.3 Example mapping ... 39
B.3 Role-based access control ... 41
B.3.1 Background .. 41
B.3.2 Mapping considerations .. 41
B.3.3 Example mapping ... 43

Annex C (Informative) Bibliography ... 48

Annex D (Normative) Summary of Notation ... 49

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures viii

List of Figures

Figure Page

Figure 1: NGAC Authorization Decision Function ... 15
Figure 2: Example Chinese Wall Policy ... 39
Figure 3: RBAC Policy Configuration ... 43
Figure 4: Roles and Role Hierarchy Representation ... 44
Figure 5: Permission Assignment Representation .. 45
Figure 6: User Assignment Representation .. 45
Figure 7: Complete GOADS Policy Representation ... 47

CS1/2195-D Revision 1.30 11 April 2014

ix dpANS Next Generation Access Control - Generic Operations and Data Structures

Foreword

(This foreword is not part of American National Standard INCITS.***:200x.)

Technical Committee CS1 of Accredited Standards Committee INCITS developed this standard during

2012-2013. The standards approval process started in 2014.

Next Generation Access Control (NGAC) is a fundamental reworking of traditional access control to a form

that suits the needs of the modern distributed interconnected enterprise. NGAC is based on a flexible

infrastructure that can provide access control services for a number of different types of resources, and

when they are accessed by a number of different types of applications and users. The NGAC infrastructure

is scalable, able to support policies of different types simultaneously, and remains manageable in the face

of changing technology, organizational restructuring, and increasing data volumes.

This standard contains a complete, detailed description of the definitions and abstractions needed to

realize the architecture defined by the NGAC-FA standard. The abstractions are based on the

mathematics of set theory and predicate calculus to provide a precise specification. By capturing the

essential properties of NGAC, free from constraints on how these properties are achieved, this standard

serves as a conceptual model for the design and implementation of NGAC.

This standard contains the following items:

a) detailed specifications of the abstract data structures needed to support the definitions in NGAC-

FA;

b) a detailed description of how the abstract structures in a) above are used to represent an access

control policy and form authorization decisions;

c) detailed descriptions of the generic commands needed to support the administration access

information flows in NGAC-FA, in terms of the descriptions in b) above;

d) an informative annex containing an example of using formal grammars to specify the pattern and

response components of an obligation;

e) an informative annex containing examples of representing common access control methods

such as Role-Based Access Control (RBAC) and Chinese Wall in terms of a), b), c) and d)

above;

f) an informative annex of references; and

g) a normative annex summarizing the mathematical notation used in this standard.

Requests for interpretation, suggestions for improvement and addenda, or defect reports are

welcome. They should be sent to the INCITS Secretariat, InterNational Committee for Information

Technology Standards, Information Technology Institute, 1250 Eye Street, NW, Suite 200, Washington,

DC 20005-3922.

Users of this standard are encouraged to determine if there are standards in development or new versions

of this standard that may extend or clarify technical information contained in this standard.

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures x

This standard was processed and approved for submittal to ANSI by the InterNational Committee for

Information Technology Standards (INCITS). Committee approval of the standard does not necessarily

imply that all committee members voted for approval. At the time of it approved this standard, INCITS had

the following members:

Organization Represented Name of Representative

Editor’s Note 1: <<Insert INCITS member list>>

CS1/2195-D Revision 1.30 11 April 2014

xi dpANS Next Generation Access Control - Generic Operations and Data Structures

Technical Committee CS1 on Cyber Security, which reviewed this standard, had the following members:

Dan Benigni, Chair

Sal Francomacaro, Vice-Chair

Eric Hibbard, International Representative

Organization Represented Name of Representative

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures xii

CS1 Ad Hoc on Next Generation Access Control, which developed and reviewed this standard, had the

following members:

Roger Cummings, Chair
Wayne Jansen, Editor

Organization Represented Name of Representative

Antesignanus ... Roger Cummings
Booz Allen & Hamilton Inc.................................. Wayne Jansen
Hewlett-Packard Co. .. Richard Austin
NIST ... David Ferraiolo
 Serban Gavrila
VHA CIO... Mike Davis
 Richard Grow
 Adrianne James
 Diana Proud-Madruga

CS1/2195-D Revision 1.30 11 April 2014

xiii dpANS Next Generation Access Control - Generic Operations and Data Structures

Introduction

This standard is divided into these clauses and annexes:

Clause 1 defines the scope of this standard and places it in context of other standards and standards

projects.

Clause 2 enumerates the normative references that apply to this standard.

Clause 3 describes the definitions, symbols, abbreviations, and notation used in this standard.

Clause 4 defines the abstract data structures that are the basis by which policy governing resource

and administrative operations is defined in NGAC.

Clause 5 specifies the generic commands needed to support the administration access information

flows in NGAC-FA.

Annex A provides example formal descriptions of the pattern and response components of an

obligation.

Annex B provides examples of representing existing real-world approaches to access control using

the facilities of NGAC.

Annex C lists the set of references used in the examples given in annex B.

Annex D summarizes the mathematical notation used in this standard, which corresponds to a subset

of the Z formal specification notation defined in ISO/IEC 13568:2002.

CS1/2195-D Revision 1.30 11 April 2014

1 dpANS Next Generation Access Control - Generic Operations and Data Structures

AMERICAN NATIONAL STANDARD BSR INCITS.***:200x

American National Standard
for Information Technology -

Next Generation Access Control - Generic Operations and Data
Structures (NGAC-GOADS)

1 Scope

Next Generation Access Control (NGAC) is a fundamental reworking of traditional access control into a

form that suits the needs of the modern distributed interconnected enterprise. The NGAC family of

standards provides the architectural, functional and interface definitions necessary to create an effective

access control system.

Access control is both an administrative and an automated process of defining and restricting which

users and their processes can perform which operations on which system resources. The information that

provides the basis by which access requests are granted or denied is known as a security policy. A security

model is formal representation of a security policy and its working. A wide variety of policies types and

supporting security models have been created to address different situations. Well-known examples of

mechanisms by which specific policy types are enforced are access control lists (ACLs), capabilities, role

based access control (RBAC), and type enforcement, and well-known policies are discretionary access

control (DAC), RBAC, multi-level security (MLS) and Chinese Wall.

NGAC diverges from traditional approaches to access control in defining a generic architecture that is

separate from any particular policy or type of policy. NGAC is not an extension of, or adaption of, any

existing access control mechanism, but instead is a redefinition of access control in terms of a

fundamental and reusable set of data abstractions and functions. NGAC provides a unifying framework

capable without extension of supporting not only current access control approaches, but also novel types

of policy that have been conceived but never implemented due to the lack of a suitable enforcement

mechanism.

NGAC accommodates combinations of different policies merely by changes to its control information, and

thus it is possible to have several types of policy policies supported concurrently in a manner that is both

deterministic and manageable. NGAC is particularly suitable for applications in which some information is

stored locally and some is stored in a grid or cloud, since different policies can be asserted in each

situation. Even more generally, NGAC supports a situation where a formal policy determined by a central

organization is combined with a local, specific and more ad-hoc policy required to meet local needs.

In addition to its support of policies, NGAC also enables support for a variety of data services, including

e-mail, workflow, records management etc. Support for these services is established through NGAC

control information contained in a database within NGAC.

The set of NGAC standards specifies the architecture, functions, operations, and interfaces necessary to

ensure interoperability between conforming NGAC implementations. This standard defines generic

operations and data structures. Conforming implementations may employ any design technique that

does not violate interoperability.

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 2

2 Normative References

2.1 Normative references

The following standards contain provisions that, by reference in the text, constitute provisions of this
standard. At the time of publication, the editions listed were valid. All standards are subject to revision,
and parties to agreements based on this standard are encouraged to investigate the possibility of
applying the most recent editions of the standards listed below.

Copies of the following documents may be obtained from ANSI, an ISO member organization:

Approved ANSI standards;
approved international and regional standards (ISO and IEC); and
approved foreign standards (including JIS and DIN).

For further information, contact the ANSI Customer Service Department:

Phone: +1 212-642-4900

Fax: +1 212-302-1286

Web: http://www.ansi.org

E-mail: ansionline@ansi.org

or the InterNational Committee for Information Technology Standards

(INCITS): Phone 202-626-5738

Web: http://www.incits.org

E-mail: incits@itic.org

Additional availability contact information is provided below as needed.

2.2 Approved references

NGAC-FA: INCITS 499-2013, American National Standard for Information Technology – Next

Generation Access Control - Functional Architecture (NGAC-FA)

ZNOT: ISO/IEC 13568:2002, Information technology – Z formal specification notation – Syntax,

type system and semantics

2.3 References under development

At the time of publication, the following referenced American National Standards were still under

development. For information on the current status of the document, or regarding availability, contact the

relevant standards body or other organization as shown.

NGAC-IRPADS: INCITS Project 2193-D, Information technology – Next Generation Access Control -
Implementation Requirements, Protocols and API Definitions (NGAC-IRPADS)

http://www.ansi.org/
mailto:ansionline@ansi.org
http://www.incits.org/
mailto:incits@itic.org

CS1/2195-D Revision 1.30 11 April 2014

3 dpANS Next Generation Access Control - Generic Operations and Data Structures

3 Definitions, Symbols, Abbreviations, and Conventions

3.1 Definitions

For the purposes of this document, the terms and definitions in NGAC-FA apply, as do the following
terms and definitions.

Access right: A property that must be held by a user to perform operations on information persisted in
the PIP and on object resources.

Access right set: A set of access rights that are related for the purposes of access control.

Access request: The information issued by a process on behalf of a user, which specifies a sequence
of arguments together with an operation to be performed using the argument sequence.

Authorization decision: The result of evaluating an access request with respect to authorizations
defined with a configured NGAC policy.

Authorization state: The basic elements and containers, together with the relations that define the
prevailing access rights between these entities.

Policy elements: The users, user attributes, object attributes and policy classes associated with a
particular access control policy.

Policy element diagram: The directed graph representing all policy elements and the assignment
relation over them.

Referent: A policy element used in NGAC relations to represent the section of the policy element
diagram rooted at the policy element.

3.2 Symbols and abbreviations

Symbol /

Abbreviation Meaning (see NGAC-FA for

further

information)

API Application Programming Interface

DAC Discretionary Access Control

EPP Event Processing Point

NGAC Next Generation Access Control

PAP Policy Administration Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

RBAC Role-Based Access Control

URG Unprotected Resource Gate

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 4

3.3 Keywords

Invalid: A keyword used to describe an illegal or unsupported bit, byte, word, field or code value.
Receipt of an invalid bit, byte, word, field or code value shall be reported as an error.

Mandatory: A keyword indicating an item that is required to be implemented as defined in this
standard to claim compliance with this standard.

May: A keyword that indicates flexibility of choice with no implied preference.

May not: Keywords that indicates flexibility of choice with no implied preference.

Optional: A keyword that describes features that are not required to be implemented by this
standard. However, if any optional feature defined by this standard is implemented, it shall be
implemented as defined in this standard.

Reserved: A keyword referring to bits, bytes, words, fields and code values that are set aside for
future standardization. Their use and interpretation may be specified by future extensions to this or
other standards. A reserved bit, byte, word or field shall be set to zero, or in accordance with a future
extension to this standard. Recipients are not required to check reserved bits, bytes, words or fields for
zero values. Receipt of reserved code values in defined fields shall be reported as an error.

Shall: A keyword indicating a mandatory requirement. Designers are required to implement all such
requirements to ensure interoperability with other products that conform to this standard.

Should: A keyword indicating flexibility of choice with a preferred alternative; equivalent to the
phrase "it is recommended".

3.4 Conventions

Certain words and terms used in this American National Standard have a specific meaning beyond the
normal English meaning. These words and terms are defined either in clause 3 or in the text where they
first appear.

Numbers immediately followed by lower-case b (xxb) are binary values.

Numbers that are not immediately followed by lower-case b are decimal values.

An alphabetic list (e.g., a, b, c) or a bulleted list of items indicate the items in the list are unordered.

A numeric list (e.g., 1, 2, 3) of items indicate the items in the list are ordered (i.e., item 1 shall occur or
complete before item 2).

The mathematical notation used in GOADS corresponds to a subset of the Z formal specification
notation defined in ISO/IEC 13568:2002, but is specific to this work. Annex C provides a summary of
the notation.

In the event of conflicting information, the precedence for requirements defined in this standard is as
follows:

1) formal notation,
2) text, then
3) figures.

CS1/2195-D Revision 1.30 11 April 2014

5 dpANS Next Generation Access Control - Generic Operations and Data Structures

4 Abstract Data Structures

4.1 Overview

This standard defines the abstract data structures that govern the operation of the NGAC Functional
Architecture (see NGAC-FA). These structures are used to represent security policies and provide the
basis for rendering authorization decisions. The types of structures that are defined in this subclause are
as follows:

a) the sets of element identifiers that are maintained by the PIP to represent the basic elements (see
4.2) that are the fundamental entities in which operation of the NGAC framework is described;

b) the different types of containers (see 4.3) maintained by the PIP to represent the characteristics
of basic elements and to identify basic elements that share those characteristics; and

c) the various relations and functions (see 4.4) that are maintained by the PIP to represent
configured relationships among the basic elements and containers, and form the basis of the
policies enforced by the NGAC functional architecture.

4.2 Basic elements

4.2.1 Background

The NGAC element specifications define the abstract data structures that correspond to the basic elements
and properties defined in NGAC-FA. They are described in this subclause as follows:

a) users (see 4.2.2);
b) processes (see 4.2.3);
c) objects (see 4.2.4);
d) operations (see 4.2.5); and
e) access rights (see 4.2.6).

4.2.2 Users

NGAC users shall be represented by a finite set of user element identifiers.

U = {u1, … , un}

4.2.3 Processes

NGAC processes shall be represented by a finite set of process element identifiers.

P = {p1, … , pn}

4.2.4 Objects

NGAC objects shall be represented by a finite set of object element identifiers.

O = {oi, … , on}

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 6

4.2.5 Operations

NGAC generic operations shall be represented by a finite set of operation identifiers.

Op = {opi, … , opn}

Generic operations are partitioned into two distinct, finite sets of operations: resource operations and
administrative operations. Resource operations are used for access to protected resources, while
administrative operations are used for access to data structures and information persisted in the PIP.

ROp = {rop1, … , ropn}

AOp = {aop1, … , aopn}
Op = ROp ⋃ AOp

4.2.6 Access rights

Access rights shall be represented by a finite set of access right identifiers. One or more access rights
may be required to carry out an operation.

AR = {ar1, … , arn}

4.3 Containers

4.3.1 Background

NGAC containers represent common characteristics and properties of basic elements. They are
described in this subclause as follows:

a) user attributes (see 4.3.2);
b) object attributes (see 4.3.3); and
c) policy classes (see 4.3.4).

4.3.2 User attributes

User attributes shall be represented by a finite set of user attribute identifiers.

UA = {ua1, … , uan}

4.3.3 Object attributes

Object attributes shall be represented by a finite set of object attribute identifiers.

OA = {oa1, … oan}

Every member of the set O is by definition also a member of OA.

O ⊆ OA

4.3.4 Policy classes

Policy classes shall be represented by a finite set of policy class identifiers.

PC = {pc1, … , pcn}

CS1/2195-D Revision 1.30 11 April 2014

7 dpANS Next Generation Access Control - Generic Operations and Data Structures

4.4 Relations

4.4.1 Background

NGAC configured relations are a part of the information persisted in a PIP that are managed through
administrative actions, and determine the configuration of an NGAC Functional Architecture. NGAC
relations are either configured relations or derived relations. NGAC configured relations represent
relationships among basic elements and/or containers. NGAC derived relations are calculated from
configured relations for the purpose of rendering an access control decision or conducting an
administrative review. The following NGAC configured relations are described in this subclause:

a) assignment (see 4.4.2);
b) association (see 4.4.3);
c) prohibition (see 4.4.4); and
d) obligation (see 4.4.5).

4.4.2 Assignment

The NGAC policy elements used in assignments comprise the set of all users, user attributes, object
attributes (which include all objects) and policy classes; the policy element set is defined as follows:

PE = U ⋃ UA ⋃ OA ⋃ PC

The assignment relation is a binary relation on the set PE, which has the following properties:

a) It is irreflexive;
b) It is acyclic;
c) It is policy class connected (i.e., A sequence of assignments exists from every element of (PE \

PC) to an element of PC); and
d) It precludes object attribute to object assignments.

The assignment relation is formally defined as follows:

ASSIGN ⊆ (U×UA) ⋃ (UA×UA) ⋃ (OA×OA) ⋃ (UA×PC) ⋃ (OA×PC), where the following properties
hold:

∀x, y ∈ PE: ((x, y) ∈ ASSIGN x ≠ y) ⋀
∄s ∈ iseq1 PE: (#s > 1 ⋀ ∀i ∈ {1,...,(#s - 1)}: ((s (i), s (i+1)) ∈ ASSIGN) ⋀
(s (n), s (1)) ∈ ASSIGN) ⋀
∀w ∈ (PE \ PC), ∃s ∈ iseq1 PE: (s (1) = w ⋀ s (n) ∈ PC ⋀ ∀i ∈ {1,...,(#s - 1)}: ((s (i), s (i+1)) ∈

ASSIGN)) ⋀

∀x∈ OA, ∀y ∈ PE: ((x, y) ∈ ASSIGN y ∉ O)

The assignment relation can be represented as a directed graph or digraph G = (PE, ASSIGN), where
PE are the vertices of the graph, and each tuple (x, y) of ASSIGN represents a direct edge or arc that
originates at x and terminates at y. A digraph of policy elements and the assignments among them is
referred to as a policy element diagram.

An object can be said to be “contained by” an object attribute if a sequence of assignments that links the
object with the object attribute exists. The Objects function represents the mapping from an object
attribute to the set of objects that are contained by that object attribute. Intuitively, the function
Objects(oa) returns the set of objects that are contained by or possess the characteristics of the object
attribute oa. The Objects function is a total function from OA to 2O, which is defined as follows:

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 8

Objects ⊆ OA × 2O, where the following properties hold:

 ∀oa ∈ OA, ∀x ∈ 2O: ((oa, x) ∈ Objects (∀o ∈ O: (o ∈ x (o, oa) ∈ ASSIGN*)))

Similarly, the Users function is a total function from UA to 2U, which represents the mapping from a user
attribute to the set of users that are contained by that user attribute. The Users function is defined as
follows:

Users ⊆ UA × 2U, where the following properties hold:

 ∀ua ∈ UA, ∀x ∈ 2U: ((ua, x) ∈ Users (∀u ∈ U: (u ∈ x (u, ua) ∈ ASSIGN+)))

The containment concept can also be generalized for any policy element. The Elements function is a
total function from PE to 2PE, which represents the mapping from a given policy element to the set of
policy elements that includes the policy element and all the policy elements contained by that policy
element. The Elements function is defined as follows:

Elements ⊆ PE × 2PE, where the following properties hold:

 ∀pe ∈ PE, ∀x ∈ 2PE: ((pe, x) ∈ Elements (∀e ∈ PE: (e ∈ x (e, pe) ∈ ASSIGN*)))

A policy element can also be viewed as a referent or representative for the entire section of the policy
element diagram rooted at the policy element. Stated more formally, for the policy element diagram G =

(PE, ASSIGN), a referent r ∈ PE represents the subgraph G' = (PE', ASSIGN'), where PE' = Elements(r)

and ASSIGN' = {(x, y) | x, y ∈ PE' ⋀ (x, y) ∈ ASSIGN}. A policy element when viewed as a referent

serves as a designator for not only itself, but also for policy elements contained by the referent.

4.4.3 Association

4.4.3.1 Background

An association relation is a ternary relation from UA to (2AR \ {∅}) to PE. It is defined as follows:

ASSOCIATION ⊆ UA × (2AR \ {∅}) × PE

Three other relations are derived from an association and are described in this subclause as follows:

1) privilege (see 4.4.3.2);
2) capability (see 4.4.3.3); and
3) access control entry (ACE) (see 4.4.3.4).

4.4.3.2 Privilege

A privilege relation involves a user, access right and policy element. It is derived from one or more

association relations. For each policy class that contains the policy element, an association relation must

exist such that the following is true:

a) the user is contained by the user attribute of the association;
b) the policy element in question is contained by the policy element of the association;
c) the policy element of the association is contained by the policy class; and;
d) the access right is a member of the access right set of the association.

The privilege relation is a ternary relation from U to AR to PE. It is formally defined as follows:

CS1/2195-D Revision 1.30 11 April 2014

9 dpANS Next Generation Access Control - Generic Operations and Data Structures

PRIVILEGE ⊆ U×AR×PE, where the following properties hold:

∀u∈U, ∀ar∈AR, ∀pe∈pe: ((u, ar, pe) ∈ PRIVILEGE ∀pc∈PC: ((pe, pc) ∈ ASSIGN+

∃ua∈UA, ∃ars∈2AR, ∃x∈PE: ((ua, ars, x) ∈ ASSOCIATION ⋀
u ∈ Users(ua) ⋀ ar ∈ ars ⋀ pe ∈ Elements(x) ⋀ x ∈ Elements(pc))))

4.4.3.3 Capability

A capability represents actions that can potentially be taken against policy elements, including objects,
barring any prohibitions. The capability relation is derived from association relations via privileges and is
defined as follows:

CAPABILITY ⊆ AR×PE, where ∀ar∈AR, ∀pe∈PE: ((ar, pe) ∈ CAPABILITY ∃u∈U: (u, ar, pe) ∈
PRIVILEGE)

A user has a capability described by the relation, if and only if a privilege exists specifying that user,
access right and policy element.

4.4.3.4 Access Control Entry

An access control entry represents actions that users can potentially take, barring any prohibitions. An
Access Control Entry (ACE) relation is derived from association relations via privileges, and is defined as
follows:

ACE ⊆ U×AR, where ∀u∈U, ∀ar∈AR: ((u, ar) ∈ ACE ∃pe∈PE: (u, ar, pe) ∈ PRIVILEGE)

A policy elements has the ACE described by the relation, if and only if a privilege exists specifying that
user, access right and policy element.

4.4.4 Prohibition

4.4.4.1 Background

Three distinct, but related types of prohibition relations exist: user-based prohibitions (see 4.4.4.2),
process-based prohibitions (see 4.4.4.3) and attribute-based prohibitions (see 4.4.4.4). These
prohibitions denote an effective set of privileges that a specific user, process, or group of users is
precluded from exercising, regardless of whether any of the privileges involved actually can or cannot
be derived for the user, process or users in question.

The set of policy elements affected by a prohibition is designated via either conjunctive or disjunctive
mappings over sets of referent policy elements to the policy elements in question. More precisely, the
disjunctive range function represents the mapping from two constraint sets of policy elements, the first
designating policy elements for inclusion and the second designating policy elements for exclusion, to a
set of policy elements formed by logical disjunction of the policy elements contained within or not
contained within the subgraphs of the referent policy elements of each constraint set respectively. More
precisely, the set of policy elements returned by the disjunctive range function, DisjRange(peis, pees),

where peis∈2PE and pees∈2PE, is the union of Elements(pei), for all pei in the inclusion set peis, along
with the union of (PE \ Elements(pee)), for all pee in the exclusion set pees, which can be more
succinctly expressed as follows:

DisjRange(peis, pees) = ⋃ Elements(pei) ⋃ ⋃ (PE \ Elements(pee))

 pei∈peis pee∈pees

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 10

The disjunctive range function is a total binary function from 2PE × 2PE to 2PE, and is formally defined as

follows:

DisjRange ⊆ (2PE × 2PE) × 2PE, where the following properties hold:

∀peis∈2PE, ∀pees∈2PE, ∀pes∈2PE: (pes ∈ DisjRange(peis, pees) (∀pei ∈ peis, ∀pee∈pees,

∀pe∈pes: (pe ∈ Elements(pei) ⋁ pe ∈ (PE \ Elements(pee)))))

Similarly, the conjunctive range function represents the mapping from two constraint sets of policy
elements, the first designating policy elements for inclusion and the second designating policy elements
for exclusion, to a set of policy elements formed by logical conjunction of the policy elements contained
by or not contained by the policy elements of each constraint set respectively. More precisely, the set of
policy elements returned by the conjunctive range function, ConjRange(peis, pees), where peis∈2PE and

pees∈2PE, is the intersection of Elements(pei), for all pei in the inclusion set peis, along with the
intersection of (PE \ Elements(pee)), for all pee in the exclusion set pees, which can be more succinctly
expressed as follows:

ConjRange(peis, pees) = ⋂ Elements(pei) ⋂ ⋂ (PE \ Elements(pee))

 pei∈peis pee∈pees

The conjunctive range function is a total binary function from 2PE × 2PE to 2PE. The function is formally

defined as follows:

ConjRange ⊆ (2PE × 2PE) × 2PE, where the following properties hold:

∀peis∈2PE, ∀pees∈2PE, ∀pes∈2PE: (pes ∈ ConjRange(peis, pees) (∀pei ∈ peis, ∀pee∈pees,
∀pe∈pes: (pe ∈ Elements(pei) ⋀ pe ∈ (PE \ Elements(pee)))))

4.4.4.2 User-based prohibitions

User-based prohibition relations involve a quaternary relation from U to 2AR to 2PE to 2PE, where the first
set represents all users, the second set represents all access rights sets, and the third and fourth sets
represent respectively all inclusion and all exclusion sets of policy elements. Two variants of user-based
prohibition relations exist: a disjunctive and a conjunctive form. A disjunctive user prohibition tuple
denotes that all processes initiated by the user are withheld the right to exercise any of the access rights
defined in the access right set against any policy elements that lie within the disjunctive range of the
inclusion and exclusion sets of policy elements. The access right set cannot be the empty set, and the
inclusion and exclusion sets cannot both be the empty set. The relation is formally defined as follows:

U_DENY_DISJ ⊆ U×2AR×2PE×2PE, where ∀u∈U, ∀ars∈2AR, ∀peis∈2PE, ∀pees∈2PE:

((u, ars, peis, pees) ∈ U_DENY_DISJ (ars ≠ ∅ ⋀ peis ⋃ pees ≠ ∅))

Similarly, the conjunctive user prohibition tuple denotes that all processes initiated by the user are
withheld the right to exercise any of the access rights defined in the access right set against any policy
elements that lie within the conjunctive range of the inclusion and exclusion sets of policy elements. The
relation is formally defined as follows:

U_DENY_CONJ ⊆ U×2AR×2PE×2PE, where ∀u∈U, ∀ars∈2AR, ∀peis∈2PE, ∀pees∈2PE:

((u, ars, peis, pees) ∈ U_DENY_CONJ (ars ≠ ∅ ⋀ peis ⋃ pees ≠ ∅))

A user restriction relation is derived from one or more user prohibition relations. It consists of a tuple of
three parts: a user, access right and policy element, such that the following is true:

a) the user is designated by the user identifier of the prohibition;

CS1/2195-D Revision 1.30 11 April 2014

11 dpANS Next Generation Access Control - Generic Operations and Data Structures

b) the access right is a member of the access right set of the prohibition; and
c) the policy element lies within either the disjunctive or conjunctive range of the inclusion and

exclusion policy element sets of the prohibition, respective of whether the prohibition is a
disjunctive or conjunctive variant.

The user restriction relation is a ternary relation from U to AR to PE. It is formally defined as follows:

U_RESTRICT ⊆ U×AR×PE, where the following properties hold:

∀u∈U, ∀ar∈AR, ∀pe∈PE: ((u, ar, pe) ∈ U_RESTRICT ∃ars∈2AR, ∃peis∈2PE, ∃pees∈2PE:

(((u, ars, peis, pees) ∈ U_DENY_DISJ ⋀ ar ∈ ars ⋀ pe ∈ DisjRange(peis, pees)) ⋁
((u, ars, peis, pees) ∈ U_DENY_CONJ ⋀ ar ∈ ars ⋀ pe ∈ ConjRange(peis, pees)))

4.4.4.3 Process-based prohibitions

A user must perform accesses indirectly through one or more processes that carry out actions on its
behalf. Each process is related to only one user. The process-to-user mapping is a function from the
domain P to the codomain U. It is formally defined as follows:

Process_User ⊆ P×U, where ∀p∈P, ∃1u∈U: u = Process_User(p)

Process-based prohibitions are defined similarly to user-based prohibitions. A process-based
prohibition relation is a quaternary relation from P to 2AR to 2PE to 2PE. Similar to user-based
prohibitions, the first set represents all processes, the second set represents all access rights sets, and
the third and fourth sets represent respectively all inclusion and all exclusion sets of policy elements.
Both disjunctive and conjunctive variants of process-based prohibition relations exist. A disjunctive
process prohibition tuple denotes that the process is prohibited from exercising any of the access rights
defined in the access right set against any of the policy elements that lie within the disjunctive range of
the inclusion and exclusion policy element sets. The access right set cannot be the empty set, and the
inclusion and exclusion sets cannot both be the empty set. The relation is defined as follows:

P_DENY_DISJ ⊆ P×2AR×2PE×2PE, where ∀p∈P, ∀ars∈2AR, ∀peis∈2PE, ∀pees∈2PE:

((p, ars, peis, pees) ∈ P_DENY_DISJ (ars ≠ ∅ ⋀ peis ⋃ pees ≠ ∅))

Similarly, the conjunctive process prohibition tuple denotes that the process is prohibited from exercising
any of the access rights defined in the access right set against any of the policy elements that lie within
the conjunctive range of the inclusion and exclusion policy element sets. The relation is defined as
follows:

P_DENY_CONJ ⊆ U×2AR×2PE×2PE, where ∀p∈P, ∀ars∈2AR, ∀peis∈2PE, ∀pees∈2PE:

((p, ars, peis, pees) ∈ P_DENY_CONJ (ars ≠ ∅ ⋀ peis ⋃ pees ≠ ∅)

A process restriction relation is derived from one or more process prohibition relations. It consists of a
tuple of three parts: a process, access right, and policy element, such that the following is true:

a) the process is designated by the process identifier of the prohibition;
b) the access right is a member of the access right set of the prohibition; and
c) the policy element lies within either the disjunctive or conjunctive range of the inclusion and

exclusion policy element sets of the prohibition, respective of whether the prohibition is a
disjunctive or conjunctive variant.

The process restriction relation is a ternary relation from P to AR to PE. It is formally defined as follows:

P_RESTRICT ⊆ P×AR×PE, where the following properties hold:

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 12

∀p∈P, ∀ar∈AR, ∀pe∈PE: ((p, ar, pe) ∈ P_RESTRICT ∃ars∈2AR, ∃peis∈2PE, ∃pees∈2PE:

(((p, ars, peis, pees) ∈ P_DENY_DISJ ⋀ ar ∈ ars ⋀ pe ∈ DisjRange(peis, pees)) ⋁

((p, ars, peis, pees) ∈ P_DENY_CONJ ⋀ ar ∈ ars ⋀ pe ∈ ConjRange(peis, pees)))

4.4.4.4 Attribute-based prohibitions

Attribute-based prohibitions are defined similarly to user-based prohibitions. An attribute-based
prohibition relation is a quaternary relation from UA to 2AR to 2PE to 2PE. Similar to user-based
prohibitions, the first set represents all user attributes, the second set represents all access rights sets,
and the third and fourth sets represent respectively all inclusion and all exclusion sets of policy
elements. Both disjunctive and conjunctive variants of attribute-based prohibition relations exist. A
disjunctive attribute prohibition tuple denotes that all processes initiated by any user contained by the
attribute are prohibited from exercising any of the access rights defined in the access right set against
any of the policy elements that lie within the disjunctive range of the inclusion and exclusion policy
element sets. The access right set cannot be the empty set, and the inclusion and exclusion sets cannot
both be the empty set. The relation is defined as follows:

UA_DENY_DISJ ⊆ UA×2AR×2PE×2PE, where ∀ua∈UA, ∀ars∈2AR, ∀peis∈2PE, ∀pees∈2PE:

((ua, ars, peis, pees) ∈ UA_DENY_DISJ (ars ≠ ∅ ⋀ peis ⋃ pees ≠ ∅))

Similarly, the conjunctive attribute prohibition tuple denotes that all processes initiated by any user
contained by the attribute are prohibited from exercising any of the access rights defined in the access
right set against any of the policy elements that lie within the conjunctive range of the inclusion and
exclusion policy element sets. The relation is defined as follows:

UA_DENY_CONJ ⊆ U×2AR×2PE×2PE, where ∀ua∈UA, ∀ars∈2AR, ∀peis∈2PE, ∀pees∈2PE:

((ua, ars, peis, pees) ∈ UA_DENY_CONJ (ars ≠ ∅ ⋀ peis ⋃ pees ≠ ∅)

An attribute restriction relation is derived from one or more attribute prohibition relations. It consists of a
tuple of three parts: an attribute, access right, and policy element, such that the following is true:

a) the attribute is designated by the user attribute identifier of the prohibition;
b) the access right is a member of the access right set of the prohibition;
c) the policy element lies within either the disjunctive or conjunctive range of the inclusion and

exclusion policy element sets of the prohibition, respective of whether the prohibition is a
disjunctive or conjunctive variant.

The attribute restriction relation is a ternary relation from UA to AR to PE. It is formally defined as
follows:

UA_RESTRICT ⊆ UA×AR×PE, where the following properties hold:

∀ua∈UA, ∀ar∈AR, ∀pe∈PE: ((ua, ar, pe) ∈ UA_RESTRICT ∃ars∈2AR, ∃peis∈2PE, ∃pees∈2PE:

(((ua, ars, peis, pees) ∈ UA_DENY_DISJ ⋀ ar ∈ ars ⋀ pe ∈ DisjRange(peis, pees)) ⋁

((ua, ars, peis, pees) ∈ UA_DENY_CONJ ⋀ ar ∈ ars ⋀ pe ∈ ConjRange(peis, pees)))

4.4.5 Obligation

The obligation relation intuitively is used to screen event notifications of successfully completed access
requests and for those events that match a predefined pattern, automatically trigger a predefined response.
The user that defines a tuple of the obligation relation must possess adequate authority to carry out the
associated response in its entirety at the time the pattern is matched with the event. Otherwise, the response
is not attempted.

CS1/2195-D Revision 1.30 11 April 2014

13 dpANS Next Generation Access Control - Generic Operations and Data Structures

The pattern and response items of the obligation relation respectively express the conditions of an event
pattern and the denotation of the response, as described in NGAC-FA. Processing of the pattern occurs
during the matching process, while processing of the response occurs after a match. The execution of
an obligation’s response occurs immediately after a successful match of an event to the obligation’s
pattern. That is, the pattern matching and response execution are atomic–no other access request can
be processed once a pattern is matched, until the response is complete.

An event pattern and response each represents sentences that must conform to a formal language over
its respective alphabet. That is, the syntax of the sequence of symbols for each item must be well
formed according to its respective grammar. A pattern and response can each be expressed using
different language grammars. Annex A provides an informative example of pattern and response
grammars. To interoperate, all NGAC functional entities supporting an application must apply formal
languages in a consistent fashion when forming the pattern and the response expressions.

A pattern is a member of the set of all allowable patterns, which is formally defined as follows:

PATTERN ⊆ seq1 ΣP, where ΣP is the alphabet used to form a logical expression of the conditions to
be matched, and each member of PATTERN is well-formed with respect to a specific grammar GP

Each member of PATTERN shall be represented by a pattern identifier.

A response is a member of the set of all allowable responses, which is defined as follows:

RESPONSE ⊆ seq1 ΣR, where ΣR is the alphabet used in the denotation of an event response, and
each member of RESPONSES is well-formed with respect to a specific grammar GR

Each member of RESPONSE shall be represented by a response identifier.

The obligation relation is a ternary relation from U to PATTERN to RESPONSE. For each tuple (u,
pattern, response) of the obligation relation, u represents the user that established the pattern and
response, and under whose authorization the response is carried out. An obligation relation is formally
defined as follows:

OBLIG ⊆ U × PATTERN × RESPONSE

4.5 Access authorization

The NGAC authorization decision function controls accesses in terms of processes. The user on whose
behalf the process operates must hold sufficient authority over the policy elements involved, in the form
of at least one and possibly more privileges. That is, access requests to perform an operation on a
policy element, including objects, are issued only from processes acting on behalf of a user, and are
granted authorization provided appropriate privileges exist that allow the access, and no restriction
exists that prevents the access. If a restriction does exist, the access request is denied.

A tuple of an access request relation AREQ is defined as (p, op, argseq), where p∈P, op∈Op and

argseq∈seq1 Arg. The argument sequence, argseq, is a finite sequence of one or more arguments,
which is compatible with the scope of the operation. Each argument in the sequence can be one of the
following items: a distinct policy element, a set of policy elements, a set of access rights, an event
pattern, or a response. That is, an administrative access request comprises an operation and a list of
enumerated arguments whose type and order are dictated by the operation.

Access requests involving resource operations affect only objects and are simpler than administrative
operations, requiring only a single object attribute in the argument sequence. Access requests that

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 14

involve administrative operations affect only information persisted in the PIP and are generally more
complex, requiring multiple arguments in the argument sequence.

An access request is a ternary relation from P to Op to Argseq. It is formally defined as follows:

AREQ ⊆ P × Op × Argseq, where Argseq = seq1 Arg and Arg = {x | x ∈ PE ⋁ x ∈ 2PE ⋁ x ∈

PATTERN ⋁ x ∈ RESPONSE}

For the authorization decision function to determine whether an access request can be granted, it
requires a mapping from an operation and argument sequence pair to the set of access rights and policy
element pairs the process’ user must hold for the request to be granted. The required capabilities
mapping is defined as the partial binary function ReqCap from (Op × Argseq) to 2(AR×PE), such that

∀op∈Op, ∀argseq∈Argseq: (capset ∈ ReqCap(op, argseq) ∀ar ∈ AR, ∀pe ∈ PE: ((ar, pe) ∈ capset, if
and only if (ar,pe) is a requisite access right needed to perform the operation op on argseq)).

ReqCap ⊆ (Op×Argseq) × 2(AR×PE)

The authorization decision function grants a process, p, permission to execute an access request (p, op,
pe), provided the following conditions hold for each access right and policy element pair (ar, pe) in one
of the capability sets returned by the required capabilities function, ReqCap(op, argseq):

a) there exists a privilege (Process_User(p), ar, pe);

b) there does not exist a process restriction (p, ar, pe) ∈ P_RESTRICT;
c) there does not exist a user restriction (Process_User(p), ar, pe) ∈ U_RESTRICT; and

d) there does not exist a user u that is contained by a user attribute ua, such that u =

Process_User(p), and the attribute restriction (ua, ar, pe) ∈ UA_RESTRICT exists.

Otherwise, the requested access is denied.

The authorization decision function is a mapping from domain AREQ to codomain {grant, deny}. It is
formally defined as follows:

Authorization_Decision ⊆ AREQ×{grant, deny}

 ∀p ∈ P, ∀op ∈ Op, ∀argseq ∈ Argseq: ((p, op, argseq) ∈ AREQ

(Authorization_Decision((p, op, argseq)) = grant

∃capset ∈ ReqCap(op, argseq): ∀ar ∈ AR, ∀pe ∈ PE: ((ar, pe) ∈ capset

(Process_User(p), ar, pe) ∈ PRIVILEGE ⋀
 (p, ar, pe) ∉ P_RESTRICT ⋀ (Process_User(p), ar, pe) ∉ U_RESTRICT) ⋀

∀ua ∈ UA, ∄u ∈ Users(ua): (u = Process_User(p) ⋀ (ua, ar, pe) ∈ UA_RESTRICT))));

 otherwise, Authorization_Decision((p, op, argseq)) = deny

The computation of an authorization decision is illustrated in Figure 1. The thick arrows depict the
derivation of the privilege and restriction relations respectively from the association and prohibition
relations that reside in the PIP, while the thin arrows depict the use of those derived relations in
reaching an authorization decision.

CS1/2195-D Revision 1.30 11 April 2014

15 dpANS Next Generation Access Control - Generic Operations and Data Structures

Figure 1: NGAC Authorization Decision Function

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 16

5 Administrative Commands

5.1 Overview

The NGAC access control model is in essence a finite state machine. The basic elements and
containers, and the relations that define the prevailing access rights between these entities, collectively
constitute the authorization state of the policy maintained at the PIP. A change in state or state transition
occurs when an access request involving an administrative operation is granted by the authorization
decision function and successfully carried out. A change in state may also occur when an obligation is
triggered and its response is successfully carried out.

Administrative commands define the behavior of state transitions that occur in the creation, deletion and
maintenance of NGAC data elements and relations. An administrative command is performed to carry
out a valid administrative access request for a user. An administrative command may also be performed
as part of the response for a defined obligation that has been triggered.

Clause 5 defines the semantics for the core NGAC administrative commands. The semantic definitions
specify the correct behavior expected of commands, which is necessary to maintain the integrity of the
NGAC framework. Access to protected resources via administrative commands can occur only when
the access has first been granted by the authorization decision function, thus ensuring that the process
attempting access has sufficient authorization to carry out the command.

5.2 Semantic definitions

Each administrative command describes specific changes made to the authorization state maintained by
the NGAC. The syntax and notation used to specify semantic behavior should not be interpreted as
programming statements and instead, should be interpreted as changes to data structures maintained at
the PIP, which occur when a command is correctly invoked. Behavioral aspects other than those that
pertain to security are outside the scope of this standard.

Administrative commands exist to:

a) create the following policy elements (see 5.2.1):

 a user in a user attribute;

 an object in an object attribute;

 a policy class;

 a user attribute in a policy class;

 a user attribute in a user attribute;

 an object attribute in a policy class; and

 an object attribute in an object attribute.

b) delete the following policy elements (see 5.2.2):
 a user

 an object;

 a user attribute;

 an object attribute; and

 a policy class.

c) create and delete the following entities (see 5.2.3 and 5.2.4):
 a resource operation;

 an administrative operation;

 an access right;

CS1/2195-D Revision 1.30 11 April 2014

17 dpANS Next Generation Access Control - Generic Operations and Data Structures

 a set of access rights;

 a set of policy elements;

 a set of inclusive policy elements;

 a set of exclusive policy elements;

 an event pattern; and

 an event response.

d) create and delete the following relations (see 5.2.5 and 5.2.6):
 assignments;

 associations;

 user-based prohibitions;

 process-based prohibitions;

 attribute-based prohibitions; and

 obligations.

Administrative commands require the orderly build up and tear down of policy representation. Pre-
conditions are defined for each administrative command. Pre-conditions denote requirements. They are
expressed as a logical expression that must be satisfied for the command to be performed. Predicates
appearing on separate lines are conjoined together by default.

The pre-conditions for administrative commands ensure that the arguments supplied as formal
parameters are of the correct type, and that the basic properties of the model are observed. Pre-
conditions appear before the body of the command. The body is enclosed with a pair of braces and
specifies the effect that takes place on the authorization state of the system. By convention, unprimed
variables represent state before the command occurs and primed variables represent the change in
state due to the command. Although multiple statements may apply to a command, the effect shall be
atomic. That is, either all the statements apply, or no change occurs to the authorization state.
Comments may appear anywhere in a command. They shall apply to a single line only and begin with
double, forward slashes (vis., //).

Some foundational data elements and relations are needed to specify the behavior of administrative
commands. All commands depend on a basic data type called ID, which refers to an opaque identifier.
An identifier is a finite sequence of bytes, whose characteristics and interpretation are left unspecified.
A set called GUID maintains a list of all identifiers allocated to entities of the various classes of elements
used to define policy. GUID is used to ensure that an identifier is assigned to only one entity. These
data elements are defined formally as follows:

ID = seq1 {0000b, …, 1111b}

GUID ⊆ ID

Several other data elements and relations are also needed to represent sets whose members represent
defined subsets of certain types of entities, namely access rights, exclusive policy elements and
inclusive policy elements.

ARset ⊆ GUID

ARmap ⊆ GUID x iseq AR

PEIset ⊆ GUID

PEImap ⊆ GUID x iseq PE

PEEset ⊆ GUID

PEEmap ⊆ GUID x iseq PE

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 18

An initial state (i.e., the state immediately after initialization of the NGAC framework) is defined in terms
of the abstract data elements and relations and predicates that stipulate the initial conditions of the
system. The NGAC authorization state is initialized to zero or empty as described in the administrative
command below. The authorization state can then be populated by the security authority with supported
elements, such as inherent administrative operations and associated access rights, and tailored to the
specifics of the operating environment with other elements, such as resource operations and access
rights.

 InitialState ()
 {
 // initialize policy elements

 U′ = ∅

 O′ = ∅

 UA′ = ∅
 OA′ = ∅

 PC′ = ∅
 P′ = ∅
 PE′ = ∅
 // initialize relations

 ASSIGN′ = ∅

 ASSOCIATION′ = ∅
 U_CONJ_DENY′ = ∅

 U_DISJ_DENY′ = ∅

 P_CONJ_DENY′ = ∅
 P_DISJ_DENY′ = ∅

 UA_CONJ_DENY′ = ∅

 UA_DISJ_DENY′ = ∅

 OBLIG′ = ∅
 // initialize other required entities

 GUID′ = ∅
 Process_User′ = ∅
 AOP′ = ∅
 ROP′ = ∅

 OP′ = ∅

 AR′ = ∅
 ARset′ = ∅
 ARmap′ = ∅

 PEIset′ = ∅
 PEImap′ = ∅

 PEEset′ = ∅

 PEEmap′ = ∅
 PATTERN′ = ∅

 PATTERNmap′ = ∅

 RESPONSE′ = ∅

 RESPONSEmap′ = ∅
 }

5.2.1 Element creation

The semantic descriptions of element creation commands describe the state changes that occur with
the addition of new policy elements to the policy representation.

CS1/2195-D Revision 1.30 11 April 2014

19 dpANS Next Generation Access Control - Generic Operations and Data Structures

 CreateUinUA (x:ID, y:ID) // add user x to the policy representation and assign it to user attribute y

x ∉ U

x ∉ GUID
y ∈ UA

y ∈ GUID
{

 GUID′ = GUID ⋃ {x}
 U′ = U ⋃ {x}

 PE′ = PE ⋃ {x}

 ASSIGN′ = ASSIGN ⋃ {(x, y)}
 }

 CreateUAinUA (x:ID, y:ID) // add user attribute x and assign it to user attribute y

x ∉ UA

x ∉ GUID
y ∈ UA

y ∈ GUID
{

 GUID′ = GUID ⋃ {x}
 UA′ = UA ⋃ {x}

 PE′ = PE ⋃ {x}

 ASSIGN′ = ASSIGN ⋃ {(x, y)}
 }

 CreateUAinPC (x:ID, y:ID) // add user attribute x and assign it to policy class y

x ∉ UA
x ∉ GUID

y ∈ PC

y ∈ GUID
{
 GUID′ = GUID ⋃ {x}

 UA′ = UA ⋃ {x}

 PE′ = PE ⋃ {x}
 ASSIGN′ = ASSIGN ⋃ {(x, y)}

 }

 CreateOinOA (x:ID, y:ID) // add object x and assign it to object attribute y

x ∉ GUID
x ∉ O

x ∉ OA

y ∈ OA
y ∈ GUID

 {

 GUID′ = GUID ⋃ {x}

 O′ = O ⋃ {x}
 OA′ = OA ⋃ {x}

 PE′ = PE ⋃ {x}

 ASSIGN′ = ASSIGN ⋃ {(x, y)}
 }

 CreateOAinOA (x:ID, y:ID) // add object attribute x and assign it to object attribute y

x ∉ OA

x ∉ GUID
y ∈ OA

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 20

y ∉ O

y ∈ GUID
{

 GUID′ = GUID ⋃ {x}
 OA′ = OA ⋃ {x}

 PE′ = PE ⋃ {x}

 ASSIGN′ = ASSIGN ⋃ {(x, y)}
 }

 CreateOAinPC (x:ID, y:ID) // add object attribute x and assign it to policy class y

x ∉ OA

x ∉ GUID
y ∈ PC

y ∈ GUID
{
 GUID′ = GUID ⋃ {x}

 OA′ = OA ⋃ {x}

 PE′ = PE ⋃ {x}

 ASSIGN′ = ASSIGN ⋃ {(x, y)}
 }

 CreatePC (x:ID) // add a policy class x to the policy representation

x ∉ PC
x ∉ GUID
{

 GUID′ = GUID ⋃ {x}

 PC′ = PC ⋃ {x}
 PE′ = PE ⋃ {x}

 }

5.2.2 Element deletion

The semantic descriptions of element deletion commands describe the state changes that occur with the
removal of existing policy elements from the policy representation.

 DeleteU (x: ID) // remove user x from the policy representation

 x ∈ U
x ∈ GUID

 ∄p ∈ P: (p, x) ∈ Process_User // ensure no processes that operate on behalf of x exist

 ∄(a, b) ∈ ASSIGN: x = a // ensure no assignments emanating from the user exist
 // ensure no associations exist in which the user is the third element of the tuple

 ∄(a, b, c) ∈ ASSOCIATION: x = c
 // ensure no prohibitions exist for the user

 ∄(a, b, c, d) ∈ U_DENY_DISJ: a = x
∄(a, b, c, d) ∈ U_DENY_CONJ: a = x

 // ensure no inclusive element sets exist that involve the user

∄(a, b) ∈ PEImap: ∃i ∈ {1, ..., #b}: (b (i) = x)
// ensure no exclusive element sets exist that involve the user

∄(a, b) ∈ PEEmap: ∃i ∈ {1, ..., #b}: (b (i) = x)
// ensure no obligations exist defined by the user

 ∄(a, b, c) ∈ OBLIG: a = x
 {
 GUID′ = GUID \ {x}
 U′ = U \ {x}

CS1/2195-D Revision 1.30 11 April 2014

21 dpANS Next Generation Access Control - Generic Operations and Data Structures

 PE′ = PE \ {x}
 }

 DeleteUA (x: ID) // remove user attribute x from the policy representation
 x ∈ UA

x ∈ GUID
 // ensure no assignments emanating from or to the user attribute exist

 ∄(a, b) ∈ ASSIGN: (x = a ⋁ x = b)
 // ensure no associations exist in which the user attribute is the first or last element of the tuple

 ∄(a, b, c) ∈ ASSOCIATION: (x = a ⋁ x = c)
 // ensure no attribute prohibitions exist in which the user attribute is the first element of the tuple

 ∄(a, b, c, d) ∈ UA_DENY_DISJ: x = a
 ∄(a, b, c, d) ∈ UA_DENY_CONJ: x = a
 // ensure no inclusive element sets exist that involve the user attribute

∄(a, b) ∈ PEImap: ∃i ∈ {1, ..., #b}: (b (i) = x)
// ensure no exclusive element sets exist that involve the user attribute

∄(a, b) ∈ PEEmap: ∃i ∈ {1, ..., #b}: (b (i) = x)
 {
 GUID′ = GUID \ {x}
 UA′ = UA \ {x}

 PE′ = PE \ {x}
 }

 DeleteO (x: ID) // remove object x from the policy representation

 x ∈ O

 x ∈ OA
x ∈ GUID

 ∄(a, b) ∈ ASSIGN: x = a // ensure no assignments emanating from the object exist
 // ensure no associations exist in which the object/object attribute is the third element of the tuple

 ∄(a, b, c) ∈ ASSOCIATION: x = c
 // ensure no inclusive element sets exist that involve the object

∄(a, b) ∈ PEImap: ∃i ∈ {1, ..., #b}: (b (i) = x)
// ensure no exclusive element sets exist that involve the object

∄(a, b) ∈ PEEmap: ∃i ∈ {1, ..., #b}: (b (i) = x)
 {
 GUID′ = GUID \ {x}
 O′ = O \ {x}
 OA′ = OA \ {x}

 PE′ = PE \ {x}
 }

 DeleteOA (x: ID) // remove object attribute x from the policy representation

 x ∈ OA

 x ∉ O
x ∈ GUID

 // ensure no assignments emanating from or to the object attribute exist

 ∄(a, b) ∈ ASSIGN: (x = a ⋁ x = b)
 // ensure no associations exist in which the object attribute is the third element of the tuple
 ∄(a, b, c) ∈ ASSOCIATION: x = c
 // ensure no inclusive element sets exist that involve the object attribute

∄(a, b) ∈ PEImap: ∃i ∈ {1, ..., #b}: (b (i) = x)
// ensure no exclusive element sets exist that involve the object attribute
∄(a, b) ∈ PEEmap: ∃i ∈ {1, ..., #b}: (b (i) = x)

 {

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 22

 GUID′ = GUID \ {x}
 OA′ = OA \ {x}

 PE′ = PE \ {x}
 }

 DeletePC (x: ID) // remove policy class x from the policy representation

 x ∈ PC

x ∈ GUID

 ∄(a, b) ∈ ASSIGN: x = b // ensure no assignments emanating to the policy class exist
 // ensure no associations exist in which the policy class is the third element of the tuple

 ∄(a, b, c) ∈ ASSOCIATION: x = c
 // ensure no inclusive element sets exist that involve the policy class

∄(a, b) ∈ PEImap: ∃i ∈ {1, ..., #b}: (b (i) = x)
// ensure no exclusive element sets exist that involve the policy class

∄(a, b) ∈ PEEmap: ∃i ∈ {1, ..., #b}: (b (i) = x)
 {
 GUID′ = GUID \ {x}
 PC′ = PC \ {x}

 PE′ = PE \ {x}
 }

5.2.3 Entity creation

The semantic descriptions of element creation commands describe the state changes that occur with
the addition of new entities to the policy representation.

 CreateP (x:ID, y:ID) // add process x and map it to user y

x ∉ P

x ∉ GUID
y ∈ U

y ∈ GUID
{
 GUID′ = GUID ⋃ {x}

 P′ = P ⋃ {x}

 Process_User′ = Process_User ⋃ {(x, y)}
 }

 CreateROp (x: ID) // add a resource operation to the policy representation

x ∉ Op

x ∉ GUID
{

 GUID′ = GUID ⋃ {x}

 Op′ = Op ⋃ {x}

 ROp′ = ROp ⋃ {x}
 }

 CreateAOp (x: ID) // add an administrative operation to the policy representation

x ∉ Op

x ∉ GUID
{

 GUID′ = GUID ⋃ {x}

 Op′ = Op ⋃ {x}
 AOp′ = AOp ⋃ {x}

 }

CS1/2195-D Revision 1.30 11 April 2014

23 dpANS Next Generation Access Control - Generic Operations and Data Structures

 CreateAR (x: ID) // add an access right to the policy representation

x ∉ AR

x ∉ GUID
{

 GUID′ = GUID ⋃ {x}

 AR′ = AR ⋃ {x}
 }

 CreateARset (x: ID, y: iseq ID) // add a set of defined access rights to the policy representation

x ∉ ARset

x ∉ GUID
∀i ∈ {1, ..., #y}: (y (i) ∈ AR) // ensure each element of the sequence is an access right
{

 GUID′ = GUID ⋃ {x}

 ARset′ = ARset ⋃ {x} // maintains set of identifiers for defined access right sets
 ARmap′ = ARmap ⋃ {(x, y)} // maintains mapping from ARset identifiers to AR sequences

 }

 CreatePEIset (x: ID, y: iseq ID) // add a set of inclusion policy elements to the representation

x ∉ PEIset

x ∉ GUID

∀i ∈ {1, ..., #y}: (y (i) ∈ PE)
{
 GUID′ = GUID ⋃ {x}

 PEIset′ = PEIset ⋃ {x}

 PEImap′ = PEImap ⋃ {(x, y)}
 }

 CreatePEEset (x: ID, y: iseq ID) // add a set of exclusion policy elements to the representation

x ∉ PEEset

x ∉ GUID
∀i ∈ {1, ..., #y}: (y (i) ∈ PE)
{

 GUID′ = GUID ⋃ {x}

 PEEset′ = PEEset ⋃ {x}
 PEEmap′ = PEEmap ⋃ {(x, y)}

 }

 CreatePattern (x: ID, y: seq1 ΣP) // add an event pattern to the policy representation

x ∉ PATTERN

x ∉ GUID
{

 GUID′ = GUID ⋃ {x}
 PATTERN′ = PATTERN ⋃ {x}

 PATTERNmap′ = PATTERNmap ⋃ {(x, y)}
 }

 CreateResponse (x: ID, y: seq1 ΣR) // add an event response to the policy representation

x ∉ RESPONSE

x ∉ GUID
{
 GUID′ = GUID ⋃ {x}

 RESPONSE′ = RESPONSE ⋃ {x}

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 24

 RESPONSEmap′ = RESPONSEmap ⋃ {(x, y)}
 }

5.2.4 Entity deletion

The semantic descriptions of element deletion commands describe the state changes that occur with the
removal of existing entities from the policy representation.

 DeleteP (x: ID) // remove process x from the policy representation

 x ∈ P
x ∈ GUID

∃1u ∈ U: u = Process_User(x) // ensure the process maps to a user

∄(a, b, c, d) ∈ P_DENY_CONJ: x = a // ensure no outstanding conjunctive prohibitions exist
∄(a, b, c, d) ∈ P_DENY_DISJ: x = a // ensure no outstanding disjunctive prohibitions exist
{

 GUID′ = GUID \ {x}
 Process_User′ = Process_User \ {(x, Process_User(x))}
 }

 DeleteROp (x: ID) // remove a resource operation from the policy representation

x ∈ ROp

x ∈ Op

x ∈ GUID
{
 GUID′ = GUID \ {x}
 Op′ = Op \ {x}
 ROp′ = ROp \ {x}

 }

 DeleteAOp (x: ID) // remove an administrative operation from the policy representation

x ∈ AOp

x ∈ Op
x ∈ GUID
{
 GUID′ = GUID \ {x}
 Op′ = Op \ {x}
 AOp′ = AOp \ {x}

 }

 DeleteAR (x: ID) // remove an access right from the policy representation

x ∈ AR

x ∈ GUID
// ensure the access right does not belong to any access rights set

∄(a, b) ∈ ARmap: ∃i ∈ {1, ..., #b}: (b (i) = x)
{
 GUID′ = GUID \ {x}
 AR′ = AR \ {x}

 }

 DeleteARset (x: ID) // remove an access rights set from the policy representation

x ∈ ARset
x ∈ GUID

∃1(a, b) ∈ ARmap: x = a
 // ensure no associations exist in which the access right set is the second element of the tuple

CS1/2195-D Revision 1.30 11 April 2014

25 dpANS Next Generation Access Control - Generic Operations and Data Structures

 ∄(a, b, c) ∈ ASSOCIATION: x = b
 // ensure no disjunctive user prohibitions exist that involve the access right set

 ∄(a, b, c, d) ∈ U_DENY_DISJ: x = b
 // ensure no conjunctive user prohibitions exist that involve the access right set

∄(a, b, c, d) ∈ U_DENY_CON: x = b
 // ensure no disjunctive process prohibitions exist that involve the access right set

 ∄(a, b, c, d) ∈ P_DENY_DISJ: x = b
 // ensure no conjunctive process prohibitions exist that involve the access right set

∄(a, b, c, d) ∈ P_DENY_CON: x = b
 // ensure no disjunctive attribute prohibitions exist that involve the access right set

 ∄(a, b, c, d) ∈ UA_DENY_DISJ: x = b
 // ensure no conjunctive attribute prohibitions exist that involve the access right set

∄(a, b, c, d) ∈ UA_DENY_CON: x = b
{
 GUID′ = GUID \ {x}
 ARset′ = ARset \ {x}
 ARmap′ = ARmap \ {(x, y)} // the associated sequence of access rights is removed

 }

 DeletePEIset (x: ID) // remove a set of inclusion policy elements from the representation

x ∈ PEIset

x ∈ GUID
∃1(a, b) ∈ PEImap: x = a

 // ensure no disjunctive user prohibitions exist that involve the policy element set

 ∄(a, b, c, d) ∈ U_DENY_DISJ: x = c
 // ensure no conjunctive user prohibitions exist that involve the policy element set

∄(a, b, c, d) ∈ U_DENY_CON: x = c
 // ensure no disjunctive process prohibitions exist that involve the access right set

 ∄(a, b, c, d) ∈ P_DENY_DISJ: x = c
 // ensure no conjunctive process prohibitions exist that involve the access right set

∄(a, b, c, d) ∈ P_DENY_CON: x = c
 // ensure no disjunctive attribute prohibitions exist that involve the access right set

 ∄(a, b, c, d) ∈ UA_DENY_DISJ: x = c
 // ensure no conjunctive attribute prohibitions exist that involve the access right set

∄(a, b, c, d) ∈ UA_DENY_CON: x = c
{
 GUID′ = GUID \ {x}
 PEIset′ = PEIset \ {x}
 PEImap′ = PEImap \ {(x, y)} // the associated sequence of policy elements is removed

 }

 DeletePEEset (x: ID) // remove a set of exclusion policy elements from the representation

x ∈ PEEset

x ∈ GUID
∃1(a, b) ∈ PEEmap: x = a

 // ensure no disjunctive user prohibitions exist that involve the policy element set

 ∄(a, b, c, d) ∈ U_DENY_DISJ: x = d
 // ensure no conjunctive user prohibitions exist that involve the policy element set

∄(a, b, c, d) ∈ U_DENY_CON: x = d
 // ensure no disjunctive process prohibitions exist that involve the access right set

 ∄(a, b, c, d) ∈ P_DENY_DISJ: x = d
 // ensure no conjunctive process prohibitions exist that involve the access right set

∄(a, b, c, d) ∈ P_DENY_CON: x = c
 // ensure no disjunctive attribute prohibitions exist that involve the access right set

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 26

 ∄(a, b, c, d) ∈ UA_DENY_DISJ: x = c
 // ensure no conjunctive attribute prohibitions exist that involve the access right set

∄(a, b, c, d) ∈ UA_DENY_CON: x = c
{
 GUID′ = GUID \ {x}
 PEEset′ = PEEset \ {x}
 PEEmap′ = PEEmap \ {(x, y)} // the associated sequence of policy elements is removed

 }

 DeletePattern (x: ID) // from an event pattern from the policy representation

x ∈ PATTERN

x ∈ GUID
 // ensure no obligations exist that involve the pattern

 ∄(a, b, c) ∈ OBLIG: x = b
{
 GUID′ = GUID \ {x}
 PATTERN′ = PATTERN \ {x}
 PATTERNmap′ = PATTERNmap \ {(x, y)}

 }

 DeleteResponse (x: ID) // delete an event response from the policy representation

x ∈ RESPONSE

x ∈ GUID
 // ensure no obligations exist that involve the response

 ∄(a, b, c) ∈ OBLIG: x = c
{
 GUID′ = GUID \ {x}
 RESPONSE′ = RESPONSE \ {x}
 RESPONSEmap′ = RESPONSEmap \ {(x, y)}

 }

5.2.5 Relation formation

The semantic descriptions of relation formation commands describe state changes that occur with the
addition of tuples to existing relations and functions in the policy representation.

 CreateAssign (x:ID, y:ID) // add tuple (x, y) to the assignment relation

x ∈ PE

y ∈ PE

((x ∈ U ⋀ y ∈ UA) ⋁ (x ∈ UA ⋀ y ∈ UA) ⋁ (x ∈ UA ⋀ y ∈ PC) ⋁

(x ∈ OA ⋀ y ∈ (OA \ O)) ⋁ (x ∈ (OA \ O) ⋀ y ∈ PC))
x ≠ y // prevents the creating of a loop
(x, y) ∉ ASSIGN
// ensure that no chain of assignments will result, which creates a cycle (i.e., if x and y are both
// members of UA or OA, then there cannot already exist a series of assignments from y to x)

(x, y ∈ UA ⋁ x, y ∈ OA) ∄s ∈ iseq1 PE: (#s > 1 ⋀ ∀i ∈ {1,...,(#s - 1)}:

((s (i), s (i+1)) ∈ ASSIGN) ⋀ (s (1) = y ⋀ s (#s) = x)
{

 ASSIGN′ = ASSIGN ⋃ {(x, y)}
}

 CreateAssoc (x:ID, y:ID, z:ID) // add tuple (x, y, z) to the association relation
 x ∈ UA

y ∈ ARset

CS1/2195-D Revision 1.30 11 April 2014

27 dpANS Next Generation Access Control - Generic Operations and Data Structures

z ∈ PE

(x, y, z) ∉ ASSOCIATION
// ensure no duplicate association exists
∄(a, b, c) ∈ ASSOCIATION: (a = x ⋀ ran ARmap(b) = ran ARmap(y) ⋀ c = z)

 {

 ASSOCIATION′ = ASSOCIATION ⋃ {(x, y, z)}
}

 CreateConjUserProhibit (w: ID, x:ID, y:ID, z:ID) // add tuple (w, x, y, z) to the prohibition relation

 w ∈ U

 x ∈ ARset

y ∈ PEIset
z ∈ PEEset

(w, x, y, z) ∉ U_DENY_CONJ
// ensure no duplicate prohibition exists
∄(a, b, c, d) ∈ U_DENY_CONJ: (a = w ⋀ ran ARmap(b) = ran ARmap(x) ⋀

ran PEImap(c) = ran PEImap(y) ⋀ ran PEEmap(d) = ran PEEmap(z))
 {

 U_DENY_CONJ ′ = U_DENY_CONJ ⋃ {(w, x, y, z)}
}

 CreateConjProcessProhibit (w: ID, x:ID, y:ID, z:ID) // add tuple (w, x, y, z) to the prohibition relation

 w ∈ P

 x ∈ ARset
y ∈ PEIset

z ∈ PEEset

(w, x, y, z) ∉ P_DENY_CONJ
// ensure no duplicate prohibition exists

∄(a, b, c, d) ∈ P_DENY_CONJ: (a = w ⋀ ran ARmap(b) = ran ARmap(x) ⋀

ran PEImap(c) = ran PEImap(y) ⋀ ran PEEmap(d) = ran PEEmap(z))
{
 P_DENY_CONJ ′ = P_DENY_CONJ ⋃ {(w, x, y, z)}
}

 CreateConjAttributeProhibit (w: ID, x:ID, y:ID, z:ID) // add tuple (w, x, y, z) to the prohibition relation

 w ∈ UA
 x ∈ ARset

y ∈ PEIset

z ∈ PEEset
(w, x, y, z) ∉ UA_DENY_CONJ
// ensure no duplicate prohibition exists

∄(a, b, c, d) ∈ UA_DENY_CONJ: (a = w ⋀ ran ARmap(b) = ran ARmap(x) ⋀

ran PEImap(c) = ran PEImap(y) ⋀ ran PEEmap(d) = ran PEEmap(z))
{

 UA_DENY_CONJ ′ = UA_DENY_CONJ ⋃ {(w, x, y, z)}
}

The disjunctive forms of user, process and attribute-based prohibition formation are defined similarly to
their conjunctive counterparts above.

 CreateOblig (x:ID, y:ID, z:ID) // add tuple (x, y, z) to the obligation relation

 x ∈ U
y ∈ PATTERN

z ∈ RESPONSE

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 28

(x, y, z) ∉ OBLIG
// ensure no duplicate (i.e., identical sentences, not semantic equivalents) obligation exists

∄(a, b, c) ∈ OBLIG: (a = x ⋀ #PATTERNmap(b) = #PATTERNmap(y) ⋀

∀i ∈ {1, ..., #PATTERNmap(b)}: PATTERNmap(b) (i) = PATTERNmap(y) (i) ⋀
#RESPONSEmap(c) = #RESPONSEmap(z) ⋀

∀i ∈ {1, ..., #RESPONSEmap(c)}: RESPONSEmap(c) (i) = RESPONSEmap(z) (i))
 {

 OBLIG ′ = OBLIG ⋃ {(x, y, z)}
}

 CreatePUmapping (x:ID, y:ID)

 x ∈ P
y ∈ U

(x, y) ∉ Process_User

 ∄z ∈ P: (x, z) ∈ Process_User // ensure no other user already assigned to the process
 {

 Process_User′ = Process_User ⋃ {(x, y)}
}

5.2.6 Relation rescindment

The semantic descriptions of relation rescindment commands describe state changes that occur with the
removal of tuples from existing relations and functions in the policy representation.

 DeleteAssign (x:ID, y:ID) // remove tuple (x, y) from the assignment relation

((x ∈ U ⋀ y ∈ UA) ⋁ (x ∈ UA ⋀ y ∈ UA) ⋁ (x ∈ UA ⋀ y ∈ PC) ⋁
(x ∈ OA ⋀ y ∈ (OA\O)) ⋁ (x ∈ (OA\O) ⋀ y ∈ PC))

(x, y) ∈ ASSIGN
// ensure that if no other assignment emanates from x, no assignments emanate to x

∄z ∈ PE: (x, z) ∈ ASSIGN ∄v ∈ PE: (v, x) ∈ ASSIGN
{
 ASSIGN′ = ASSIGN \ {(x, y)}
}

 DeleteAssoc(x:ID, y:ID, z:ID) // remove tuple (x, y, z) from the association relation

 x ∈ UA

y ∈ ARset
z ∈ PE

(x, y, z) ∈ ASSOCIATION
{
 ASSOCIATION′ = ASSOCIATION \ {(x, y, z)}
}

 DeleteConjUserProhibit (w: ID, x:ID, y:ID, z:ID) // remove tuple from user prohibition relation

 w ∈ U

 x ∈ ARset
y ∈ PEIset

z ∈ PEEset

(w, x, y, z) ∈ U_DENY_CONJ
 {

 U_DENY_CONJ′ = U_DENY_CONJ \ {(w, x, y, z)}
}

CS1/2195-D Revision 1.30 11 April 2014

29 dpANS Next Generation Access Control - Generic Operations and Data Structures

 DeleteConjProcessProhibit (w: ID, x:ID, y:ID, z:ID) // remove tuple from process prohibition relation

 w ∈ P

 x ∈ ARset
y ∈ PEIset

z ∈ PEEset

(w, x, y, z) ∈ P_DENY_CONJ
{
 P_DENY_CONJ′ = P_DENY_CONJ \ {(w, x, y, z)}
}

 DeleteConjAttributeProhibit (w: ID, x:ID, y:ID, z:ID) // remove tuple from process prohibition relation

 w ∈ UA
 x ∈ ARset

y ∈ PEIset

z ∈ PEEset
(w, x, y, z) ∈ UA_DENY_CONJ
{
 UA_DENY_CONJ′ = UA_DENY_CONJ \ {(w, x, y, z)}
}

The disjunctive forms of user, process and attribute-based prohibition rescindment are defined similarly
to their conjunctive counterparts above.

 DeleteOblig (x:ID, y: ID, z: ID) // remove tuple (x, y, z) from the obligation relation

 x ∈ U
y ∈ PATTERN

z ∈ RESPONSE

(x, y, z) ∈ OBLIG
 {

 OBLIG′ = OBLIG \ {(x, y, z)}
}

 DeletePUmapping (x: ID, y: ID)

 x ∈ P
y ∈ U

 (x, y) ∈ Process_User
 {

 Process_User′ = Process_User \ {(x, y)}
}

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 30

Annex A

(Informative)

Pattern and Response Grammars

A.1 Overview

Obligations represent potential changes to the authorization state of the policy. They are used when one
of more administrative actions need to be carried out under a specific, predefined set of circumstances.
Insofar as their ability to change the authorization state is concerned, obligations have a similar effect as
administrative commands. Important differences exist between them, however. Administrative
commands are typically carried out in response to an access request that has first been subjected to the
authorization decision function for approval, which ensures that the requestor holds sufficient
authorization. When the circumstances of a defined obligation are matched, the actions that make up
the associated response are carried out automatically, under the authorization held by the user that
defined the obligation. The triggering of the obligation allows resolution of any unresolved terms
appearing in the response with the details of the triggering event, and also verification that the user that
defined the obligation holds sufficient authorization to carry out the response.

The benefits of obligations are twofold: complex policies that require more dynamic treatment than the
GOADS policy representation provides can be accommodated, and administrative actions that require
repetitive performance of administrative commands can be automated. The main drawback is the
potential to cause grave harm to the authorization state through error or intent. The former can be
mitigated by thoroughly testing any obligation before it is enabled, and the latter by taking judicious care
when employing obligations, preferably granting only trusted individuals the authorization to define
obligations and restricting the scope of those individual’s authority to well-defined groups of policy
elements.

As described in clause 4, each defined obligation is represented by a triple of the OBLIG relation of the
form (user, pattern, response). From the perspective of the formal model, the pattern and response
terms are simply a sequence of symbols from some alphabet. Therefore, the recognition and treatment
of the acceptable symbol sequences that are possible for each item must be handled outside of the
model using a different formalism well suited for this goal.

A grammar is a formal mechanism that can be used either to enumerate the sentences of a language or
to determine whether a given sentence (i.e., a sequence of symbols from some alphabet) belongs to the
language described by the grammar. The grammars for the pattern and response terms of an obligation
relation can be specified using Backus-Naur Form (BNF) notation. A BNF grammar comprises a set of
symbols and production rules, which formally describe a language. The pattern and response
grammars, therefore, each defines a formal language whose respective sentences are conveyed by the
corresponding terms of an obligation.

The following conventions are followed in the BNF notation used in the specifications below. Non-

terminal symbols are enclosed by left and right-pointing angle braces (vis., ⟨⟩). Terminal symbols are
bolded. Undefined symbols that lie outside the grammar (e.g., function calls) are italicized. Procedures
and functions are specified in the syntax of the "C" programming language. Production rules use a

special symbol (vis., ::=) as a replacement operator that separates a non-terminal symbol on the left-
hand side from the replacement rewrite expression on the right-hand side. A vertical bar (vis., |)
separates alternative rewrite expressions. Concatenation of adjacent symbols is implicit and takes

precedence over |, which takes precedence over ::=. Paired square brackets group together
expressions that are optional, and paired curly brackets group together expressions that may occur zero
or more times. These grouping designators, which are drawn from the Extended BNF notation, take
precedence over other operators.

CS1/2195-D Revision 1.30 11 April 2014

31 dpANS Next Generation Access Control - Generic Operations and Data Structures

A.2 Event pattern grammar

A.2.1 Base specification

The event pattern grammar specifies an event, such as a specific operation performed on an object by a
process running on behalf of a user that has certain attributes in some policy classes. The event pattern
comprises four components, namely a user specification (see A.2.2), a policy class specification (see
A.2.3), an operation specification (see A.2.4), and a policy element specification (see A.2.5). With the
exception of the operation specification, all components are optional. In order to apply an event-
response rule, the event being processed (the current event) must match every component specification
present in the rule’s event pattern.

⟨event pattern⟩ ::= [⟨user spec⟩] [⟨pc spec⟩] ⟨op spec⟩ [⟨pe spec⟩]

A.2.2 User specification

If the user specification is present, it denotes the processes of a specific user, of any user, or of any
user from a set of users and/or user attributes, or a specific process specified through its identifier. If the
user specification is omitted, then by default any event matches this component of the pattern.

⟨user spec⟩ ::= ⟨user⟩ | ⟨any user⟩ | ⟨process⟩

⟨user⟩ ::= [user] user_name

⟨any user⟩ ::= any [user] [of ⟨user or attr set⟩]

⟨user or attr set⟩ ::= ⟨user or attr⟩ {, ⟨user or attr⟩}

⟨user or attr⟩ ::= ⟨user⟩ | ⟨uattr⟩

⟨uattr⟩ ::= attribute attribute_name

⟨process⟩ ::= process process_id

A.2.3 Policy class specification

The policy class specification, if present, can specify a particular policy class by name, any policy class,
any policy class from a set, all policy classes, or all policy classes from a set. The current event matches
the policy class specification if the user is contained in the designated policy classes. If the policy class
is omitted, any event matches this component of the pattern.

⟨pc spec⟩ ::= in ⟨pc subspec⟩

⟨pc subspec⟩ ::= ⟨pc⟩ | ⟨any pc⟩ | ⟨each pc⟩

⟨pc⟩ ::= [policy] pc_name

⟨any pc⟩ ::= any [policy] [of ⟨pc set⟩]

⟨each pc⟩ ::= each [policy] [of ⟨pc set⟩]

⟨pc set⟩ ::= ⟨pc⟩ {, ⟨pc⟩}

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 32

A.2.4 Operation specification

The mandatory operation specification specifies the event operation by its name, or as any operation, or
as any operation from a set of operations.

⟨op spec⟩ ::= performs ⟨op subspec⟩

⟨op subspec⟩ ::= ⟨op⟩ | ⟨any op⟩

⟨op⟩ ::= [operation] op_name

⟨any op⟩ ::= any [operation] [of ⟨op set⟩]

⟨op set⟩ ::= ⟨op⟩ {, ⟨op⟩}

A.2.5 Policy element specification

If the policy element specification is present, it can specify a policy element by its name, any policy
element, any policy elements contained in other policy elements, or any policy element from a set of
enumerated policy elements.

⟨pe spec⟩ ::= on ⟨pe subspec⟩ [⟨membership subspec⟩]

⟨pe subspec⟩ ::= ⟨pe⟩ | ⟨any pe⟩

⟨pe⟩ ::= [policy element] pe_name

⟨any pe⟩ ::= any [policy element]

⟨membership subspec⟩ ::= in ⟨pe⟩ | of ⟨pe set⟩

⟨pe set⟩ ::= ⟨pe⟩ {, ⟨pe⟩}

A.3 Event response grammar

A.3.1 Base Specification

The response grammar specifies a sequence of conditional actions to be performed by the EPP
whenever an event occurs which matches the corresponding event pattern. Actions are prefixed with an
optional condition that can be used to specify the existence or nonexistence of some policy element.
The types of actions that are defined for a response are create (see A.3.2), assign (see A.3.3), grant
(see A.3.4), deny (see A.3.5), and delete (see A.3.6) actions.

⟨response⟩ ::= ⟨conditional action⟩ {, ⟨conditional action⟩}

⟨conditional action⟩ ::= [if ⟨condition⟩ then] ⟨action⟩ {, ⟨action⟩}

⟨condition⟩ ::= ⟨factor⟩ {and ⟨factor⟩}

⟨factor⟩ ::= [not] ⟨cond entity⟩ ⟨rest factor⟩

⟨rest factor⟩ ::= exists | in ⟨cond entity⟩

CS1/2195-D Revision 1.30 11 April 2014

33 dpANS Next Generation Access Control - Generic Operations and Data Structures

⟨cond entity⟩ ::= user [attribute] ⟨name or function call⟩ |
 object [attribute] ⟨name or function call⟩ |
 policy ⟨name or function call⟩

⟨name or function call⟩ ::= name | fn_name ([⟨arg part⟩])

⟨arg part⟩ ::= ⟨name or function call⟩ {, ⟨name or function call⟩}

⟨action⟩ ::= ⟨create action⟩ |
 ⟨assign action⟩ |
 ⟨grant action⟩ |
 ⟨deny action⟩ |
 ⟨delete action⟩

A.3.2 Create action specification

A create action creates a policy element and optionally assigns it to another element. The action is
introduced by the keyword create and specifies the entity to be created, the entity that is to be
represented by it, and the containers within which the new entity is to be created and assigned. The
entity to create (i.e., ⟨create what⟩) can be either a user, a user attribute, an object, an object attribute,

or a policy class. The containers where the new entity is to be created is specified by the ⟨create

where⟩ production rule, which can designate the base node of the framework, a policy class, user
attribute, or an object attribute. A container name can be specified explicitly or as the result of a function
call. Functions are evaluated at run time, as the response is being carried out.

⟨create action⟩ ::= create ⟨create what⟩ ⟨create where⟩

⟨create what⟩ ::= ⟨user or obj prefix⟩ [attribute] ⟨name or function call⟩ |
 policy ⟨name or function call⟩

⟨user or obj prefix⟩ ::= user | object

⟨create where⟩ ::= in ⟨container⟩

⟨container⟩ ::= ⟨base container⟩ | ⟨policy container⟩ | ⟨attr container⟩

⟨base container⟩ ::= base

⟨policy container⟩ ::= policy ⟨name or function call⟩

⟨attr container⟩ ::= ⟨attr prefix⟩ ⟨name or function call⟩

⟨attr prefix⟩ ::= user attribute | object attribute

A.3.3 Assign action specification

An assign action creates an assignment, provided that no duplicate assignment already exists. It is
introduced by the keyword assign followed by two components: the source entity and the destination
entities. The entity to be assigned can be a user, a user attribute, an object, or an object attribute. The
destination entities can be either a set of containers to which the source entity must be assigned, or (by
using the keyword like) a user, a user attribute, an object, or an object attribute from which the
assignments can be copied.

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 34

⟨assign action⟩ ::= assign ⟨assign what⟩ [⟨assign to⟩]

⟨assign what⟩ ::= ⟨user or obj prefix⟩ [attribute] ⟨name or function call⟩

⟨assign to⟩ ::= to ⟨container set⟩ | like ⟨model entity⟩

⟨container set⟩ ::= ⟨container⟩ {, ⟨container⟩}

⟨model entity⟩ ::= ⟨user or obj prefix⟩ [attribute] ⟨name or function call⟩

A.3.4 Grant action specification

A grant action creates an association, provided that no duplicate association already exists. The action
is introduced by the keyword grant and comprises three components: the user attributes, the granted

access rights, and the policy elements on which the access rights are granted. The ⟨grant to⟩
component specifies user attributes that receive the granted access rights. A user attribute can be

specified explicitly or as the result of a function call. The ⟨grant what⟩ component specifies the access
rights granted. The optional ⟨grant on⟩ component, if specified, identifies policy elements targeted by the

grant. If omitted, the policy element specified in the optional ⟨policy element⟩ component of the event
pattern is targeted, and if that component is also not present, the policy element targeted in the matched
event is the one targeted by the grant.

⟨grant action⟩ ::= grant ⟨grant to⟩ ⟨grant what⟩ [⟨grant on⟩]

⟨grant to⟩ ::= ⟨uattr spec⟩ {, ⟨uattr spec⟩}

⟨uattr spec⟩ ::= [[user] attribute] ⟨name or function call⟩

⟨grant what⟩ ::= ⟨ar prefix⟩ ⟨granted ar set⟩

⟨ar prefix⟩ ::= access right | access rights

⟨granted ar set⟩ ::= ar_name {, ar_name}

⟨grant on⟩ ::= on [policy element] ⟨name or function call⟩

A.3.5 Deny action specification

A deny action creates a prohibition, provided that no duplicate prohibition already exists. It is introduced
by the keyword deny and comprises three components. The ⟨deny to⟩ component specifies the user,

the user attribute, session, or process that is denied the operations specified by ⟨deny what⟩. If the
operand is a user, then the deny operation is user-based. If the operand is a user attribute, then the
deny operation is attribute-based. If the operand is a process, then the deny operation is process-based.
The ⟨deny what⟩ clause specifies the access rights denied. The ⟨deny on⟩ component specifies a list of
referent policy elements to which the denied access rights apply. The list can be prefixed by the
keyword complement, meaning the complement of the set of policy elements represented by the
members of the list. The list is normally interpreted as the union of its members. If prefixed by the
keyword intersection of, then it is interpreted as the intersection of its members. A list member can
also be prefixed by the keyword complement, meaning the complement of the set of policy elements
represented by that member as a referent container.

⟨deny action⟩ ::= deny ⟨deny to⟩ ⟨deny what⟩ ⟨deny on⟩

CS1/2195-D Revision 1.30 11 April 2014

35 dpANS Next Generation Access Control - Generic Operations and Data Structures

⟨deny to⟩ ::= user [attribute] ⟨name or function call⟩ |
 process ⟨name or function call⟩

⟨deny what⟩ ::= ⟨ar prefix⟩ ⟨denied ar set⟩

⟨ar prefix⟩ ::= access right | access rights

⟨denied ar set⟩ ::= ar_name {, ar_name}

⟨deny on⟩ ::= [on elements of [complement of] [intersection of]] ⟨policy element set⟩

⟨policy element set⟩ ::= ⟨pe container⟩ {, ⟨pe container⟩}

⟨pe container⟩ ::= [complement of] [policy element] ⟨name or function call⟩

A.3.6 Delete action specification

A delete action is introduced by the keyword delete. To date, the following subtypes of delete actions
are defined: delete assignment relations, delete deny relations, delete grant relations, and created policy
elements.

⟨delete action⟩ ::= delete ⟨delete subaction⟩

⟨delete subaction⟩ ::= ⟨delete assign subaction⟩ |
 ⟨delete deny subaction⟩ |
 ⟨delete grant subaction⟩ |
 ⟨delete create subaction⟩

⟨delete assign subaction⟩ ::= assign ⟨assign what⟩ to ⟨container set⟩

⟨delete deny subaction⟩ ::= deny ⟨deny to⟩ ⟨deny what⟩ ⟨deny on⟩

⟨delete grant subaction⟩ ::= grant ⟨grant to⟩ ⟨grant what⟩ ⟨grant on⟩

⟨delete create subaction⟩ ::= create ⟨create what⟩

A.4 Grammar considerations

The pattern and response grammars, or grammar pairs, specified above provide an example of the type
of facility that can be provided for expressing policy through obligations. The example grammar pairs
are fairly extensive and, because of the English-like sentence syntax, have a high usability factor, which
enables users to easily perform administrative command-like manipulation of policy. However, the
process used to analyze and interpret sentences, turning them into actions on the PIP, is also extensive
and, as a result, complex. For many policies, the available features provide by the example grammars
are superfluous and will go unused. Nevertheless, they provide a picture of the type of policy
expressions that are conceivable.

Consider, for instance, a user x applying the example grammars to specify the following verbose and
terse forms of a simple obligation:

(x, any user performs operation op_name on any policy element of pe_name,
deny process fn_name() access right ar_name on elements of policy element name)

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 36

(x, op_name on any of pe_name,
deny process fn_name() access right ar_name on elements of name)

This sort of obligation is often used in a multi-level security policy to prevent a process (i.e., returned by
fn_name()) from accessing certain classes of elements, (i.e., those contained by policy element name)
by nullifying the processes access authority (i.e., represented by ar_name), whenever a certain
operation (i.e., indicated by op_name) is carried out by it (i.e., the process acting on behalf of some
user) on certain classes of elements (i.e., those contained by policy element pe_name).

This and other possible obligations that are able to be generated using the grammars specified above
can also be expressed using other pattern and response grammars. For illustration purposes, the same
obligation is expressed below using two different pairs of grammars. The first takes a very simple
approach using procedure calls (i.e., if-op-on-container-members and deny-process-access-to-
container-members) to represent the pattern and the response terms of the obligation. The second
takes a more mathematical approach over the data elements and relations of the model and the
properties of an event notification (i.e., denoted by event.property) to represent the pattern and the
response terms, using predicate calculus notation and administrative command invocations respectively.

(x, if-op-on-container-members(op_name, pe_name),
deny-process-access-to-container-members(ar_name, name)

(x, event.operation = op_name ⋀ (event.target, pe_name) ∈ ASSIGN+,

CreateConjProcessProhibit (event.process, {ar_name}, {name}, ∅))

While each grammar pair can express the same obligation, different pros and cons apply with respect to
their implementation and usage and also that of the grammar pair specified earlier. For example,
predicate calculus affords the most expressive way to state patterns at a level of detail in which the
semantics of the expressions are obvious, while a simple procedure call obscures those details, but
requires a less complicated grammar. Similarly, expressing a response as a procedure call allows
reuse of the grammar for patterns, but requires programming and thorough testing of the procedure,
while invocating an administrative command takes advantage of an existing predefined procedure that
has been thoroughly vetted. These sorts of differences are what ultimately determines the choice of
grammars to implement and use for expressing obligations.

For a user to create an obligation, it must hold sufficient authorization to carry out the operation on the
policy elements that appear in the pattern and response sentences (e.g., pe_name and name in the
above examples). Specifically, the user must hold "obligate" access rights over all identifiable policy
elements present in the pattern and response portions of the obligation. Such authority is granted the
user through associations and ultimately constrains what policy element references may be appear in
the pattern and response sentences of an obligation, as verified during initial parsing of the sentences.
This allows the scope of a defined obligation to be constrained to prescribed portions (i.e., subgraphs) of
a policy element diagram.

At creation time, an obligation is not fully formed, however, since parts of the obligation cannot be
resolved until the event variables pertaining to the access request that triggered it (e.g., the user whose
process triggered the obligation and the object that was accessed) are known. It is only at run time
when an obligation is matched, that event variables in the response can be resolved with the details of
the triggering event. Therefore, to verify that sufficient authorization is in place to carry out the response
at run time, the response must be conducted under the auspices of the user that created it, not the user
whose actions triggered it. It is essential to perform the verification steps outlined at both creation time
and run time to ensure that the security policy is asserted correctly for obligations.

CS1/2195-D Revision 1.30 11 April 2014

37 dpANS Next Generation Access Control - Generic Operations and Data Structures

Annex B

(Informative)

Mappings of Existing Access Control Schemes

B.1 Overview

Over the last several decades, numerous policies and access control models have been proposed to
address real world security problems. Only a small subset of these policies are able to be enforce
through commercially available access control mechanisms, and even a smaller subset can be enforced
by any one mechanism. NGAC comprises a functional architecture and a set of relations and data
elements, which allow a number of different access control schemes to be implemented using a
common set of services. This annex looks at two common access control models, Chinese Wall and
Role-Based Access Control (RBAC), and describes how each can be expressed in terms of NGAC data
elements and relations. Such a description entails the formulation of a mapping or algorithm for
transforming the features and abstractions of the NGAC framework to a given access control model,
such that an authorization decision rendered by the NGAC framework would be the same decision as
that rendered by the access control model.

Several different mappings may exist between the NGAC model abstractions and those of another
access control scheme, each mapping with its own benefits and drawbacks. The main objective of this
annex is to demonstrate that at least one mapping exists in which the NGAC abstractions can be shown
to capture the capabilities of the other access control model. That is, the mappings described here are
intended mainly to indicate the capability of NGAC to capture the functionality of another access control
model. They do not imply that a policy supported by another access control model would necessarily be
represented in NGAC using the described mapping.

B.2 Chinese wall

B.2.1 Background

The Chinese Wall policy evolved to address conflict-of-interest issues related to consulting activities
within banking and other financial disciplines. It provides a good example of dynamic separation of duty
constraints present in real-world situations. The stated objective of the Chinese Wall policy and its
associated model is to prevent illicit flows of information that can result in conflicts of interest [BREW89].
The Chinese Wall model is based on several key entities: subjects, objects, and security labels. A
security label designates the conflict-of-interest class and the company dataset of each object.

The Chinese Wall policy is application-specific in that it applies to a narrow set of activities that are tied
to specific business transactions. Consultants or advisors are given access to proprietary information to
provide a service for their clients. When a consultant gains access to the competitive practices of two
banks, for instance, the consultant essentially obtains insider information that could be used to profit
personally or to undermine the competitive advantage of one or both of the institutions.

The Chinese Wall model establishes a set of access rules that forms a firewall or barrier, which prevents
a subject from accessing objects on the wrong side of the barrier. It relies on the consultant’s data store
to be logically organized such that each company dataset belongs to exactly one conflict-of-interest
class, and each object belongs to exactly one company dataset or the dataset of sanitized objects within
a specially designated, non-conflict-of-interest class. A subject can have access to at most one
company dataset in each conflict-of-interest class. However, the choice of dataset is at the subject’s
discretion. Once a subject accesses (i.e., reads or writes) an object in a company dataset, the only other
objects accessible by that subject must lie within the same dataset or within the datasets of a different

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 38

conflict-of-interest class. In addition, a subject can write to a dataset only if it does not have read access
to an object containing unsanitized information, which resides in a company dataset different from the
one for which write access is requested.

Limitations in the formulation of the Chinese Wall model have been noted previously. For example,
once a subject has read objects from two or more company datasets, it can no longer write to any, and
once a subject has read objects from exactly one company dataset, it can write only to that dataset.
Moreover, the policy rules of the model are more restrictive than necessary to meet the stated conflict-
of-interest avoidance objective. For instance, as already mentioned, once a subject has read objects
from two or more company datasets, it can no longer write to any data set. However, if the datasets
were in different conflict-of-interest classes, no violation of the policy would result were the subject
allowed to write to those objects. That is, while the policy rules are sufficient to preclude a conflict of
interest from occurring, they are not necessary from a formal logic perspective, since actions that do not
incur a conflict of interest are also prohibited by the rules.

B.2.2 Mapping considerations

The Chinese Wall policy and model as originally defined by Brewer and Nash is used to formulate a
mapping from GOADS [BREW89]. However, the model is interpreted slightly differently to resolve one of
the limitations noted above. Instead of treating both users and programs acting on a user’s behalf
collectively as subjects, they are differentiated from one another, such that the stated policy continues to
apply to programs, but not to users, who are trusted as individuals to honor Chinese Wall barriers
[SAND92].

The following GOADS policy elements and relations can be used to represent the key entities of the
Chinese Wall model:

a) In the Brewer and Nash model, each subject represents a user and any program that might act on
the user’s behalf. The corresponding NGAC concepts for subject are user and process.

b) NGAC objects are the equivalent of objects in the Chinese Wall model.
c) Instead of object labels, attributes are used to represent conflict-of-interest classes and company

datasets, and also the dataset of sanitized objects in a specially designated, conflict-of-interest
class.

d) Assignment relations between the aforementioned objects and object attributes capture the
relationships in the Chinese Wall model between objects and the datasets in which the objects
reside, and between the datasets and conflict-of-interest classes.

e) An association between a user attribute representing all defined users, and an object attribute
representing all defined objects and object containers, grants users the initial authorization to
read and write any object in any dataset and associated conflict of interest class.

The two principle rules of the Chinese Wall model that also must be addressed by the mapping are the
ones for reading and writing objects:

a) Read Rule: a subject s can read object o only if:
o is in the same dataset as some object previously read by s, or
o belongs to a conflict-of-interest class for which s has yet to read an object.

b) Write Rule: a subject s can write object o only if:
s can read o under the read rule, and
no object can be read, if it is in a dataset different from the one for which write access is
requested.

These policy rules, in effect, are separation-of-duty constraints that continually narrow the access rights
of a subject as it performs allowed activities. Obligations that effectively capture these rules can be
defined. The initial policy configuration would allow a user’s process to read and write any object in the
data store. As the process accesses objects, obligations are triggered that adjust the policy for both the

CS1/2195-D Revision 1.30 11 April 2014

39 dpANS Next Generation Access Control - Generic Operations and Data Structures

user and its processes in accordance with the read and write rules. The basic idea is that when a
process performs a read access of an object in some conflict-of-interest class, COIi, its user is denied
the ability to read objects in any other dataset in COIi using different processes. In addition, subsequent
read or write attempts of objects in any other dataset in COIi by this process are denied. However, the
user is allowed to employ different processes to read and write to objects in any other dataset in COIi, in
accordance with the read and write rules.

B.2.3 Example mapping

To represent an arbitrary, generic Chinese Wall policy in GOADS, the following key policy elements are
needed:

a) a set of object attributes representing each conflict-of-interest class, {COI1, … , COIn};
b) a set of object attributes representing each company dataset, {DS1, … , DSn}; and
c) a pair of object attributes representing the sanitized dataset, SDS, and the specially designated,

conflict-of-interest class, SCOI, which contains it.

As described earlier, assignment relations between the objects and the datasets in which the objects
reside, and between the datasets and their respective conflict-of-interest classes depict the principal
relationships of the Chinese Wall model.

An example policy configuration depicting two conflict-of-interest classes, each with two company
datasets, is illustrated in Figure 2. As mentioned earlier, any users assigned to this policy class are
initially authorized full read and write authorization over objects in the data store. In GOADS, users are
collectively represented by the user attribute Users, and the data store and its contents are represented
similarly by the object attribute Data Store. Users are given authorization to read (r) and write (w)
objects in the Data Store through an association, which is depicted as an arc from Users to Data Store,
labeled with the associated set of access rights, {r, w}.

Figure 2: Example Chinese Wall Policy

To capture the Chinese Wall read and write rules, an elaborate obligation must be defined for each COI
attribute and any DS attributes contained by the COI attribute. The obligation must also specify the
treatment of sanitized objects within the SDS and SCOI. The following template indicates structure of

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 40

the GOADS’ policy expression for the pattern and response components of each obligation, following
their respective grammars specified in Annex A:

(x, any user of Users performs operation read on any policy element in COIi,
if object getobjectid() in object attribute DSj then

deny user process_user(getprocessid()) access right read on elements of intersection of
policy element COIi, complement of policy element DSj,
deny process getprocessid() access rights read, write on elements of intersection of
complement of policy element DSj, complement of policy element SDS,
deny process getprocessid() access right write on elements of policy element SDS,

if object getobjectid() in object attribute DSk then
deny user process_user(getprocessid()) access right read on elements of intersection of
policy element COIi, complement of policy element DSk,
deny process getprocessid() access rights read, write on elements of intersection of
complement of policy element DSj, complement of policy element SDS,
deny process getprocessid() access right write on elements of policy element SDS,

if object getobjectid() in object attribute DSl then
…)

For the example policy configuration illustrated in Figure 2, the following two obligations would be
defined as representative of the Chinese Wall read and write rules:

(x, any user of Users performs operation read on any policy element in COI1,
if object getobjectid() in object attribute DS1 then

deny user process_user(getprocessid()) access right read on elements of intersection of
policy element COI1, complement of policy element DS1,
deny process getprocessid() access rights read, write on elements of intersection of
complement of policy element DS1, complement of policy element SDS,
deny process getprocessid() access right write on elements of policy element SDS,

if object getobjectid() in object attribute DS2 then
deny user process_user(getprocessid()) access right read on elements of intersection of
policy element COI1, complement of policy element DS2,
deny process getprocessid() access rights read, write on elements of intersection of
complement of policy element DS2, complement of policy element SDS,
deny process getprocessid() access right write on elements of policy element SDS)

(x, any user of Users performs operation read on any policy element in COI2,
if object getobjectid() in object attribute DS3 then

deny user process_user(getprocessid()) access right read on elements of intersection of
policy element COI2, complement of policy element DS3,
deny process getprocessid() access rights read, write on elements of intersection of
complement of policy element DS3, complement of policy element SDS,
deny process getprocessid() access right write on elements of policy element SDS,

if object getobjectid() in object attribute DS4 then
deny user process_user(getprocessid()) access right read on elements of intersection of
policy element COI2, complement of policy element DS4,
deny process getprocessid() access rights read, write on elements of intersection of
complement of policy element DS4, complement of policy element SDS,
deny process getprocessid() access right write on elements of policy element SDS)

These obligations complete the description of one possible mapping between NGAC and the Chinese
Wall policy models.

CS1/2195-D Revision 1.30 11 April 2014

41 dpANS Next Generation Access Control - Generic Operations and Data Structures

B.3 Role-based access control

B.3.1 Background

The Role Based Access Control (RBAC) model governs the access of a user to information through
roles for which the user is authorized to perform. RBAC is based on several entities: users, roles,
permissions, sessions, and objects [RBAC04]. A user represents an individual or an autonomous entity
of the system. A role represents a job function or job title that carries with it some connotation of the
authority held by a members of the role. Access authorizations on objects are specified for roles, instead
of users. A role is fundamentally a collection of permissions to use resources appropriate for carrying
out a particular job function, while a permission represents a mode of access to one or more objects that
represent the protected resources of a system.

The principle of least privilege requires that a user be given no more privilege than necessary to perform
a job. The RBAC model supports this principle through role activation. Users are given authorization to
operate in one or more roles, but must utilize a session to gain access to a role. A user may invoke one
or more sessions, and each session relates a user to one or more roles. The concept of a session within
the RBAC model is equivalent to the more traditional notion of a subject. When a user activates a role
to operate within, it acquires the capabilities assigned to the role. Other roles authorized for the user,
which have not been activated, remain dormant and the user does not acquire their associated
capabilities.

Another important feature RBAC is role hierarchies, whereby one role at a higher level can acquire the
capabilities of another role at a lower level, through an explicit inheritance relation (i.e., role x ≥ role y
means that role x inherits the permissions of role y). A user assigned to a role within a role hierarchy
acquires the capabilities of any roles lower in the hierarchy, as well as those capabilities directly
attributed to the role. Standard RBAC also provides features to express policy constraints involving
Separation of Duty (SoD) and cardinality. SoD is a security principle used to formulate multi-person
control policies in which two or more roles are assigned responsibility for the completion of a sensitive
transaction, but a single user is allowed to serve only in some distinct subset of those roles (e.g., not
allowed to serve in more than one of two transaction-sensitive roles). Cardinality of a role limits its
capacity to a fixed number of users. Cardinality constraints were incorporated into SoD relations in the
RBAC standard.

Two types of SoD relations exist: static separation of duty (SSD) and dynamic separation of duty (DSD).
SSD relations place constraints on the assignments of users to roles, whereby membership in one role
prevents the user from becoming a member of certain other roles, and thereby ensuring the involvement
of two or more users in performing a sensitive transaction that requires the capabilities of two or more
roles. Dynamic separation of duty relations, like SSD relations, limit the capabilities that are available to
a user, while adding operational flexibility, by placing constraints on roles that can be activated within a
user’s sessions. As such, a user may be a member of two roles in DSD, but unable to execute the
capabilities that span both roles within a single session.

B.3.2 Mapping considerations

A formal model exists for RBAC, which can be used to formulate a mapping to its abstractions from
those available in the NGAC model. In the RBAC standard, a role essentially represents a collection of
users mapped to a collection of permissions [RBAC04]. Each permission in turn represents a collection
of object and access right pairs. RBAC user to role mappings can be characterized in GOADS as
administrative associations from user attributes uniquely representing each user to user attributes
uniquely representing each role. RBAC permission to role mappings can also be characterized in
GOADS as associations from the role-representing attributes to the object attributes of each object,
through which the appropriate access rights are authorized roles, which are comparable with the RBAC
permissions in question. In addition, several other important aspects of policy representation also need

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 42

to be considered when defining a complete mapping between NGAC and RBAC. They are as follows:
compliance with the principle of least privilege, the expression of role hierarchies, and the imposition of
Separation of Duty (SoD) constraints.

Role activation plays an essential part in maintaining the principle of least privilege. RBAC allows
activation of a subset of the roles assigned to a user via a session, limiting the privileges of the user to
those available through its active roles. Least privilege and role activation(\deactivation) concepts can
be accommodated in GOADS through the processes acting on behalf of a user and assignments they
make(\break) from the user attribute uniquely representing the user to the set of role-representing
attributes designated by the administrative associations that characterize permission to role mappings.
Obligations are not needed for core RBAC, but for hierarchical RBAC, they can be employed to
constrain role activation capabilities conveyed by the administrative associations and enforce the
desired behavior.

Assignments between pairs of role-representing attributes in GOADS can be used to represent RBAC
role hierarchies in which the attribute at the tail of the assignment inherits the properties of the attribute
at the head. Inheritance of properties between role-representing attributes in GOADS are sufficient in
and of themselves to capture entirely the property inheritances of the corresponding RBAC roles. One
area to be addressed, however, is mitigating the effect of administrative associations that represent user
to role mappings, which involve role-representing attributes within a role hierarchy. Since these
associations are formed between user attributes and role-representing attributes, hierarchical roles may
impart unwanted authorizations over role activation to a user. Prohibitions are used to countermand any
unwanted authorizations and render an accurate mapping.

A significant difference exist in the approach used between the NGAC and RBAC models for expressing
SoD constraints. In RBAC, both are represented explicitly in the policy configuration via relations, and
access enforcement is based on the policy configuration, which remains static. GOADS, however,
provides no direct counterpart for representing RBAC SoD constraints explicitly through a static policy
configuration. Instead, these properties must be expressed indirectly through the pattern and response
components of defined obligations, which dynamically change the policy configuration to enforce these
constraints, as both administrative and resource operations are being carried out. That is, SoD
constraints are specified indirectly through the pattern and response grammars of obligations defined in
the policy configuration, but enforcement of these constraints requires modification of the policy
configuration, as their respective obligations are triggered.

To capture a static SoD constraint, an obligation is defined, which is triggered by the creation of an
administrative association granting a user authority to create an assignment to a role-representing
attribute that is involved in a static SoD role. The obligation’s response checks the conditions of the SoD
constraint and when the SoD constraint limit is reached, creates a prohibition that denies the user from
involvement in further administrative associations to all other roles involved in the SoD constraint. A
complimentary obligation must also be defined, which is triggered whenever an association from a user
to a SoD role is removed, and deletes the prohibition originally put in place to block associations to other
roles involved in the SoD constraint.

Dynamic SoD constraints are handled similarly to static SoD constraints. An obligation is defined, which
is triggered whenever a user activates a dynamic SoD role through administrative privileges assigned to
it initially. The obligation’s response checks the conditions of the dynamic SoD constraint and using a
prohibition, denies the user from activating other roles involved in this constraint, when the constraint
limit is reached. A complimentary obligation must also be defined to undo the above. The obligation is
triggered whenever an assignment from a user to a SoD role is removed, and deletes the obligation
originally put in place to block activation of other roles involved in the SoD constraint.

CS1/2195-D Revision 1.30 11 April 2014

43 dpANS Next Generation Access Control - Generic Operations and Data Structures

B.3.3 Example mapping

B.3.3.1 Constituent analysis

To represent an arbitrary RBAC policy, the following key policy elements and relations in GOADS are
needed:

a) a set of user attributes representing each RBAC role, {R1, … , Rn}, where Ri is the name of the ith
role;

b) a set of user attributes representing each RBAC user, {U1, … , Un}, where Ui is the name of the ith
user;

c) a finite set of object attributes representing each RBAC object, {O1, … , On}, where Oi is the name
of the ith object;

d) a set of associations from each RBAC user to the RBAC objects over which it has the authority
designated by the access rights, which represents the RBAC privilege assignment relation;

e) a set administrative associations from each RBAC user to the RBAC roles to which it is assigned
(granting the administrative access right assign-to), together with a set administrative
associations from each RBAC user to itself (granting the administrative access right assign-from),
which jointly represent the RBAC user assignment relation;

f) a set of assignments between RBAC roles involved in an RBAC role hierarchy, which represent
the inheritance structure of the properties acquired from an inferior role by a superior role; and

g) a set of obligations that constrain the assignment and activation of RBAC roles, such that the
allowed behavior of RBAC users complies with RBAC SoD constraints.

An example policy configuration that exhibits the most important features of the RBAC model is
illustrated in Figure 3. To keep the example simple only five roles are involved, which could be
considered as representative of a larger set of roles for a software development company. Two of the
roles, Employee and Contractor, are mutually exclusive of one another; a user can be assigned to either
one, but not both. Therefore a static SoD constraint applies to these roles. The remaining roles,
Software Engineer, Quality Assurance (QA) Engineer, and Team Member, are involved in a role
hierarchy in which the Software and Quality Assurance Engineer roles are each superior to the Team
Member role. A dynamic SoD constraint also applies to the two superior roles, preventing a user from
being active in both role simultaneously.

Figure 3: RBAC Policy Configuration

In terms of the permissions allocated to each role, for simplicity, only certain basic objects and
operations are included in the example. The Employee role is assigned permissions to access certain
company policy documents that are not privy to the Contractor role. A static SoD constraint prevents a
user from being assigned to both. New users in either of these roles may initially be assigned to the
Team Member role, which allow them to begin reading over requirements, design, and other
documentation pertaining to on-going projects. Depending on the skill set, a user is eventually

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 44

authorized to work in the Software Engineer (SE) role only, in the QA Engineer (QAE) role only, or in
both roles non-simultaneously. The SE role allows project code to be produced and modified, while the
QAE role allows project code to be written and certified, and test cases to be produced and modified. A
static SoD constraint prevents a user from activating both of these roles simultaneously.

For this example, only a single user is discussed. The user in this example is an employee authorized
to work as a software engineer on the project team, with no QA engineering responsibilities.

The NGAC equivalent representation of this RBAC policy configuration is complex in comparison, since
it contains considerably more detail than that shown in Figure 3. Besides the five RBAC roles and role
hierarchy relation, it encompasses the permissions, objects, permission assignment relations, users,
and user assignment relations that are often glossed over in an RBAC policy discussion. To better
explain how the mapping applies, the details of the GOADS representation of the RBAC policy are
decomposed into several segments. The first segment is the GOADS representation of roles and role
hierarchies that closely match the RBAC policy depicted in Figure 3 (see B.3.3.2). The second segment
is the representation of permissions and the permission assignment relation (see B.3.3.3), followed by
the second segment (see B.3.3.4), which is the representation of users and the user assignment
relation. The last segment is the representation of RBAC SoD constraints (see B.3.3.5).

B.3.3.2 Roles and role hierarchy

Figure 4 illustrates the first segment of the policy representation in GOADS, which serves as the
foundation for the other segments. Three main attribute containers comprise the RBAC policy class:
Users, Roles, and Objects. These containers are not essential to the mapping; they are intended as an
organizational reference for the reader. Within the Roles container, located at the center of the diagram,
are the role-representing attributes for the five RBAC roles. Assignments from the SE and QAE user
attributes to that of Team Member represent the equivalent of the role hierarchy relation. The remaining
assignments link the Employee, Contractor, and Team Member, user attribute containers to the Role
container, and complete this segment.

Figure 4: Roles and Role Hierarchy Representation

B.3.3.3 Permission assignment

Figure 5 illustrates the second segment of the policy representation. Several object attributes are
specified, which serve as containers for the various categories of information discussed in the RBAC
policy description, namely program code (Code), test cases (Tests), code certifications (Certs),
documentation (Docs), and company policies (Policies). Associations, represented as arcs from the
various role-representing attributes to these containers, assign the authority denoted by the access right

CS1/2195-D Revision 1.30 11 April 2014

45 dpANS Next Generation Access Control - Generic Operations and Data Structures

set over the containers and their contents. For instance, the association between QAE and Tests grants
the QAE role (and any user active within the role) the authority to read (r) and write (w) any objects
assigned to Tests. The association also grants the QAE role the same authority over objects assigned
to Certs through inheritance. In this fashion, the GOADS association relation is used to realize the
RBAC permission assignment relation.

Figure 5: Permission Assignment Representation

B.3.3.4 User assignment

The third segment of the GOADS policy representation is shown in Figure 6. A single user u i is depicted
in the diagram, along with a unique user attribute Ui to which it is assigned. The main purpose of the
user attribute is for specifying associations that are applicable to the user. As mentioned earlier, user ui
needs to be able to be able to activate the Employee, Team Member, and SE roles. Therefore, three
associations are needed: between Ui and itself, Ui and Employee, and Ui and Team Member. The first
association grants authorization for the user to create or delete an assignment from itself to another
user attribute over which it holds authorization to complete the assignment operation. The remaining
two associations grant authorization for the user to complete the creation or deletion of an assignment
respectively to the Employee and Team Member attributes. As before, the associations are represented
as downward looping arcs labeled with the appropriate access rights.

Figure 6: User Assignment Representation

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 46

The associations essentially serve as the counterpart to the RBAC user assignment relation. With these
associations in place, the user can activate any of the three intended roles (i.e., Employee, Team
Member, and SE) as well as the QAE role by creating an assignment from itself to the corresponding
role-representing attribute. To prevent the activation of the QAE role by this user, an attribute prohibition
is added to the specification, which overrides any attempts to create an assignment between the user ui
and the QAE role. The prohibition is shown as an upward looping arc from the user attribute Ui to the
QAE role.

It is through the creation of an assignment to a role-representing attribute that allows the user to activate
a role and gain the authority assigned to the role. A process launched by the user to operate on its
behalf does so under the user’s authority, thus allowing the user to operate within the activated role, as
well as any other role previously activated by the user. By deleting an existing assignment between itself
and the corresponding role-representing attribute, the user can deactivate a role.

B.3.3.5 SoD constraints

The final area to be addressed in the fourth segment are the two RBAC SoD constraints. As noted
earlier, obligations can be created, which serve as counterparts to the SoD constraints. To prevent any
user from being assigned (in the RBAC sense of the word) to both the Employee and Contractor roles a
pair of obligations are used. One obligation must deny a user from involvement in an association to the
Contractor role via a prohibition, whenever an “assign-to” association to the Employee role is created for
the user, and the other obligation simply reverses the Contractor and Employee roles in the first
obligation. Similarly, if and when the association is deleted from either of these roles (e.g., an employee
resigns and is hired by a contractor of the company), the prohibition placed on the other role must be
removed through an obligation through a pair of obligations. The following two pairs of obligations
captures the static SoD constraint:

(x, any user of Users performs operation c-assoc on policy element Employee,
deny user process_user(getprocessid()) access right assoc-to on policy element Contractor)

(x, any user of Users performs operation c-assoc on policy element Contractor,
deny user process_user(getprocessid()) access right assoc-to on policy element Employee)

(x, any user of Users performs operation d-assoc on policy element Employee,
delete deny user process_user(getprocessid()) access right assoc-to on policy element
Contractor)

(x, any user of Users performs operation d-assoc on policy element Contractor,
delete deny user process_user(getprocessid()) access right assoc-to on policy element
Employee)

The dynamic SoD constraint also requires two pairs of obligations for each role involved in in the
constraint. In this case, however, it is the creation of an assignment from any user to the roles in
question, SE or QAE, which serves as the trigger for the obligation. As with the static SOD constraint,
enforcement is carried out through the creation of a prohibition. The following two pairs of obligations
captures the dynamic SoD constraint:

(x, any user of Users performs operation c-assign on policy element SE,
deny user process_user(getprocessid()) access right assign-to on policy element QAE)

(x, any user of Users performs operation c-assign on policy element QAE,
deny user process_user(getprocessid()) access right assign-to on policy element SE)

(x, any user of Users performs operation d-assign on policy element SE,
delete deny user process_user(getprocessid()) access right assign-to on policy element QAE)

CS1/2195-D Revision 1.30 11 April 2014

47 dpANS Next Generation Access Control - Generic Operations and Data Structures

(x, any user of Users performs operation d-assign on policy element QAE,
delete deny user process_user(getprocessid()) access right assign-to on policy element SE)

These obligations complete the description of one possible mapping between NGAC and the RBAC
policy models. The complete policy representation in GOADS for the example RBAC policy is shown in
Figure 7. For illustration purposes, the figure also depicts several objects populated within the object
containers, which were discussed earlier in the second segment.

Figure 7: Complete GOADS Policy Representation

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 48

Annex C

(Informative)

Bibliography

The following publications are not normative but provide important background for understanding this
standard. For information on the current status of the listed document(s), or regarding availability,
contact the indicated organization.

BREW89 David Brewer, Michael Nash, The Chinese Wall Security Policy, IEEE Symposium on
Security and Privacy, May 1989

RBAC04 ANSI INCITS 359-2004, American National Standard for Information Technology – Role
Based Access Control

SAND92 Ravi S. Sandhu, Lattice-Based Enforcement of Chinese Walls, Computers & Security,
Volume 11, Number 8, December 1992, pages 753-763.

CS1/2195-D Revision 1.30 11 April 2014

49 dpANS Next Generation Access Control - Generic Operations and Data Structures

Annex D

(Normative)

Summary of Notation

The mathematical notation used in NGAC-GOADS corresponds to a subset of the Z formal specification
notation defined in ISO/IEC 13568:2002 (See ZNOT). This annex gives a summary of the notation used
and for any differences that exist, their counterpart in the Z notation.

Numbers

ℤ Set of integers

ℕ Set of natural numbers { 0, 1, 2, ... }

ℕ1 Set of strictly positive numbers { 1, 2, ... }
m + n Addition
m - n Subtraction
m * n Multiplication
m div n Division
m mod n Remainder (modulus)

m ≤ n Less than or equal

m < n Less than

m ≥ n Greater than or equal
m > n Greater than
m … n Number range

Logic

¬p Logical negation, not

p ⋀ q Logical conjunction, and

p ⋁ q Logical disjunction, or

p q Logical implication

p q Logical equivalence

∀x Universal quantification
∃x Existential quantification

∃1x Uniqueness quantification

∄x Existential quantification negation (in Z, ¬∃)

Sets and expressions

x = y Equality
x ≠ y Inequality

x ∈ A Set membership

x ∉ A Non-membership
∅ Empty set

A ⊆ B Set inclusion

A ⊂ B Strict set inclusion
{x1, … , xn} Set display
A x B ... Cartesian product

2A Power set (in Z, ℙA)

A ⋂ B Set intersection

A ⋃ B Set union

11 April 2014 CS1/2195-D Revision 1.30

dpANS Next Generation Access Control - Generic Operations and Data Structures 50

A \ B Set difference
first x First element of an ordered pair
second x Second element of an ordered pair
#A Number of elements in a set

Relations

R ⊆ A x B Binary relation (in Z, R: A ↔ B)

R ⊆ A x B x C Ternary relation (in Z, R: A ↔ B ↔ C)
dom R Domain of a relation
ran R Range of a relation
(a, b) Ordered pair of a binary relation
(a, b, ... , c) Ordered tuple of an n-ary relation
a R b Relation holds between a and b – infix
R(a, b) Relation holds between a and b – prefix set membership

(a, b) ∈ R Relation holds between a and b – set membership

R+ Transitive closure

R* Reflexive transitive closure

Functions

F(x) Function application

F ⊆ A x B Partial functions (in Z, A → B)

F ⊆ A x B Total functions (in Z, A ⇸ B)

Sequences

⟨⟩ Empty sequence
seq S Set of finite sequences
seq1 S Set of non-empty finite sequences
iseq S Set of finite injective sequences

iseq1 S Set of non-empty finite injective sequences (in Z, iseq S \ {⟨⟩})
head S First element of a sequence
last S Last element of a sequence
S (i) ith elment of a sequence

⟨s1, … , sn⟩ Sequence display

