CONTENTS

American National Standards

Project Initiation Notification System (PINS) ... 2
Call for Comment on Standards Proposals ... 9
Final Actions - (Approved ANS) ... 35
Call for Members (ANS Consensus Bodies) ... 40
Accreditation Announcements (Standards Developers) .. 44
American National Standards (ANS) Process ... 46
ANS Under Continuous Maintenance .. 47
ANSI-Accredited Standards Developer Contacts ... 48

International Standards

ISO and IEC Draft Standards .. 50
ISO and IEC Newly Published Standards ... 55
International Electrotechnical Commission (IEC) ... 58
International Organization for Standardization (ISO) .. 59

Information Concerning

Registration of Organization Names in the United States 61
Proposed Foreign Government Regulations ... 62
Project Initiation Notification System (PINS)

Section 2.5.1 of the ANSI Essential Requirements (www.ansi.org/essentialrequirements) describes the Project Initiation Notification System (PINS) and includes requirements associated with a PINS Deliberation. Following is a list of PINS notices submitted for publication in this issue of ANSI Standards Action by ANSI-Accredited Standards Developers (ASDs). Please also review the section in Standards Action entitled "American National Standards Maintained Under Continuous Maintenance" for information about American National Standards (ANS) maintained under the continuous maintenance option, as a PINS to initiate a revision of such standards is not required. Use the following Public Document Library url to access PDF & EXCEL reports of approved & proposed ANS: List of Approved and Proposed ANS. Directly and materially interested parties wishing to receive more information or to submit comments are to contact the sponsoring ANSI-Accredited Standards Developer directly within 30 calendar days of the publication of this PINS announcement.

ASC X9 (Accredited Standards Committee X9, Incorporated)
Ambria Frazier; Ambria.frazier@x9.org | 275 West Street, Suite 107 | Annapolis, MD 21401 www.x9.org

Revision
Stakeholders: Financial services industry
Project Need: This standard specifies the minimum security requirements for the effective use of time stamps in a financial services environment.
Interest Categories: Consumer, General Interest, Producer
Scope: Within the scope of this Standard, the following topics are addressed:
- Requirements for the secure management of the time stamp token across its life cycle, comprised of the generation, transmission and storage, validation, and renewal processes. The requirements in this Standard identify the means to securely and verifiably distribute time from a national time source down to the application level;
- Requirements for the secure management of a Time Stamp Authority (TSA);
- Requirements of a TSA to ensure that an independent third party can audit and validate the controls over the use of a time stamp process;
- Techniques for the coding, encapsulation, transmission, storage, integrity and privacy protection of time stamp data; and
- Usage of time stamp technology.

ASTM (ASTM International)
Laura Klineburger; accreditation@astm.org | 100 Barr Harbor Drive | West Conshohocken, PA 19428-2959 www.astm.org

Revision
Stakeholders: DWV Industries
Project Need: This specification covers requirements and test methods for materials, dimensions and tolerances, hydrostatic pressure, joint integrity, and solvent cement for thermoplastic tube and fittings for accessible and replaceable domestic waste connections.
Interest Categories: Producer, User, General Interest
Scope: This specification covers the material, dimensional, and performance requirements and associated test methods for thermoplastic tubes and fittings for accessible and replaceable domestic waste connections.
New Standard
BSR/CTA 2115-202x, Closed Caption Accessibility Settings Data (new standard)
Stakeholders: Consumers, manufacturers, retailers
Project Need: Develop a standard that defines one or more data structures for communicating accessibility settings, including closed-captioning display preferences.
Interest Categories: Producer, User, General Interest
Scope: Develop a standard that defines one or more data structures for communicating accessibility settings, including closed-captioning display preferences.

New Standard
BSR/CTA 2116-202x, Best Practices and Recommendations for Bias Management (new standard)
Stakeholders: Consumers, manufacturers, and retailers
Project Need: To identify best practices and recommendations for bias management solutions to include types of bias, sources of bias, and management of bias in data used to train Artificial Intelligence (AI) and Machine Learning (ML) systems in health care.
Interest Categories: Producer, User, General Interest
Scope: This document will identify best practices and recommendations for bias management solutions to include types of bias, sources of bias, and management of bias in data used to train Artificial Intelligence (AI) and Machine Learning (ML) systems in health care.

New Standard
BSR/CTA 2117-202x, Guidelines for Managing, Characterizing, and Safeguarding Data in Artificial Intelligence (new standard)
Stakeholders: Consumers, manufacturers, retailers
Project Need: This document will address the unique considerations for managing, characterizing, and safeguarding data in Artificial Intelligence (AI).
Interest Categories: Producer, User, General Interest
Scope: This document will address the unique considerations for managing, characterizing, and safeguarding data in Artificial Intelligence (AI).
ITI (INCITS) (InterNational Committee for Information Technology Standards)
Deborah Spittle; comments@standards.incits.org | 700 K Street NW, Suite 600 | Washington, DC 20001 www.incits.org

New Standard
INCITS 580-202x, Information Technology - Inclusive Terminology (new standard)
Stakeholders: ICT Industry
Project Need: Many organizations are interested in embracing the use of inclusive terminology and avoiding and replacing non-inclusive terminology. They seek requirements and guidance on how to do this within their organizations, they seek guidance from experts, and they seek a common standard that would afford consistency in their application of inclusive terminology across their organization. This standard would provide such guidance.
Interest Categories: Producer-Hardware, Producer-Software, Producer-General, Distributor, Service Provider, User, Consultants, Government, SDO and Consortia, Academic Institution, General Interest
Scope: Provides requirements, recommendations, and guidance on the use of inclusive terminology for human and machine-readable contexts in the information and communication technology sector. Inclusive terminology is terminology perceived or likely to be perceived as neutral or welcoming by everyone, regardless of their sex, gender, race, color, religion, etc.

ITSDF (Industrial Truck Standards Development Foundation, Inc.)
Chris Merther; chris.merther@itsdf.org | 1750 K Street NW, Suite 460 | Washington, DC 20006 www.indtrak.org

Revision
BSR/ITSDF B56.5-202x, Safety Standard for Driverless, Automatic Guided Industrial Vehicles and Automated Functions of Manned Industrial Vehicles (revision of ANSI/ITSDF B56.5-2019)
Stakeholders: Manufacturers and users of automatic, guided industrial vehicles.
Project Need: Requirements need updating to maintain state of the art.
Interest Categories: Employee/Union, General Interest, Manufacturer, User
Scope: This Standard defines the safety requirements relating to the elements of design, operation, and maintenance of powered, not mechanically restrained, unmanned automatic guided industrial vehicles and the system of which the vehicles are a part. It also applies to vehicles originally designed to operate exclusively in a manned mode but which are subsequently modified to operate in an unmanned, automatic mode, or in a semiautomatic, manual, or maintenance mode.

ITSDF (Industrial Truck Standards Development Foundation, Inc.)
Chris Merther; chris.merther@itsdf.org | 1750 K Street NW, Suite 460 | Washington, DC 20006 www.indtrak.org

Revision
BSR/ITSDF B56.6-202x, Safety Standard for Rough Terrain Forklift Trucks (revision of ANSI/ITSDF B56.6-2021)
Stakeholders: Manufacturers and users of rough terrain forklift trucks.
Project Need: Requirements need updating to maintain state of the art.
Interest Categories: Employee/Union, General Interest, Manufacturer, User
Scope: This Standard defines the safety requirements relating to the elements of design, operation, and maintenance of rough terrain forklift trucks (hereafter referred to as RTFL trucks). RTFL trucks are intended for operation on unimproved natural terrain as well as the disturbed terrain of construction sites.
ITSDF (Industrial Truck Standards Development Foundation, Inc.)

Chris Merther; chris.merther@itsdf.org | 1750 K Street NW, Suite 460 | Washington, DC 20006 www.indtrk.org

Revision

BSR/ITSDF B56.10-202x, Safety Standard for Manually Propelled High Lift Industrial Trucks (revision of ANSI/ITSDF B56.10-2012 (R2019))

Stakeholders: Manufacturers and users of manually propelled high-lift industrial trucks controlled by a walking operator.

Project Need: Requirements need updating to maintain state of the art.

Interest Categories: Employee/Union, General Interest, Manufacturer, User

Scope: This Standard defines the safety requirements relating to the elements of design, operation, and maintenance of manually propelled high lift industrial trucks controlled by a walking operator, and intended for use on level, improved surfaces.

NEMA (ASC C136) (National Electrical Manufacturers Association)

David Richmond; David.Richmond@nema.org | 1300 North 17th Street, Suite 900 | Rosslyn, VA 22209 www.nema.org

Revision

Stakeholders: Lighting Control Manufacturers, Test Labs, Utilities

Project Need: This project is needed to address Sinking/Sourcing and Power Rail Connection

Interest Categories: Producer - Luminaires, Producer - Other, Producer - Poles, User, and General Interest

Scope: This Standard defines the minimum requirements for wireless networked lighting controllers (NLC) intended for use with roadway and area lighting systems.

NEMA (ASC C50) (National Electrical Manufacturers Association)

David Richmond; David.Richmond@nema.org | 1300 North 17th Street, Suite 900 | Rosslyn, VA 22209 www.nema.org

National Adoption

Project Need: This project is needed to adopt an extended product approach for addressing energy efficiency in motor drive systems.

Interest Categories: Producer, User, and General Interest

Scope: IEC 61800-9-1:2017 specifies the general methodology to energy efficiency standardization for any extended product by using the guidance of the extended product approach (EPA). This document specifies the methodology of determination of losses of the extended product and its sub-parts. It is applicable to motor systems operated by a motor starter or by a converter (power drive systems).
NEMA (ASC C50) (National Electrical Manufacturers Association)

David Richmond; David.Richmond@nema.org | 1300 North 17th Street, Suite 900 | Rosslyn, VA 22209 www.nema.org

National Adoption

Project Need: This project is needed to adopt an extended product approach for addressing energy efficiency in motor drive systems.

Interest Categories: Producer, User, and General Interest

Scope: This part of IEC 61800 specifies energy efficiency indicators of power electronics (complete drive modules, CDM), power drive systems (PDS) and motor starters, all used for motor driven equipment. It specifies the methodology for the determination of losses of the complete drive module (CDM), the power drive system (PDS) and the motor system. It defines IE and IES classes, their limit values and provides test procedures for the classification of the overall losses of the motor system. Furthermore, this document proposes a methodology for the implementation of the best energy efficiency solution of drive systems. This depends on the architecture of the motor driven system, on the speed/load profile and on the operating points over time of the driven equipment.

NEMA (National Electrical Manufacturers Association)

Khaled Masri; Khaled.Masri@nema.org | 1300 North 17th Street | Rosslyn, VA 22209 www.nema.org

New Standard

BSR/NEMA IM 60001-202x, Relative Temperature Indices of Industrial Thermosetting Laminates Standard (new standard)

Stakeholders: Manufacturers, testing labs, and users of laminated thermosetting products

Project Need: Standardize the relative temperature indices for benefits of the industrial thermosetting laminates industry

Interest Categories: Producer, User, and General Interest

Scope: This report on the thermal aging of industrial thermosetting laminates is based on a test program carried out at the NEMA Industrial Laminate Research and Development Facility at the University of Delaware, in cooperation with Underwriters Laboratories, Inc. (UL) to determine the relative thermal indices (general) temperature ratings of industrial laminate sheets, rods, and tubes (rolled and molded).

SCTE (Society of Cable Telecommunications Engineers)

Kim Cooney; kcooney@scte.org | 140 Philips Rd | Exton, PA 19341 www.scte.org

Reaffirmation

Stakeholders: Cable Telecommunications Industry

Project Need: Update current technology.

Interest Categories: General Interest, User, Producer

Scope: This document describes a test procedure for the laboratory and production measurement of Amplitude Modulation Cross Modulation (or AM-XMOD) that is present in Broadband Systems which carry Frequency Division Multiplexed (FDM), amplitude modulated, analog video channels.
SCTE (Society of Cable Telecommunications Engineers)
Kim Cooney; kcooney@scte.org | 140 Philips Rd | Exton, PA 19341 www.scte.org

Revision
BSR/SCTE 87-202x, Graphic Symbols for Cable Systems (revision of ANSI/SCTE 87-2017)
Stakeholders: Cable Telecommunications Industry
Project Need: Update current technology.
Interest Categories: User, Producer, General Interest
Scope: The scope of this documentation is to illustrate the symbols recommended for Telecommunication drafting needs. It also provides recommendations for attributes both visible on the drafted map as well as embedded in the symbol when building a database mapping application. This will provide better data capturing and provide a better source of record for internal and external users.

SPRI (Single Ply Roofing Industry)
Linda King; info@spri.org | 465 Waverley Oaks Road, Suite 421 | Waltham, MA 02452 www.spri.org

Revision
Stakeholders: Designers and specifiers of roof systems; manufacturers and testing agencies of roof edge products; contractors; and code officials, insurance companies and building owners.
Project Need: Review, edit as needed, and recanvass as per SPRI procedures.
Interest Categories: Producer, Other Producer, General Interest and User

Scope: This Standard is a reference for those who design, specify, manufacture, test, or install edge materials used with low-slope roofing systems. This Standard prescribes methodology for testing roof edge assemblies excluding gutters, to evaluate their resistance to wind load.

TAPPI (Technical Association of the Pulp and Paper Industry)
Tiffany Plummer; standards@tappi.org | 15 Technology Parkway | Peachtree Corners, GA 30092 www.tappi.org

Reaffirmation
BSR/TAPPI T 218 sp-2018 (R202x), Forming handsheets for reflectance testing of pulp (Büchner funnel procedure) (reaffirmation of ANSI/TAPPI T 218 sp-2018)
Stakeholders: Manufacturers of pulp, paper, packaging, or related products, consumers or converters of such products, and suppliers of equipment, supplies, or raw materials for the manufacture of such products.
Project Need: To conduct required five-year review of an existing TAPPI/ANSI Standard.
Interest Categories: Producers, Converters, Suppliers of chemical/raw materials, Suppliers of manufacturing equipment, Service and general suppliers, Commercial users, Marketers and Commercial Sellers, Consultants, Educators, General Interest
Scope: This practice describes the procedure using a Büchner funnel for preparing specimen sheets for reflectance testing of bleached or unbleached pulp whose fibers are readily dispersed in water. The sheets are made at a pH of 6.5 ± 0.5. This practice permits the preparation of sheets having a smooth and reproducible surface for reflectance measurements with a minimum of washing or contamination of the sample.
TAPPI (Technical Association of the Pulp and Paper Industry)

Brittany Lovett; standards@tappi.org | 15 Technology Parkway, Suite 115 | Peachtree Corners, GA 30092 www.tappi.org

Reaffirmation

BSR/TAPPI T 568 om-2012 (R202x), Physical area of sub-visible contraries in pulp, paper and paperboard by image analysis (reaffirmation of ANSI/TAPPI T 568 om-2012 (R2018))

Stakeholders: Manufacturers of pulp, paper, packaging, or related products, consumers or converters of such products, and suppliers of equipment, supplies, or raw materials for the manufacture of such products.

Project Need: To conduct required five-year review of an existing TAPPI/ANSI Standard.

Interest Categories: Producers, Converters, Suppliers of chemical/raw materials, Suppliers of manufacturing equipment, Service and general suppliers, Commercial users, Marketers and Commercial Sellers, Consultants, Educators, General Interest

Scope: This method uses image analysis to determine the level of sub-visible contraries in pulp, recycled pulp, paper, and paperboard in terms of Equivalent Physical Diameter (EPD) of contraries within the EPD range of 8 micrometers to 160 micrometers, reported in parts per hundred as well as the number of specks per square centimeter of sample. Extension to other speck sizes (for example, those greater than 160 micrometers) may require changes in equipment, calculation procedures, or both, and is not covered in this test method.
Call for Comment on Standards Proposals

American National Standards

This section solicits public comments on proposed draft new American National Standards, including the national adoption of ISO and IEC standards as American National Standards, and on proposals to revise, reaffirm or withdraw approval of existing American National Standards. A draft standard is listed in this section under the ANSI-accredited standards developer (ASD) that sponsors it and from whom a copy may be obtained. Comments in connection with a draft American National Standard must be submitted in writing to the ASD no later than the last day of the comment period specified herein. Such comments shall be specific to the section(s) of the standard under review and include sufficient detail so as to enable the reader to understand the commenter’s position, concerns and suggested alternative language, if appropriate. Please note that the ANSI Executive Standards Council (ExSC) has determined that an ASD has the right to require that interested parties submit public review comments electronically, in accordance with the developer’s procedures.

Ordering Instructions for "Call-for-Comment" Listings
1. Order from the organization indicated for the specific proposal.
2. Use the full identification in your order, including the BSR prefix; for example, Electric Fuses BSR/SAE J554.
3. Include remittance with all orders.
4. BSR proposals will not be available after the deadline of call for comment.

Comments should be addressed to the organization indicated, with a copy to the Board of Standards Review, American National Standards Institute, 25 West 43rd Street, New York, NY 10036. e-mail: psa@ansi.org

* Standard for consumer products

Comment Deadline: July 3, 2022

RESNET (Residential Energy Services Network, Inc.)
4867 Patina Court, Oceanside, CA 92057 | rick.dixon@resnet.us, www.resnet.us.com

Addenda
BSR/RESNET/ICC 301-2022 Addendum B-202x, CO2 Index (addenda to ANSI/RESNET/ICC 301-2022)
Addendum B updates and clarifies the references to the Cambium and eGRID databases and other data used in the calculation of the CO2 Index, changes CO2 to CO2e, updates the reference to the 2022 edition of standard ANSI/RESNET/ICC 380 and makes other minor changes to standard ANSI/RESNET/ICC 301-2022.

Click here to view these changes in full
Send comments (copy psa@ansi.org) to: ANSI Standards & Amendments Out For Public Comment” link on webpage: https://www.resnet.us/about/standards/standards-currently-out-for-public-comment/ then selecting the link to this

SPRI (Single Ply Roofing Industry)
465 Waverley Oaks Road, Suite 421, Waltham, MA 02452 | info@spri.org, www.spri.org

Revision
This standard provides a method of designing wind uplift resistance of vegetative roofing systems utilizing adhered roofing membranes. It is intended to provide a minimum design and installation reference for those individuals who design, specify, and install vegetative roofing systems. It shall be used in conjunction with, or enhanced by, the installation specifications and requirements of the manufacturer of the specific products used in the vegetative roofing system.

Click here to view these changes in full
Send comments (copy psa@ansi.org) to: info@spri.org
Comment Deadline: July 3, 2022

UL (Underwriters Laboratories)
333 Pfingsten Road, Northbrook, IL 60062-2096 | jeffrey.prusko@ul.org, https://ul.org/

Revision
BSR/UL 2586-202x, Standard for Safety for Hose Nozzle Valves for Flammable and Combustible Liquids (revision of ANSI/UL 2586-2021)
The following is being recirculated for your review: (1) Revision to Deformation Test with respect to anchoring; (2) Revision to External Leakage Test to clarify that if a vent tube is provided it shall be sealed.
Click here to view these changes in full
Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

UL (Underwriters Laboratories)
333 Pfingsten Road, Northbrook, IL 60062-2096 | jeffrey.prusko@ul.org, https://ul.org/

Revision
BSR/UL 2586A-202x, Standard for Safety for Hose Nozzle Valves for Gasoline and Gasoline/Ethanol Blends with Nominal Ethanol Concentrations up to 85 Percent (E0 - E85) (revision of ANSI/UL 2586A-2019)
The following is being recirculated: (1) Revision to Deformation Test with respect to anchoring; (2) Revision to Long Term Exposure Test to clarify requirements and align with UL 2586B; and (3) Revision to External Leakage Test with respect to the vent tube being sealed.
Click here to view these changes in full
Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

UL (Underwriters Laboratories)
333 Pfingsten Road, Northbrook, IL 60062-2096 | jeffrey.prusko@ul.org, https://ul.org/

Revision
BSR/UL 2586B-202x, Standard for Safety for Hose Nozzle Valves for Diesel Fuel, Biodiesel Fuel, Diesel/Biodiesel Blends with Nominal Biodiesel Concentrations up to 20 percent (B20), Kerosene, and Fuel Oil (revision of ANSI/UL 2586B-2020)
The following is being recirculated: (1) Revision to Deformation Test with respect to anchoring; (2) Revision to External Leakage Test with respect to vent tube being sealed.
Click here to view these changes in full
Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx
Comment Deadline: July 18, 2022

AAFS (American Academy of Forensic Sciences)

410 North 21st Street, Colorado Springs, CO 80904 | tambrosius@aafs.org, www.aafs.org

New Standard

BSR/ASB BPR 160-202x, Best Practice Recommendation for Initial Response at Scenes by Law Enforcement Officers (new standard)

This best practice recommendation provides guidance for the initial response by law enforcement officers (LEOs) to scenes. The guidance includes: arrival procedure, safety considerations, medical intervention, assessing the scene, preventing scene contamination, scene containment and control, evidence identification and preservation, turning the scene over to investigators, and documenting actions and observations. It does not include guidance for a complete scene investigation.

Single copy price: Free

Obtain an electronic copy from: This is a public comment period for a recirculation. Updated document, redline version, and comments can be viewed on the AAFS Standards Board website at: https://www.aafs.org/academy-standards-board

Order from: Document will be provided electronically on AAFS Standards Board website (https://www.aafs.org/academy-standards-board) free of charge.

Send comments (copy psa@ansi.org) to: asb@aafs.org

AAFS (American Academy of Forensic Sciences)

410 North 21st Street, Colorado Springs, CO 80904 | tambrosius@aafs.org, www.aafs.org

New Standard

BSR/ASB Std 135-202x, Scene Detection and Processing in Forensic Anthropology (new standard)

This document provides requirements and best practices for forensic anthropology and forensic archaeology practitioners in proper scene detection, processing, handling of evidence, and maintenance of a chain of custody, commensurate with jurisdictional requirements. These requirements and best practices use archaeological techniques and principles as a foundation for scientifically appropriate detection, processing, documentation, and collection of human remains and associated evidence at a scene.

Single copy price: Free

Obtain an electronic copy from: This is a public comment period for a recirculation. Updated document, redline version, and comments can be viewed on the AAFS Standards Board website at: https://www.aafs.org/academy-standards-board

Order from: Document will be provided electronically on AAFS Standards Board website (https://www.aafs.org/academy-standards-board) free of charge.

Send comments (copy psa@ansi.org) to: asb@aafs.org
Comment Deadline: July 18, 2022

AARST (American Association of Radon Scientists and Technologists)
527 N. Justice Street, Hendersonville, NC 28739 | StandardsAssist@gmail.com, www.aarst.org

Revision
The provisions in this standard provide minimum requirements for the construction of any building intended for human occupancy, except for 1- and 2-family dwellings, in order to reduce occupant exposure to radon and other hazardous soil gases. This work compilation contains a collection of proposed revisions that address administrative updates, improved clarity for some provisions and harmonization with other recent updates in soil gas mitigation standards.
Single copy price: $TBD
Obtain an electronic copy from: https://standards.aarst.org/public-review
Send comments (copy psa@ansi.org) to: StandardsAssist@gmail.com

ASABE (American Society of Agricultural and Biological Engineers)
2950 Niles Road, Saint Joseph, MI 49085 | vangilder@asabe.org, https://www.asabe.org/

Revision
BSR/ASAE S318.19 MONYEAR, Safety for Agricultural Field Equipment (revision and redesignation of ANSI/ASAE S318.18 JUN2017)
This Standard is a guide to provide a reasonable degree of personal safety for operators and other persons during the normal operation and servicing of agricultural field equipment. It does not apply to skid steer loaders, permanently installed grain dryers, and agricultural equipment covered by other safety standards, such as but not limited to permanently installed farmstead equipment, portable grain augers, and storage structures, except where specifically referenced by other standards.
Single copy price: ASABE Members; $51.00; Non ASABE Members; $75.00
Obtain an electronic copy from: vangilder@asabe.org
Order from: Carla VanGilder; vangilder@asabe.org
Send comments (copy psa@ansi.org) to: Same

ASSP (ASC A10) (American Society of Safety Professionals)
520 N. Northwest Highway, Park Ridge, IL 60068 | TFisher@ASSP.org, www.assp.org

Revision
This standard establishes safety requirements and performance criteria for active fall protection systems and their associated equipment used in construction and demolition. This includes guidelines for the planning, configuration, selection, installation, user training, operation, inspection and maintenance of equipment that is utilized in active fall protection systems. These systems create a personal interface with the worker via fitted equipment worn on the body while performing construction and demolition tasks at heights.
Single copy price: $110.00
Obtain an electronic copy from: Tim Fisher at TFisher@ASSP.Org
Order from: Tim Fisher; TFisher@ASSP.Org
Send comments (copy psa@ansi.org) to: Same
Call for Comment on Standards Proposals

Comment Deadline: July 18, 2022

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

New Standard
BSR/ASTM WK77984-202x, Specification for Physical Properties of Polyethylene Corrugated Drainage Pipe and Fittings (new standard)
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Reaffirmation
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Reaffirmation
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same
Call for Comment on Standards Proposals

Comment Deadline: July 18, 2022

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Reaffirmation
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Reaffirmation
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Reaffirmation
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Reaffirmation
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same
Comment Deadline: July 18, 2022

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Reaffirmation
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Reaffirmation
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Reaffirmation
BSR/ASTM F3124-2017 (R202x), Practice for Data Recording the Procedure Used to Produce Heat Butt Fusion Joints in Plastic Piping Systems or Fittings (reaffirmation of ANSI/ASTM F3124-2017)
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same
Comment Deadline: July 18, 2022

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Reaffirmation
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision
BSR/ASTM D1655-202x, Specification for Aviation Turbine Fuels (revision of ANSI/ASTM D1655-2021C)
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same
Comment Deadline: July 18, 2022

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision
BSR/ASTM D2239-202x, Specification for Polyethylene (PE) Plastic Pipe (SIDR-PR) Based on Controlled Inside Diameter (revision of ANSI/ASTM D2239-2021)
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

Revision
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

Revision
BSR/ASTM D2737-202x, Specification for Polyethylene (PE) Plastic Tubing (revision of ANSI/ASTM D2737-2021)
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same
Comment Deadline: July 18, 2022

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision
BSR/ASTM D3035-202x, Specification for Polyethylene (PE) Plastic Pipe (DR-PR) Based on Controlled Outside Diameter (revision of ANSI/ASTM D3035-2021)
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same
Comment Deadline: July 18, 2022

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same
Comment Deadline: July 18, 2022

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same
Comment Deadline: July 18, 2022

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision

BSR/ASTM F905-202x, Practice for Qualification of Polyethylene Saddle-Fused Joints (revision of ANSI/ASTM F905-2004 (R2018))
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision

BSR/ASTM F1055-202x, Specification for Electrofusion Type Polyethylene Fittings for Outside Diameter Controlled Polyethylene and Crosslinked Polyethylene (PEX) Pipe and Tubing (revision of ANSI/ASTM F1055-2016A)
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision

BSR/ASTM F1331-202x, Practice for Installation Procedures of Vinyl Deck Coverings on Portable Plates in Electrical and Electronic Spaces (revision of ANSI/ASTM F1331-1997 (R2017))
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same
Comment Deadline: July 18, 2022

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

Revision
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

Revision
BSR/ASTM F1960-202x, Specification for Cold Expansion Fittings with PEX Reinforcing Rings for Use with Cross-linked Polyethylene (PEX) and Polyethylene of Raised Temperature (PE-RT) Tubing (revision of ANSI/ASTM F1960-2021)
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same
Comment Deadline: July 18, 2022

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision
https://www.astm.org/ansi-review
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Laura Klineburger; accreditation@astm.org
Send comments (copy psa@ansi.org) to: Same

ATIS (Alliance for Telecommunications Industry Solutions)
1200 G Street NW, Suite 500, Washington, DC 20005 | dgreco@atis.org, www.atis.org

Revision
BSR/ATIS 0300097-202x, Structure for the Identification of Communications Connections for Information Exchange (revision of ANSI/ATIS 0300097-2017)
This standard provides the code and format structures necessary for identification of communications connections and describes the code structures with various combinations of data units represented within those structures. This standard contains clauses that cover its purpose and scope, describes format structures and data elements for message trunks and message trunk groups, special services circuits, and facilities. It also contains definitions and references. Its intended use is to provide a standard that facilitates information exchange among humans and machines.
Single copy price: Free
Obtain an electronic copy from: dgreco@atis.org
Send comments (copy psa@ansi.org) to: dgreco@atis.org
Comment Deadline: July 18, 2022

ATIS (Alliance for Telecommunications Industry Solutions)
1200 G Street NW, Suite 500, Washington, DC 20005 | dgreco@atis.org, www.atis.org

Stabilized Maintenance
This standard contains a set of baseline security requirements for the management plane. The requirements outlined in this standard allow equipment/system suppliers, government departments and agencies, and service providers to implement a secure telecommunications network management infrastructure.
Single copy price: Free
Obtain an electronic copy from: dgreco@atis.org
Send comments (copy psa@ansi.org) to: dgreco@atis.org

AWS (American Welding Society)
8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | sborrero@aws.org, www.aws.org

Revision
This specification prescribes the requirements for classification of zirconium and zirconium-alloy electrodes and rods for gas metal arc welding, gas tungsten arc welding, and plasma arc welding. The compositions specified for each classification represent the latest state-of-the-art. Additional requirements are included for testing procedures, manufacture, sizes, lengths, and packaging. A guide is appended to the specification as a source of information concerning the classification system employed and the intended use of the zirconium-alloy welding electrodes and rods.
Single copy price: $37.00
Obtain an electronic copy from: sborrero@aws.org
Order from: Stephen Borrero; sborrero@aws.org
Send comments (copy psa@ansi.org) to: Same
Comment Deadline: July 18, 2022

AWS (American Welding Society)
8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | sborrero@aws.org, www.aws.org

Revision
BSR/AWS A5.16/A5.16M (ISO 24034-202x MOD), Specification for Titanium and Titanium-Alloy Welding Electrodes and Rods (revision of ANSI/AWS A5.16/A5.16M-2013 (ISO 24034-2005 MOD))
This specification prescribes the requirements for the classification of over 30 titanium and titanium-alloy welding electrodes and rods. Classification is based upon the chemical composition of the electrode. Major topics include general requirements, testing, packaging, and application guidelines. A guide is appended to the specification as a source of information concerning the classification system employed and the intended use of the titanium and titanium-alloy welding electrodes and rods. This specification makes use of both U.S. Customary Units and the International System of Units (SI). Since these are not equivalent, each must be used independently of the other. This specification adopts the requirements of ISO 24034 and incorporates the provisions of earlier versions of A5.16/A5.16M, allowing for classifications under both specifications.
Single copy price: $37.00
Obtain an electronic copy from: sborrero@aws.org
Order from: Stephen Borrero; sborrero@aws.org
Send comments (copy psa@ansi.org) to: Same

CSA (CSA America Standards Inc.)
8501 East Pleasant Valley Road, Cleveland, OH 44131-5575 | ansi.contact@csagroup.org, www.csagroup.org

National Adoption
This document specifies tests and requirements for the tank pressure control regulator, a liquefied natural gas fuel system component intended for use on the types of motor vehicles defined in Canada: CSA B109.2; and in the United States: NFPA 52. It also provides general design principles and specifies requirements for instructions and marking. This Standard is not applicable to the following: (a) fuel containers; (b) stationary gas engines; (c) container mounting hardware; (d) electronic fuel management; and (e) fueling receptacles. It is recognized that miscellaneous components, not specifically covered herein can be examined to meet the criteria of this Standard and tested according to the appropriate functional tests. All references to pressure in this Standard are to be considered gauge pressures unless otherwise specified. This Standard is based upon a working pressure for natural gas as fuel of 1.6 MPa (232 psi). Other working pressures can be accommodated by adjusting the pressure by the appropriate factor (ratio). For example, a 2 MPa (290 psi) working pressure system will require pressures to be multiplied by 1.25.
NOTE 3A: For North American application, all references to working pressure are considered to be equivalent to maximum allowable working pressure (MAWP).
Single copy price: Free
Obtain an electronic copy from: ansi.contact@csagroup.org
Send comments (copy psa@ansi.org) to: ansi.contact@csagroup.org
Comment Deadline: July 18, 2022

CSA (CSA America Standards Inc.)
8501 East Pleasant Valley Road, Cleveland, OH 44131-5575 | ansi.contact@csagroup.org, www.csagroup.org

National Adoption

BSR/CSA LNG 3.14-202x, Road vehicles - Liquefied natural gas (LNG) fuel system components - Part 14:
Differential pressure fuel content gauge (identical national adoption of ISO 12614-14 and revision of

This document specifies tests and requirements for the differential pressure fuel content gauge, a liquefied
natural gas fuel system component intended for use on the types of motor vehicles defined in Canada: CSA
B109.2 and in the United States: NFPA 52. It also provides general design principles and specifies
requirements for instructions and marking. This Standard is not applicable to the following: (a) fuel
containers; (b) stationary gas engines; (c) container mounting hardware; (d) electronic fuel management; and
(e) fueling receptacles. It is recognized that miscellaneous components, not specifically covered herein can be
examined to meet the criteria of this Standard and tested according to the appropriate functional tests. All
references to pressure in this Standard are to be considered gauge pressures unless otherwise specified. This
Standard is based upon a working pressure for natural gas as fuel of 1.6 MPa (232 psi). Other working
pressures can be accommodated by adjusting the pressure by the appropriate factor (ratio). For example, a 2
MPa (290 psi) working pressure system will require pressures to be multiplied by 1.25.
NOTE 3A: For North American application, all references to working pressure are considered to be equivalent
to maximum allowable working pressure (MAWP).

Single copy price: Free
Obtain an electronic copy from: ansi.contact@csagroup.org
Send comments (copy psa@ansi.org) to: ansi.contact@csagroup.org

CSA (CSA America Standards Inc.)
8501 East Pleasant Valley Road, Cleveland, OH 44131-5575 | ansi.contact@csagroup.org, www.csagroup.org

National Adoption

BSR/CSA LNG 3.15-202x, Road vehicles - Liquefied natural gas (LNG) fuel system components - Part 15:
Capacitance fuel content gauge (national adoption of ISO 12614-15 with modifications and revision of
ANSI/CSA LNG 3.15-2018)

This document specifies tests and requirements for the capacitance fuel content gauge, a liquefied natural
gas fuel system component intended for use on the types of motor vehicles defined in Canada: CSA B109.2
and in the United States: NFPA 52. It also provides general design principles and specifies requirements for
instructions and marking. This Standard is not applicable to the following: (a) fuel containers; (b) stationary
gas engines; (c) container mounting hardware; (d) electronic fuel management; and (e) fueling receptacles. It
is recognized that miscellaneous components, not specifically covered herein can be examined to meet the
criteria of this Standard and tested according to the appropriate functional tests. All references to pressure in
this Standard are to be considered gauge pressures unless otherwise specified. This Standard is based upon
a working pressure for natural gas as fuel of 1.6 MPa (232 psi). Other working pressures can be
accommodated by adjusting the pressure by the appropriate factor (ratio). For example, a 2 MPa (290 psi)
working pressure system will require pressures to be multiplied by 1.25.
NOTE 3A: For North American application, all references to working pressure are considered to be equivalent
to maximum allowable working pressure (MAWP).

Single copy price: Free
Obtain an electronic copy from: ansi.contact@csagroup.org
Send comments (copy psa@ansi.org) to: ansi.contact@csagroup.org
Comment Deadline: July 18, 2022

CSA (CSA America Standards Inc.)
8501 East Pleasant Valley Road, Cleveland, OH 44131-5575 | ansi.contact@csagroup.org, www.csagroup.org

National Adoption
This document specifies tests and requirements for the heat exchanger-vaporizer, a liquefied natural gas fuel system component intended for use on the types of motor vehicles defined: in Canada: CSA B109.2 and in the United States: NFPA 52. It also provides general design principles and specifies requirements for instructions and marking. This Standard is not applicable to the following: (a) fuel containers; (b) stationary gas engines; (c) container mounting hardware; (d) electronic fuel management; and (e) fueling receptacles. It is recognized that miscellaneous components, not specifically covered herein can be examined to meet the criteria of this Standard and tested according to the appropriate functional tests. All references to pressure in this Standard are to be considered gauge pressures unless otherwise specified. This Standard is based upon a working pressure for natural gas as fuel of 1.6 MPa (232psi). Other working pressures can be accommodated by adjusting the pressure by the appropriate factor (ratio). For example, a 2 MPa (290psi) working pressure system will require pressures to be multiplied by 1.25.
NOTE 3A: For North American application, all references to working pressure are considered to be equivalent to maximum allowable working pressure (MAWP).
Single copy price: Free
Obtain an electronic copy from: ansi.contact@csagroup.org
Send comments (copy psa@ansi.org) to: ansi.contact@csagroup.org

CSA (CSA America Standards Inc.)
8501 East Pleasant Valley Road, Cleveland, OH 44131-5575 | ansi.contact@csagroup.org, www.csagroup.org

National Adoption
This document specifies tests and requirements for the gas temperature sensor, a liquefied natural gas fuel system component intended for use on the types of motor vehicles defined: in Canada: CSA B109.2 and in the United States: NFPA 52. It also provides general design principles and specifies requirements for instructions and marking. This Standard is not applicable to the following: (a) fuel containers; (b) stationary gas engines; (c) container mounting hardware; (d) electronic fuel management; and (e) fueling receptacles. It is recognized that miscellaneous components, not specifically covered herein can be examined to meet the criteria of this Standard and tested according to the appropriate functional tests. All references to pressure in this Standard are to be considered gauge pressures unless otherwise specified. This Standard is based upon a working pressure for natural gas as fuel of 1.6 MPa (232psi). Other working pressures can be accommodated by adjusting the pressure by the appropriate factor (ratio). For example, a 2 MPa (290psi) working pressure system will require pressures to be multiplied by 1.25.
NOTE 3A: For North American application, all references to working pressure are considered to be equivalent to maximum allowable working pressure (MAWP).
Single copy price: Free
Obtain an electronic copy from: ansi.contact@csagroup.org
Send comments (copy psa@ansi.org) to: ansi.contact@csagroup.org
Comment Deadline: July 18, 2022

CSA (CSA America Standards Inc.)
8501 East Pleasant Valley Road, Cleveland, OH 44131-5575 | ansi.contact@csagroup.org, www.csagroup.org

National Adoption
This document specifies tests and requirements for the automatic valve, a liquefied natural gas fuel system component intended for use on the types of motor vehicles defined: in Canada: CSA B109.2 and in the United States: NFPA 52. This Standard is not applicable to the following: (a) fuel containers; (b) stationary gas engines; (c) container mounting hardware; (d) electronic fuel management; and (e) fuelling receptacles. It is recognized that miscellaneous components, not specifically covered herein can be examined to meet the criteria of this Standard and tested according to the appropriate functional tests. All references to pressure in this Standard are to be considered gauge pressures unless otherwise specified. This Standard is based upon a working pressure for natural gas as fuel of 1.6 MPa (232 psi). Other working pressures can be accommodated by adjusting the pressure by the appropriate factor (ratio). For example, a 2 MPa (290 psi) working pressure system will require pressures to multiplied by 1.25.
NOTE 3A: For North American application, all references to working pressure are considered to be equivalent to maximum allowable working pressure (MAWP).
Single copy price: Free
Obtain an electronic copy from: ansi.contact@csagroup.org
Send comments (copy psa@ansi.org) to: ansi.contact@csagroup.org

CTA (Consumer Technology Association)
1919 S. Eads Street, Arlington, VA 22202 | cakers@cta.tech, www.cta.tech

New Standard
BSR/CTA 2075.1-202x, Loudness Standard for Over-the-Top Television and Online Video Distribution for Mobile and Fixed Devices - LM1 (new standard)
To add LM1 to ANSI/CTA-2075.
Single copy price: Free
Obtain an electronic copy from: standards@cta.tech
Order from: standards@cta.tech
Send comments (copy psa@ansi.org) to: CAkers@cta.tech

CTA (Consumer Technology Association)
1919 S. Eads Street, Arlington, VA 22202 | cakers@cta.tech, www.cta.tech

New Standard
BSR/CTA 2107-202x, The Use of Artificial Intelligence in Health Care, Managing Characterizing, and Safeguarding Data (new standard)
To develop best practices related to data governance/stewardship for the use of artificial intelligence in health care.
Single copy price: Free
Obtain an electronic copy from: standards@cta.tech
Order from: standards@cta.tech
Send comments (copy psa@ansi.org) to: CAkers@cta.tech
Comment Deadline: July 18, 2022

CTA (Consumer Technology Association)
1919 S. Eads Street, Arlington, VA 22202 | cakers@cta.tech, www.cta.tech

Revision
BSR/CTA 2037-D-202x, Determination of Television Set Power Consumption (revision and redesignation of ANSI/CTA 2037-C-2021)
This standard defines a method of measuring television set power consumption and related items. It is intended for television sets powered from an external source. Television sets with a non-removable main battery are excluded.
Single copy price: Free
Obtain an electronic copy from: standards@cta.tech
Order from: standards@cta.tech
Send comments (copy psa@ansi.org) to: CAkers@cta.tech

HL7 (Health Level Seven)
3300 Washtenaw Avenue, Suite 227, Ann Arbor, MI 48104 | Karenvan@HL7.org, www.hl7.org

Reaffirmation
BSR/HL7 IMTRANS, R2-2016 (R202x), HL7 Version 3 Standard: Transmission Infrastructure, Release 2 (reaffirmation of ANSI/HL7 IMTRANS, R2-2016)
This domain addresses the following aspects about the communications environment that is considered common to all HL7 version 3 messaging implementations: (1) A specification for the composite HL7 version 3 message; (2) A protocol for reliable message delivery, (3) Generic "communication roles" that support the modes of HL7 messaging, and (4) Message control events that describe a framework for generic HL7 messaging.
Single copy price: Free to members and non-members
Obtain an electronic copy from: Karenvan@HL7.org
Order from: Karen Van Hentenryck; Karenvan@HL7.org
Send comments (copy psa@ansi.org) to: Same

NEMA (ASC C136) (National Electrical Manufacturers Association)
1300 North 17th Street, Suite 900, Rosslyn, VA 22209 | David.Richmond@nema.org, www.nema.org

Stabilized Maintenance
BSR C136.1-2012 (S202x), Filament Lamps - A Guide for Selection (stabilized maintenance of ANSI C136.1-2012 (R2018))
This is a guide for the proper selection of filament lamps for use in roadway and area lighting equipment covered by the following standards: ANSI C136.4, ANSI C136.5, ANSI C136.6, and ANSI C136.11.
Single copy price: $53.00
Obtain an electronic copy from: david.richmond@nema.org
Order from: David Richmond; David.Richmond@nema.org
Send comments (copy psa@ansi.org) to: Same
Comment Deadline: July 18, 2022

NEMA (ASC C136) (National Electrical Manufacturers Association)
1300 North 17th Street, Suite 900, Rosslyn, VA 22209 | David.Richmond@nema.org, www.nema.org

Stabilized Maintenance

BSR C136.6-2004 (S202x), Roadway and Area Lighting Equipment - Metal Heads and Reflector Assemblies Mechanical and Optical Interchangeability (stabilized maintenance of ANSI C136.6-2004 (R2018))
This standard covers dimensional features of luminaires with metal heads that permit mechanical and optical interchangeability of both head and reflector assemblies.
Single copy price: $53.00
Obtain an electronic copy from: david.richmond@nema.org
Order from: David Richmond; David.Richmond@nema.org
Send comments (copy psa@ansi.org) to: Same

NEMA (ASC C136) (National Electrical Manufacturers Association)
1300 North 17th Street, Suite 900, Rosslyn, VA 22209 | David.Richmond@nema.org, www.nema.org

Stabilized Maintenance

BSR C136.9-2004 (S202x), Roadway and Area Lighting Equipment - Socket Support Assemblies for Metal Heads - Mechanical Interchangeability (stabilized maintenance of ANSI C136.9-2004 (R2018))
This standard covers the following equipment for use in metal heads that are in accordance with the latest revision of ANSI C136.6: (a) High-intensity discharge lamp ballast and socket assemblies in accordance with Figure 1; (b) Mogul and medium multiple incandescent lamp socket and support assemblies in accordance with Figure 2.
Single copy price: $53.00
Obtain an electronic copy from: david.richmond@nema.org
Order from: David Richmond; David.Richmond@nema.org
Send comments (copy psa@ansi.org) to: Same

NEMA (ASC C136) (National Electrical Manufacturers Association)
1300 North 17th Street, Suite 900, Rosslyn, VA 22209 | David.Richmond@nema.org, www.nema.org

Stabilized Maintenance

BSR C136.29-2011 (S202x), Roadway and Area Lighting - Meta Halide Lamps - Guide for Selection (stabilized maintenance of ANSI C136.29-2011 (R2018))
This selection guide includes screw-base single-ended metal halide lamps that can be used in roadway and area lighting equipment.
Single copy price: $53.00
Obtain an electronic copy from: david.richmond@nema.org
Order from: David Richmond; David.Richmond@nema.org
Send comments (copy psa@ansi.org) to: Same
Comment Deadline: July 18, 2022

UL (Underwriters Laboratories)
12 Laboratory Drive, Research Triangle Park, NC 27709-3995 | griff.edwards@ul.org, https://ul.org/

Reaffirmation
BSR/UL 2335-2012 (R202x), Standard for Safety for Fire Tests of Storage Pallets (June 3, 2022)
(reaffirmation of ANSI/UL 2335-2012 (R2017))
This proposal covers: (1) Reaffirmation and continuance of the second edition of the Standard for Fire Test of Storage Pallets, UL 2335, as an standard.
Single copy price: Free
Order from: http://www.shopulstandards.com
Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

UL (Underwriters Laboratories)
12 Laboratory Drive, Research Triangle Park, NC 27709-3995 | Joshua.Johnson@ul.org, https://ul.org/

Revision
BSR/UL 5-202x, Standard for Safety for Surface Metal Raceways and Fittings (June 3, 2022) (revision of ANSI/UL 5-2016 (R2020))
This proposal covers: (1) Addition of requirements for the use of electronic transmission of installation instructions.
Single copy price: Free
Order from: http://www.shopulstandards.com
Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

UL (Underwriters Laboratories)
12 Laboratory Drive, Research Triangle Park, NC 27709-3995 | Doreen.Stocker@ul.org, https://ul.org/

Revision
Proposed adoption of Amendment - IEC 62841-2-1-1/AMD1 ED1.
Single copy price: Free
Order from: http://www.shopulstandards.com
Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx
Comment Deadline: August 2, 2022

ASME (American Society of Mechanical Engineers)
Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

New Standard
BSR/ASME B5.64-202x, Methods for the Performance Evaluation of Single Axis Linear Positioning Systems (new standard)
This Standard establishes a methodology for specifying and testing the performance of single-axis linear positioning systems. It covers linear positioning systems with travels ranging from micrometers to meters.
Single copy price: Free
Order from: https://cstools.asme.org/csconnect/PublicReviewPage.cfm
Send comments (copy psa@ansi.org) to: Daniel Papert; papertd@asme.org

ASME (American Society of Mechanical Engineers)
Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

New Standard
BSR/ASME VVUQ 1-202x, Verification, Validation, and Uncertainty Quantification Terminology in Computational Modeling and Simulation (new standard)
This Standard provides a harmonized set of definitions for verification, validation, and uncertainty quantification (VVUQ) concepts.
Single copy price: Free
Order from: https://cstools.asme.org/csconnect/PublicReviewPage.cfm
Send comments (copy psa@ansi.org) to: Michelle Pagano; paganom@asme.org

UL (Underwriters Laboratories)
12 Laboratory Drive, Research Triangle Park, NC 27709-3995 | jennifer.fields@ul.org, https://ul.org/

New Standard
This standard is applicable to the safety of electrical and electronic equipment within the field of virtual reality, augmented reality and mixed reality technology with a rated voltage not exceeding 600 V. Examples include but not limited to VR/AR/MR head-mounted displays, holographic displays, AR glasses, hand-held AR devices and VR simulators. This standard does not address its physiological and psychological effects other than virtual reality sickness (whose symptoms are similar to motion sickness). The standard does not cover risk of electrical shock, fire, thermal burn and other product safety aspects already covered by the UL/IEC 62368-1 requirements for wearable electronics other than by reference.
Single copy price: Free
Order from: http://www.shopulstandards.com
Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx
Comment Deadline: August 2, 2022

UL (Underwriters Laboratories)
171 Nepean Street, Suite 400, Ottawa, ON K2P 0B4 Canada | kevin.hf.wu@ul.org, https://ul.org/

Revision

Proposed new edition is a binational standard with CAN/ULC-S526 that will incorporate requirements for Canada and the United States. The harmonized requirements include: addition of an Alternative Indoor Corrosion Test (21-Day) to be consistent with current requirements for initiating device standards; changes in the Measurement of Effective Luminous Intensity (Light Output) Test to include LEDs and changes to the method for determining the Quadrant vector alignment; new construction and performance requirements for battery-powered units, including primary batteries, secondary batteries used for stand-by power, and rechargeable lithium-ion batteries; addition of requirements for the evaluation of reduced spacings on printed-wiring boards to be consistent with requirements for initiating devices; new requirements for Wireless Systems; addition of new firmware requirements; revisions to the gasket requirements for outdoor use products; and revisions to the ultraviolet light and water exposure test for outdoor products.

Single copy price: Free

Order from: http://www.shopulstandards.com

Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

Project Withdrawn

In accordance with clause 4.2.1.3.3 Discontinuance of a standards project of the ANSI Essential Requirements, an accredited standards developer may abandon the processing of a proposed new or revised American National Standard or portion thereof if it has followed its accredited procedures. The following projects have been withdrawn accordingly:

AHRI (Air-Conditioning, Heating, and Refrigeration Institute)
2311 Wilson Boulevard, Suite 400, Arlington, VA 22201-3001 | kbest@ahrinet.org, www.ahrinet.org

Inquiries may be directed to Karl Best; kbest@ahrinet.org

AHRI (Air-Conditioning, Heating, and Refrigeration Institute)
2311 Wilson Boulevard, Suite 400, Arlington, VA 22201-3001 | kbest@ahrinet.org, www.ahrinet.org

Inquiries may be directed to Karl Best; kbest@ahrinet.org
Notice of Withdrawal: ANS at least 10 years past approval date

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

NEMA (National Electrical Manufacturers Association)

1300 North 17th Street, Suite 900, Arlington, VA 22209 | megan.hayes@nema.org, www.nema.org

ANSI/NEMA AB 4-2011, Guidelines for Inspection and Preventive Maintenance of Molded Case Circuit Breakers Used in Commercial and Industrial Applications
Direct inquiries to: Megan Hayes; megan.hayes@nema.org

Withdrawal of an ANS by ANSI-Accredited Standards Developer

AHRI (Air-Conditioning, Heating, and Refrigeration Institute)

2311 Wilson Boulevard, Suite 400, Arlington, VA 22201-3001 | kbest@ahrinet.org, www.ahrinet.org

ANSI/AHRI Standard 300-2015, Sound Rating and Sound Transmission Loss of Packaged Terminal Equipment
Direct inquiries to: Karl Best; kbest@ahrinet.org

AHRI (Air-Conditioning, Heating, and Refrigeration Institute)

2311 Wilson Boulevard, Suite 400, Arlington, VA 22201-3001 | kbest@ahrinet.org, www.ahrinet.org

Direct inquiries to: Karl Best; kbest@ahrinet.org

ECIA (Electronic Components Industry Association)

13873 Park Center Road, Suite 315, Herndon, VA 20171 | ldonohoe@ecianow.org, www.ecianow.org

Direct inquiries to: Laura Donohoe; ldonohoe@ecianow.org

HL7 (Health Level Seven)

3300 Washtenaw Avenue, Suite 227, Ann Arbor, MI 48104 | Karenvan@HL7.org, www.hl7.org

ANSI/HL7 V3 PA ENCOUNTER, R1-2016, HL7 Version 3 Standard: Patient Administration; Patient Encounter, Release 1
Direct inquiries to: Karen Van Hentenryck; Karenvan@HL7.org
Final Actions on American National Standards

The standards actions listed below have been approved by the ANSI Board of Standards Review (BSR) or by an ANSI-Audited Designator, as applicable.

ANS (American Nuclear Society)
555 North Kensington Avenue, La Grange Park, IL 60526 | kmurdoch@ans.org, www.ans.org

Reaffirmation
ANSI/ANS 3.2-2012 (R2022), Managerial, Administrative, and Quality Assurance Controls for the Operational Phase of Nuclear Power Plants (reaffirmation of ANSI/ANS 3.2-2012 (R2017)) Final Action Date: 5/26/2022

ASABE (American Society of Agricultural and Biological Engineers)
2950 Niles Road, Saint Joseph, MI 49085 | vangilder@asabe.org, https://www.asabe.org/

Reaffirmation

Reaffirmation

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)
180 Technology Parkway, Peachtree Corners, GA 30092 | cking@ashrae.org, www.ashrae.org

Addenda

Addenda

Addenda

Addenda

Addenda
Addenda

Addenda

Addenda

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision

CSA (CSA America Standards Inc.)
8501 East Pleasant Valley Road, Cleveland, OH 44131-5575 | ansi.contact@csagroup.org, www.csagroup.org

National Adoption
ANSI/CSA/ISO Z23550-2022, Safety and control devices for gas and/or oil burners and appliances - General requirements (national adoption with modifications of ISO 23550) Final Action Date: 5/31/2022

FCI (Fluid Controls Institute)
1300 Sumner Avenue, Cleveland, OH 44115 | fci@fluidcontrolsinstitute.org, www.fluidcontrolsinstitute.org

New Standard
ANSI/FCI 19-2-2022, Standard for Installation of Type 2 Secondary Pressure Drainers (new standard) Final Action Date: 5/31/2022

IES (Illuminating Engineering Society)
120 Wall Street, Floor 17, New York, NY 10005-4001 | pmcgillicuddy@ies.org, www.ies.org

New Standard
ANSI/IES RP-43-2022, Recommended Practice: Lighting Exterior Applications (illuminance table only) (new standard) Final Action Date: 5/31/2022

ITI (INCITS) (InterNational Committee for Information Technology Standards)
700 K Street NW, Suite 600, Washington, DC 20001 | comments@standards.incits.org, www.incits.org

National Adoption
ITI (INCITS) (InterNational Committee for Information Technology Standards)
700 K Street NW, Suite 600, Washington, DC 20001 | comments@standards.incits.org, www.incits.org

National Adoption
Final Action Date: 5/31/2022

National Adoption
INCITS/ISO/IEC 23360-4-3:2021 [2022], Linux Standard Base (LSB) - Part 4-3: Desktop specification for AMD64 (X86-64) architecture (identical national adoption of ISO/IEC 23360-4-3:2021 and revision of INCITS/ISO/IEC 23360-4:2006 [R2020])
Final Action Date: 5/31/2022
National Adoption

Revision
OPEI (Outdoor Power Equipment Institute)
1605 King Street, 3rd Floor, Alexandria, VA 22314 | bmartin@opei.org, www.opei.org

Addenda

UL (Underwriters Laboratories)
333 Pfingsten Road, Northbrook, IL 60062-2096 | Susan.P.Malohn@ul.org, https://ul.org/

New Standard

Reaffirmation
ANSI/UL 551-2009 (R2022), Standard for Safety for Transformer-Type Arc-Welding Machines (reaffirmation of ANSI/UL 551-2009 (R2018)) Final Action Date: 5/24/2022

Reaffirmation
ANSI/UL 5085-1-2013 (R2022), Standard for Safety for Low Voltage Transformers (reaffirmation of ANSI/UL 5085-1-2013 (R2018)) Final Action Date: 5/24/2022

Reaffirmation

Revision
Call for Members (ANS Consensus Bodies)

Directly and materially interested parties who wish to participate as a member of an ANS consensus body for the standards listed are requested to contact the sponsoring developer directly in a timely manner.

ANSI Accredited Standards Developer

INCITS Executive Board – ANSI Accredited SDO and US TAG to ISO/IEC JTC 1, Information Technology

The InterNational Committee for Information Technology Standards (INCITS), an ANSI accredited SDO, is the forum of choice for information technology developers, producers and users for the creation and maintenance of formal de jure IT standards. INCITS’ mission is to promote the effective use of Information and Communication Technology through standardization in a way that balances the interests of all stakeholders and increases the global competitiveness of the member organizations.

The INCITS Executive Board serves as the consensus body with oversight of its 40+ Technical Committees. Additionally, the INCITS Executive Board has the international leadership role as the US Technical Advisory Group (TAG) to ISO/IEC JTC 1, Information Technology.

Membership in the INCITS Executive Board is open to all directly and materially interested parties in accordance with INCITS membership rules. To find out more about participating on the INCITS Executive Board, contact Jennifer Garner at jgarner@itic.org or visit http://www.incits.org/participation/membership-info for more information.

Membership in all interest categories is always welcome; however, the INCITS Executive Board seeks to broaden its membership base in the following underrepresented categories:

- Producer-Software
- Producer-Hardware
- Distributor
- Service Provider
- Users
- Consultants
- Government
- SDO and Consortia Groups
- Academia
- General Interest

ANSI Accredited Standards Developer

SCTE (Society of Cable Telecommunications Engineers)

SCTE, an ANSI-accredited SDO, is the primary organization for the creation and maintenance of standards for the cable telecommunications industry. SCTE’s standards mission is to develop standards that meet the needs of cable system operators, content providers, network and customer premises equipment manufacturers, and all others who have an interest in the industry through a fair, balanced and transparent process.

SCTE is currently seeking to broaden the membership base of its ANS consensus bodies and is interested in new members in all membership categories to participate in new work in fiber-optic networks, advanced advertising, 3D television, and other important topics. Of particular interest is membership from the content (program and advertising) provider and user communities.

Membership in the SCTE Standards Program is open to all directly and materially affected parties as defined in SCTE’s membership rules and operating procedures.

More information is available at www.scte.org or by e-mail from standards@scte.org.
Call for Members (ANS Consensus Bodies)

AARST (American Association of Radon Scientists and Technologists)
527 N. Justice Street, Hendersonville, NC 28739 | StandardsAssist@gmail.com, www.aarst.org

ASABE (American Society of Agricultural and Biological Engineers)
2950 Niles Road, Saint Joseph, MI 49085 | vangilder@asabe.org, https://www.asabe.org/
BSR/ASAE S318.19 MONYEAR, Safety for Agricultural Field Equipment (revision and redesignation of ANSI/ASAE S318.18 JUN2017)

ASME (American Society of Mechanical Engineers)
Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org
BSR/ASME VVUQ 1-202x, Verification, Validation, and Uncertainty Quantification Terminology in Computational Modeling and Simulation (new standard)

ASSP (ASC A10) (American Society of Safety Professionals)
520 N. Northwest Highway, Park Ridge, IL 60068 | TFisher@ASSP.org, www.assp.org

ATIS (Alliance for Telecommunications Industry Solutions)
1200 G Street NW, Suite 500, Washington, DC 20005 | dgreco@atis.org, www.atis.org
BSR/ATIS 0300097-202x, Structure for the Identification of Communications Connections for Information Exchange (revision of ANSI/ATIS 0300097-2017)

ATIS (Alliance for Telecommunications Industry Solutions)
1200 G Street NW, Suite 500, Washington, DC 20005 | dgreco@atis.org, www.atis.org

CTA (Consumer Technology Association)
1919 S. Eads Street, Arlington, VA 22202 | cakers@cta.tech, www.cta.tech
BSR/CTA 2075.1-202x, Loudness Standard for Over-the-Top Television and Online Video Distribution for Mobile and Fixed Devices - LM1 (new standard)
CTA is seeking new members to join the consensus body. CTA and the R4 Video Systems Intelligent Mobility Committee are particularly interested in adding new members (called "users" who acquire video products from those who create them) as well as those with a general interest.
Call for Members (ANS Consensus Bodies)

CTA (Consumer Technology Association)
1919 S. Eads Street, Arlington, VA 22202 | cakers@cta.tech, www.cta.tech

BSR/CTA 2107-202x, The Use of Artificial Intelligence in Health Care, Managing Characterizing, and Safeguarding Data (new standard)
CTA is seeking new members to join the consensus body to participate in the effort to create CTA-2107. CTA and the R13 Artificial Intelligence Committee are particularly interested in adding new members (called "users" who acquire AI from those who create them) as well as those with a general interest.

CTA (Consumer Technology Association)
1919 S. Eads Street, Arlington, VA 22202 | cakers@cta.tech, www.cta.tech

BSR/CTA 2115-202x, Closed Caption Accessibility Settings Data (new standard)
CTA is seeking new members to join the consensus body. CTA and the R4 Video Systems Intelligent Mobility Committee are particularly interested in adding new members (called "users" who acquire video products from those who create them) as well as those with a general interest.

CTA (Consumer Technology Association)
1919 S. Eads Street, Arlington, VA 22202 | cakers@cta.tech, www.cta.tech

BSR/CTA 2116-202x, Best Practices and Recommendations for Bias Management (new standard)

CTA (Consumer Technology Association)
1919 S. Eads Street, Arlington, VA 22202 | cakers@cta.tech, www.cta.tech

BSR/CTA 2117-202x, Guidelines for Managing, Characterizing, and Safeguarding Data in Artificial Intelligence (new standard)

ITI (INCITS) (InterNational Committee for Information Technology Standards)
700 K Street NW, Suite 600, Washington, DC 20001 | comments@standards.incits.org, www.incits.org

INCITS 580-202x, Information technology - Inclusive Terminology (new standard)

NEMA (ASC C136) (National Electrical Manufacturers Association)
1300 North 17th Street, Suite 900, Rosslyn, VA 22209 | David.Richmond@nema.org, www.nema.org

NEMA (ASC C50) (National Electrical Manufacturers Association)
1300 North 17th Street, Suite 900, Rosslyn, VA 22209 | David.Richmond@nema.org, www.nema.org

Call for Members (ANS Consensus Bodies)

NEMA (ASC C50) (National Electrical Manufacturers Association)
1300 North 17th Street, Suite 900, Rosslyn, VA 22209 | David.Richmond@nema.org, www.nema.org

TAPPI (Technical Association of the Pulp and Paper Industry)
15 Technology Parkway, Peachtree Corners, GA 30092 | standards@tappi.org, www.tappi.org

BSR/TAPPI T 218 sp-2018 (R202x), Forming handsheets for reflectance testing of pulp (Büchner funnel procedure) (reaffirmation of ANSI/TAPPI T 218 sp-2018)

TAPPI (Technical Association of the Pulp and Paper Industry)
15 Technology Parkway, Suite 115, Peachtree Corners, GA 30092 | standards@tappi.org, www.tappi.org

BSR/TAPPI T 568 om-2012 (R202x), Physical area of sub-visible contraries in pulp, paper and paperboard by image analysis (reaffirmation of ANSI/TAPPI T 568 om-2012 (R2018))
Approval of Reaccreditation – ASD
CPA - Composite Panel Association
Effective May 13, 2022
The reaccreditation of CPA - Composite Panel Association has been approved at the direction of ANSI’s Executive Standards Council, under its recently revised operating procedures for documenting consensus on CPA-sponsored American National Standards, effective **May 13, 2022**. For additional information, please contact: Gary Heroux, Composite Panel Association (CPA) | 19465 Deerfield Avenue, Suite 306, Leesburg, VA 20176 | (301) 606-6740, gheroux@cpamail.org

Approval of Reaccreditation – ASD
CRSI - Concrete Reinforcing Steel Institute
Effective May 13, 2022
The reaccreditation of CRSI - Concrete Reinforcing Steel Institute has been approved at the direction of ANSI’s Executive Standards Council, under its recently revised operating procedures for documenting consensus on CRSI-sponsored American National Standards, effective **May 13, 2022**. For additional information, please contact: Amy Trygestad, Concrete Reinforcing Steel Institute (CRSI) | 933 N Plum Grove Road, Schaumburg, IL 60173 | (630) 380-5874, atrygestad@crsi.org

Approval of Reaccreditation – ASD
GTESS - Georgia Institute of Technology Energy & Sustainability Services
Effective May 13, 2022
The reaccreditation of GTESS - Georgia Institute of Technology Energy & Sustainability Services has been approved at the direction of ANSI’s Executive Standards Council, under its recently revised operating procedures for documenting consensus on GTESS-sponsored American National Standards, effective **May 13, 2022**. For additional information, please contact: Deann Desai, Georgia Tech Energy & Sustainability Services (GTESS) | 75 Fifth Street N.W, Suite 3001, Atlanta, GA 30332-0640 | (770) 605-4474, deann@pddd.com

Approval of Reaccreditation – ASD
SCS - SCS Standards Development
Effective May 13, 2022
The reaccreditation of SCS Standards Development has been approved at the direction of ANSI’s Executive Standards Council, under its recently revised operating procedures for documenting consensus on SCS-sponsored American National Standards, effective **May 13, 2022**. For additional information, please contact: Victoria Norman, SCS Standards Development (SCS) | 2000 Powell Street, Suite 600, Emeryville, CA 96408 | (510) 452-8000, v.norman@scsstandards.org
Accreditation Announcements (Standards Developers)

Approval of Reaccreditation – ASD

VITA - VMEbus International Trade Association (VITA)

Effective May 27, 2022

ANSI’s Executive Standards Council has approved the reaccreditation of VITA under its recently revised operating policies and procedures for documenting consensus on VITA-sponsored American National Standards, effective May 27, 2022. For additional information, please contact: Jing Kwok, VITA | 929 W. Portobello Avenue, Mesa, AZ 85210 | (602) 281-4497, jing.kwok@vita.com; Dean.Holman@vita.com; jerry@vita.com
American National Standards (ANS) Process

Please visit ANSI’s website (www.ansi.org) for resources that will help you to understand, administer and participate in the American National Standards (ANS) process. Documents posted at these links are updated periodically as new documents and guidance are developed, whenever ANS-related procedures are revised, and routinely with respect to lists of proposed and approved ANS. The main ANS-related link is www.ansi.org/asd and here are some direct links as well as highlights of information that is available:

Where to find Procedures, Guidance, Interpretations and More...

Please visit ANSI’s website (www.ansi.org)

• ANSI Essential Requirements: Due process requirements for American National Standards (always current edition): www.ansi.org/essentialrequirements

• ANSI Standards Action (weekly public review announcements of proposed ANS and standards developer accreditation applications, listing of recently approved ANS, and proposed revisions to ANS-related procedures): www.ansi.org/standardsaction

• Accreditation information – for potential developers of American National Standards (ANS): www.ansi.org/sdoaccreditation

• ANSI Procedures, ExSC Interpretations and Guidance (including a slide deck on how to participate in the ANS process and the BSR-9 form): www.ansi.org/asd

• Lists of ANSI-Accredited Standards Developers (ASDs), Proposed ANS and Approved ANS: www.ansi.org/asd

• American National Standards Key Steps: www.ansi.org/anskeysteps

• American National Standards Value: www.ansi.org/ansvalue

• Information about standards Incorporated by Reference (IBR): https://ibr.ansi.org/

• ANSI - Education and Training: www.standardslearn.org
American National Standards Under Continuous Maintenance

The ANSI Essential Requirements: Due Process Requirements for American National Standards provides two options for the maintenance of American National Standards (ANS): periodic maintenance (see clause 4.7.1) and continuous maintenance (see clause 4.7.2). Continuous maintenance is defined as follows:

The standard shall be maintained by an accredited standards developer. A documented program for periodic publication of revisions shall be established by the standards developer. Processing of these revisions shall be in accordance with these procedures. The published standard shall include a clear statement of the intent to consider requests for change and information on the submittal of such requests. Procedures shall be established for timely, documented consensus action on each request for change and no portion of the standard shall be excluded from the revision process. In the event that no revisions are issued for a period of four years, action to reaffirm or withdraw the standard shall be taken in accordance with the procedures contained in the ANSI Essential Requirements.

The Executive Standards Council (ExSC) has determined that for standards maintained under the Continuous Maintenance option, separate PINS announcements are not required. The following ANSI Accredited Standards Developers have formally registered standards under the Continuous Maintenance option:

- AAMI (Association for the Advancement of Medical Instrumentation)
- AARST (American Association of Radon Scientists and Technologists)
- AGA (American Gas Association)
- AGSC (Auto Glass Safety Council)
- ASC X9 (Accredited Standards Committee X9, Incorporated)
- ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)
- ASME (American Society of Mechanical Engineers)
- ASTM (ASTM International)
- GBI (Green Building Initiative)
- HL7 (Health Level Seven)
- Home Innovation (Home Innovation Research Labs)
- IES (Illuminating Engineering Society)
- ITI (InterNational Committee for Information Technology Standards)
- MHI (Material Handling Industry)
- NBBPVI (National Board of Boiler and Pressure Vessel Inspectors)
- NCPDP (National Council for Prescription Drug Programs)
- NEMA (National Electrical Manufacturers Association)
- NFRC (National Fenestration Rating Council)
- NISO (National Information Standards Organization)
- NSF (NSF International)
- PRCA (Professional Ropes Course Association)
- RESNET (Residential Energy Services Network, Inc.)
- SAE (SAE International)
- TCNA (Tile Council of North America)
- TIA (Telecommunications Industry Association)
- UL (Underwriters Laboratories)

To obtain additional information with regard to these standards, including contact information at the ANSI Accredited Standards Developer, please visit ANSI Online at www.ansi.org/asd, select “American National Standards Maintained Under Continuous Maintenance.” Questions? psa@ansi.org.
ANSI-Accredited Standards Developers (ASD) Contacts

The addresses listed in this section are to be used in conjunction with standards listed in PINS, Call for Comment, Call for Members and Final Actions. This section is a list of developers who have submitted standards for this issue of Standards Action – it is not intended to be a list of all ANSI-Accredited Standards Developers. Please send all address corrections to the PSA Department at psa@ansi.org.

AAFS
American Academy of Forensic Sciences
410 North 21st Street
Colorado Springs, CO 80904
www.aafs.org
Teresa Ambrosius
tambrosius@aafs.org

AARST
American Association of Radon Scientists and Technologists
527 N. Justice Street
Hendersonville, NC 28739
www.aarst.org
Gary Hodgden
StandardsAssist@gmail.com

ANS
American Nuclear Society
555 North Kensington Avenue
La Grange Park, IL 60526
www.ans.org
Kathryn Murdoch
kmurdoch@ans.org

ASABE
American Society of Agricultural and Biological Engineers
2950 Niles Road
Saint Joseph, MI 49085
https://www.asabe.org/
Carla VanGilder
vangilder@asabe.org

ASC X9
Accredited Standards Committee X9, Incorporated
275 West Street, Suite 107
Annapolis, MD 21401
www.x9.org
Ambria Frazier
Ambria.frazier@x9.org

ASHRAE
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
180 Technology Parkway
Peachtree Corners, GA 30092
www.ashrae.org
Carmen King
cking@ashrae.org
Emily Toto
etoto@ashrae.org
Ryan Shanley
rshanley@ashrae.org

ASME
American Society of Mechanical Engineers
Two Park Avenue, M/S 6-2B
New York, NY 10016
www.asme.org
Terrell Henry
ansibox@asme.org

ASSP (Safety)
American Society of Safety Professionals
520 N. Northwest Highway
Park Ridge, IL 60068
www.assp.org
Tim Fisher
TFisher@ASSP.org

ASTM
ASTM International
100 Barr Harbor Drive
West Conshohocken, PA 19428
www.astm.org
Laura Klineburger
accreditation@astm.org

ATIS
Alliance for Telecommunications Industry Solutions
1200 G Street NW, Suite 500
Washington, DC 20005
www.atis.org
Drew Greco
dgreco@atis.org

AWS
American Welding Society
8669 NW 36th Street, Suite 130
Miami, FL 33166
www.aws.org
Stephen Borrero
sborrero@aws.org

CSA
CSA America Standards Inc.
8501 East Pleasant Valley Road
Cleveland, OH 44131
www.csagroup.org
Debbie Chesnik
ansi.contact@csagroup.org

CTA
Consumer Technology Association
1919 S. Eads Street
Arlington, VA 22202
www.cta.tech
Catrina Akers
cakers@cta.tech

FCI
Fluid Controls Institute
1300 Sumner Avenue
Cleveland, OH 44115
www.fluidcontrolsinstitute.org
Leslie Schraff
fci@fluidcontrolsinstitute.org

HL7
Health Level Seven
3300 Washtenaw Avenue, Suite 227
Ann Arbor, MI 48104
www.hl7.org
Karen Van Hentenyck
Karenvan@HL7.org

IES
Illuminating Engineering Society
120 Wall Street, Floor 17
New York, NY 10005
www.ies.org
Patricia McGillicuddy
pmcgillicuddy@ies.org
ITI (INCITS)
InterNational Committee for Information Technology Standards
700 K Street NW, Suite 600
Washington, DC 20001
www.incits.org
Deborah Spittle
comments@standards.incits.org

ITSDF
Industrial Truck Standards Development Foundation, Inc.
1750 K Street NW, Suite 460
Washington, DC 20006
www.indtrk.org
Chris Merther
chris.merther@itsdf.org

KCMA
Kitchen Cabinet Manufacturers Association
1899 Preston White Drive
Reston, VA 20191
www.kcma.org
Chuck Arnold
carnold@kcma.org

NEMA
National Electrical Manufacturers Association
1300 North 17th Street
Rosslyn, VA 22209
www.nema.org
Khaled Masri
Khaled.Masri@nema.org

NEMA (ASC C136)
National Electrical Manufacturers Association
1300 North 17th Street, Suite 900
Rosslyn, VA 22209
www.nema.org
David Richmond
David.Richmond@nema.org

NEMA (ASC C50)
National Electrical Manufacturers Association
1300 North 17th Street, Suite 900
Rosslyn, VA 22209
www.nema.org
David Richmond
David.Richmond@nema.org

OPEI
Outdoor Power Equipment Institute
1605 King Street, 3rd Floor
Alexandria, VA 22314
www.opei.org
Brandon Martin
bmartin@opei.org

RESNET
Residential Energy Services Network, Inc.
4867 Patina Court
Oceanside, CA 92057
www.resnet.us.com
Richard Dixon
rick.dixon@resnet.us

SCTE
Society of Cable Telecommunications Engineers
140 Philips Rd
Exton, PA 19341
www.scte.org
Kim Cooney
kcooney@scte.org

SPRI
Single Ply Roofing Industry
465 Waverley Oaks Road, Suite 421
Waltham, MA 02452
www.spri.org
Linda King
info@spri.org

TAPPI
Technical Association of the Pulp and Paper Industry
15 Technology Parkway
Peachtree Corners, GA 30092
www.tappi.org
Tiffany Plummer
standards@tappi.org

TAPPI
Technical Association of the Pulp and Paper Industry
15 Technology Parkway, Suite 115
Peachtree Corners, GA 30092
www.tappi.org
Brittaney Lovett
standards@tappi.org

UL
Underwriters Laboratories
12 Laboratory Drive
Research Triangle Park, NC 27709
https://ul.org/
Doreen Stocker
Doreen.Stocker@ul.org
Griff Edwards
griff.edwards@ul.org
Jennifer Fields
jennifer.fields@ul.org
Joshua Johnson
Joshua.Johnson@ul.org

UL
Underwriters Laboratories
171 Nepean Street, Suite 400
Ottawa, ON K2P 0
https://ul.org/
Kevin Wu
kevin.hf.wu@ul.org

UL
Underwriters Laboratories
333 Pfingsten Road
Northbrook, IL 60062
https://ul.org/
Jeff Prusko
jeffrey.prusko@ul.org
Megan Monsen
megan.monsen@ul.org
Susan Malohn
Susan.P.Malohn@ul.org
ISO & IEC Draft International Standards

This section lists proposed standards that the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) are considering for approval. The proposals have received substantial support within the technical committees or subcommittees that developed them and are now being circulated to ISO and IEC members for comment and vote. Standards Action readers interested in reviewing and commenting on these documents should order copies from ANSI.

COMMENTS
Comments regarding ISO documents should be sent to ANSI’s ISO Team (isot@ansi.org); comments on ISO documents must be submitted electronically in the approved ISO template and as a Word document as other formats will not be accepted.

Those regarding IEC documents should be sent to Tony Zertuche, General Secretary, USNC/IEC, at ANSI’s New York offices (tzeruche@ansi.org). The final date for offering comments is listed after each draft.

ORDERING INSTRUCTIONS
ISO and IEC Drafts can be made available by contacting ANSI’s Customer Service department. Please e-mail your request for an ISO or IEC Draft to Customer Service at sales@ansi.org. When making your request, please provide the date of the Standards Action issue in which the draft document you are requesting appears.

ISO Standards

Air quality (TC 146)
ISO/DIS 11174, Workplace air - Determination of particulate cadmium and cadmium compounds - Flame and electrothermal atomic absorption spectrometric method - 4/1/2022, $82.00

Applications of statistical methods (TC 69)
ISO/DIS 24185, Evaluation of the uncertainty of measurements from a stationary autocorrelated process - 9/30/2021, $67.00

Bamboo and rattan (TC 296)
ISO/DIS 21629-2, Bamboo floorings - Part 2: Outdoor use - 7/30/2021, $62.00

Clinical laboratory testing and in vitro diagnostic test systems (TC 212)
ISO/DIS 20658, Medical laboratories - Requirements for collection and transport of samples - 8/18/2022, $112.00

Concrete, reinforced concrete and pre-stressed concrete (TC 71)
ISO/DIS 5091-1, Structural intervention of existing concrete structures using cementitious materials - Part 1: General principles - 8/11/2022, $93.00
ISO/DIS 5091-2, Structural intervention of existing concrete structures using cementitious materials - Part 2: Top-surface overlaying - 8/13/2022, $82.00
ISO/DIS 5091-3, Structural intervention of existing concrete structures using cementitious materials - Part 3: Bottom-surface (soffit) underlaying - 8/12/2022, $93.00
ISO/DIS 5091-4, Structural intervention of existing concrete structures using cementitious materials - Part 4: Jacketing - 8/19/2022, $93.00

Cryogenic vessels (TC 220)
ISO/FDIS 21009-1, Cryogenic vessels - Static vacuum-insulated vessels - Part 1: Design, fabrication, inspection and tests - 7/27/2020, $175.00

Dentistry (TC 106)
ISO/FDIS 22674, Dentistry - Metallic materials for fixed and removable restorations and appliances - 5/13/2021, $107.00

Documents and data elements in administration, commerce and industry (TC 154)
ISO/DIS 23355, Visibility data interchange between logistics information service providers - 3/31/2022, $165.00

Gas cylinders (TC 58)
ISO/FDIS 11114-6, Gas cylinders - Compatibility of cylinder and valve materials with gas contents - Part 6: Oxygen pressure surge testing - 3/12/2021, $53.00

Internal combustion engines (TC 70)
ISO/FDIS 8528-12, Reciprocating internal combustion engine driven alternating current generating sets - Part 12: Emergency power supply to safety services - 8/1/2022, $58.00

Jewellery (TC 174)
ISO/DIS 11210, Jewellery and precious metals - Determination of platinum in platinum alloys - Gravimetric determination after precipitation using ammonium chloride - 3/26/2022, $46.00
ISO/DIS 11490, Jewellery and precious metals - Determination of palladium in palladium alloys - Gravimetric determination after precipitation using dimethylglyoxime - 3/26/2022, $46.00

Laboratory glassware and related apparatus (TC 48)
ISO/DIS 10991, Microfluidics - Vocabulary - 8/11/2022, $67.00
Materials, equipment and offshore structures for petroleum and natural gas industries (TC 67)
ISO/DIS 22974, Petroleum and natural gas industry - Pipeline transportation systems - Pipeline integrity assessment specification - 8/19/2022, $88.00

Mechanical testing of metals (TC 164)
ISO/DIS 9649, Metallic materials - Wire - Reverse torsion test - 3/25/2022, $40.00

Natural gas (TC 193)
ISO/FDIS 10101-1, Natural gas - Determination of water by the Karl Fischer method - Part 1: General requirements - 9/14/2020, $33.00
ISO/FDIS 10101-2, Natural gas - Determination of water by the Karl Fischer method - Part 2: Volumetric procedure - 9/14/2020, $58.00
ISO/FDIS 10101-3, Natural gas - Determination of water by the Karl Fischer method - Part 3: Coulometric procedure - 9/14/2020, $53.00

Petroleum products and lubricants (TC 28)
ISO/DIS 10976, Refrigerated light hydrocarbon fluids - Measurement of cargoes on board LNG carriers - 8/18/2022, $134.00

Plastics (TC 61)
ISO/DIS 7972, Adhesives - Absorption of water into an adhesive layer using an open-faced specimen and determination of shear strength by secondary bonding - 3/31/2022, $40.00

Plastics pipes, fittings and valves for the transport of fluids (TC 138)
ISO/DIS 8639, Glass-reinforced thermosetting plastics (GRP) pipes and fittings - Test methods for leaktightness and proof of structural design of flexible joints - 8/14/2022, FREE
ISO/DIS 10468, Glass-reinforced thermosetting plastics (GRP) pipes - Determination of the ring creep properties under wet or dry conditions - 8/14/2022, $53.00

Pulleys and belts (including veebelts) (TC 41)
ISO/DIS 255, Belt drives - Pulleys for V-belts (system based on datum width) - Geometrical inspection of grooves - 3/26/2022, $62.00

Road vehicles (TC 22)
ISO/DIS 11992-2, Road vehicles - Interchange of digital information on electrical connections between towing and towed vehicles - Part 2: Application layer for brakes and running gear - 3/25/2022, $165.00
ISO/FDIS 21111-8, Road vehicles - In-vehicle Ethernet - Part 8: Electrical 100-Mbit/s Ethernet transmission media, components and tests - 12/25/2020, $82.00
ISO/DIS 21782-1, Electrically propelled road vehicles - Test specification for electric propulsion components - Part 1: General test conditions and definitions - 3/26/2022, $77.00
ISO/DIS 22241-4, Diesel engines - NOx reduction agent AUS 32 - Part 4: Refilling interface - 3/26/2022, $71.00
ISO/DIS 19642-11, Road vehicles - Automotive cables - Part 11: Dimensions and requirements for coaxial RF cables with a specified analogue bandwidth up to 6 GHz (20 GHz) - 8/12/2022, $107.00
ISO/DIS 19642-12, Road vehicles - Automotive cables - Part 12: Dimensions and requirements for unscreened twisted pair RF cables with a specified analogue bandwidth up to 1 GHz - 8/12/2022, $93.00

Rolling bearings (TC 4)
ISO/DIS 24652, Spherical plain bearings - Spherical plain bearings rod ends for hydraulic fluid power cylinders - 4/1/2022, $98.00

Rubber and rubber products (TC 45)
ISO/FDIS 1827, Rubber, vulcanized or thermoplastic - Determination of shear modulus and adhesion to rigid plates - Quadruple-shear methods - $53.00
ISO/DIS 4646, Rubber- or plastics-coated fabrics - Low-temperature impact test - 5/7/2021, $53.00

Safety of toys (TC 181)
ISO/FDIS 8124-1, Safety of toys - Part 1: Safety aspects related to mechanical and physical properties - 3/25/2021, $185.00

Ships and marine technology (TC 8)
ISO/DIS 22787, Marine environmental impact assessment (MEIA) - Technical specifications for marine biotic surveys in the international seabed area - General principles and definitions - 8/13/2022, $77.00

Solar energy (TC 180)
ISO/DIS 22975-4, Solar energy - Collector components and materials - Part 4: Part 4: Glazing material durability and performance - 8/18/2022, $53.00
ISO & IEC Draft International Standards

Sports and recreational equipment (TC 83)
ISO/DIS 20187-1, Inflatable play equipment - Part 1: Safety requirements and test methods - 3/26/2022, $119.00
ISO/DIS 20187-2, Inflatable play equipment - Part 2: Additional safety requirements for inflatable bouncing pillows intended for permanent installation - 3/26/2022, $58.00
ISO/DIS 20187-3, Inflatable play equipment - Part 3: Additional safety requirements and test methods for snappies - 3/26/2022, $40.00

Starch (including derivatives and by-products) (TC 93)
ISO/DIS 8355, Starch acetates - Specifications and test methods - 8/18/2022, $46.00

Steel (TC 17)
ISO/DIS 630-5, Structural steels - Part 5: Technical delivery conditions for structural steels with improved atmospheric corrosion resistance - 8/18/2022, $82.00

Sustainable development in communities (TC 268)
ISO/DIS 37184, Sustainable mobility and transportation - Framework for transportation services by providing meshes for 5G communication - 8/19/2022, $46.00

Technical drawings, product definition and related documentation (TC 10)
ISO/FDIS 128-2, Technical product documentation (TPD) - General principles of representation - Part 2: Basic conventions for lines - $134.00

Terminology (principles and coordination) (TC 37)
ISO/DIS 5060, Translation services - Evaluation of translation output - General guidance - 8/13/2022, $82.00
ISO/DIS 24495-1, Plain language - Part 1: Governing principles and guidelines - 3/27/2022, $67.00

Textiles (TC 38)
ISO/DIS 22195-1, Textiles - Determination of index ingredient from coloured textiles - Part 1: Madder - 3/26/2022, $53.00
ISO/DIS 22195-2, Textiles - Determination of index ingredient from coloured textiles - Part 2: Turmeric - 3/26/2022, $53.00

Tractors and machinery for agriculture and forestry (TC 23)
ISO/DIS 24120-2, Agricultural irrigation equipment - Guideline on the implementation of pressurized irrigation systems - Part 2: Drip irrigation - 3/25/2022, $82.00

ISO/DIS 4254-20, Agricultural machinery - Safety - Part 20: Grape, olives and coffee harvesters - 8/18/2022, $82.00

Transport information and control systems (TC 204)
ISO/DIS 17386, Intelligent transport systems - Manoeuvring Aids for Low Speed Operation (MALSO) - Performance requirements and test procedures - 8/19/2022, $82.00

Welding and allied processes (TC 44)
ISO/DIS 15611, Specification and qualification of welding procedures for metallic materials - Qualification based on previous welding experience - 8/11/2022, $33.00
ISO/FDIS 17636-2, Non-destructive testing of welds - Radiographic testing - Part 2: X- and gamma-ray techniques with digital detectors - 3/6/2021, $134.00

ISO/IEC JTC 1, Information Technology
ISO/IEC DIS 8183, Information technology - Artificial intelligence - Data life cycle framework - 8/19/2022, $58.00
ISO/IEC DIS 4396-2, Telecommunications and information exchange between systems - Future network recursive inter-network architecture - Part 2: Common application connection establishment protocol - 8/19/2022, $62.00
ISO/IEC DIS 4396-7, Telecommunications and information exchange between systems - Future network recursive inter-network architecture - Part 7: Flow allocator protocol - 8/18/2022, $58.00
ISO/IEC DIS 15444-2, Information technology - JPEG 2000 image coding system - Part 2: Extensions - 8/19/2022, $245.00

ISO/IEC DIS 15938-18, Information technology - Multimedia content description interface - Part 18: Conformance and reference software for compression of neural networks - 8/18/2022, $82.00

IEC Standards

Audio, video and multimedia systems and equipment (TC 100)

100/3778/CD, IEC 60268-24 ED1: SOUND SYSTEM EQUIPMENT - Part 24: Headphones and earphones - active acoustic noise cancelling characteristics, 08/19/2022

100/3757/CDV, IEC 60728-106 ED1: Optical equipment for systems loaded with digital channels only, 08/19/2022

100/3779/CD, IEC 63296-2 ED1: Portable multimedia equipment - Determination of battery duration - Part 2: Headphones and earphones with active noise cancelling functions, 08/19/2022

Cables, wires, waveguides, r.f. connectors, and accessories for communication and signalling (TC 46)

46/895/CD, IEC 61935-4 ED1: SPECIFICATION FOR THE TESTING OF BALANCED AND COAXIAL INFORMATION TECHNOLOGY CABLING - Part 4: Installed balanced single pair cabling as specified in ISO/IEC 1801-1 and related standards, 08/19/2022

Cables, wires, waveguides, r.f. connectors, and accessories for communication and signalling (TC 46)

46/895/CD, IEC 61935-4 ED1: SPECIFICATION FOR THE TESTING OF BALANCED AND COAXIAL INFORMATION TECHNOLOGY CABLING - Part 4: Installed balanced single pair cabling as specified in ISO/IEC 1801-1 and related standards, 08/19/2022

46/895/CD, IEC 61935-4 ED1: SPECIFICATION FOR THE TESTING OF BALANCED AND COAXIAL INFORMATION TECHNOLOGY CABLING - Part 4: Installed balanced single pair cabling as specified in ISO/IEC 1801-1 and related standards, 08/19/2022

Capacitors and resistors for electronic equipment (TC 40)

40/2951/FDIS, IEC 60384-1-1 ED1: Fixed capacitors for use in electronic equipment - Part 1-1: Generic blank detail specification, 07/08/2022

Dependability (TC 56)

56/1956/NP, Replaced by 56/1956A/NP, 08/19/2022

Electric traction equipment (TC 9)

9/2836/CD, IEC 61375-2-6 ED2: Electronic railway equipment - Train communication network (TCN) - Part 2-6: On-board to ground communication, 08/19/2022

9/2825/CDV, IEC 62973-5 ED1: Railway applications - Rolling stock - Batteries for auxiliary power supply systems - Part 5: Lithium-ion batteries, 08/19/2022

9/2836/CD, Replaced by 9/2836A/CD, 08/19/2022

Electrical accessories (TC 23)

23H/509/DPAS, IEC PAS 63454 ED1: CONDUCTIVE CHARGING OF ELECTRIC VEHICLES - DC VEHICLE COUPLER CONFIGURATION GG, 07/22/2022

Electrical apparatus for explosive atmospheres (TC 31)

Electrical installations of ships and of mobile and fixed offshore units (TC 18)

18/1780/FDIS, IEC 60092-304 ED4: Electrical installations in ships - Part 304: Equipment - Semiconductor converters, 07/08/2022

Electromechanical components and mechanical structures for electronic equipments (TC 48)

48B/2968/NP, PNW 48B-2968 ED1: CONNECTORS FOR ELECTRICAL AND ELECTRONIC EQUIPMENT - Detail specification for shielded, free and fixed circular connectors M12 to M40 for power, signal and data transmission with frequencies up to 600 MHz, 08/19/2022

48B/2969/NP, PNW 48B-2969 ED1: Circular connectors ? Detail specification for power, signal and data connectors with size of 12, 17, 23 and 40 mm with bayonet-locking, 08/19/2022

Environmental standardization for electrical and electronic products and systems (TC 111)

111/657/CDV, IEC 62321-3-4 ED1: Part 3-4: Screening of Phthalates in polymers of electrotechnical products by high performance liquid chromatography with ultraviolet detector (HPLC-UV), thin layer chromatography (TLC) and thermal desorption mass spectrometry (TD-MS), 08/19/2022

Fibre optics (TC 86)

86A/2216/CD, IEC 60794-1-212 ED1: Optical fibre cables - Part 1-212: Generic specification - Basic optical cable test procedures - Environmental test methods - Temperature cycling with cable elements fixed at both ends, Method F12, 08/19/2022

86A/2217/CD, IEC 60794-1-217 ED1: Optical fibre cables - Part 1-217: Generic specification - Basic optical cable test procedures - Environmental test methods - Cable shrinkage (fibre protrusion), Method F17, 08/19/2022

Flat Panel Display Devices (TC 110)

ISO & IEC Draft International Standards
110/1425/CDV, IEC 62715-6-22 ED1: Flexible display devices - Part 6-22: Crease and waviness measurement methods, 08/19/2022

110/1433/FDIS, IEC 63145-21-20 ED1: Eyewear display - Part 21-20: Specific measuring methods for VR image quality - Screen Door Effect, 07/08/2022

Small power transformers and reactors and special transformers and reactors (TC 96)
96/538/CDV, IEC 61558-2-3 ED3: Safety of transformers, reactors, power supply units and combinations thereof - Part 2-3: Particular requirements and tests for ignition transformers for gas and oil burners, 08/19/2022

96/539/CDV, IEC 61558-2-7 ED3: Safety of transformers, reactors, power supply units and combinations thereof - Part 2-7: Particular requirements and tests for transformers and power supply units for toys, 08/19/2022

Solar photovoltaic energy systems (TC 82)

82/2062/DTS, IEC TS 63397 ED1: Guidelines for qualifying PV modules for increased hail resistance, 08/19/2022

82/2063/NP, PNW 82-2063 ED1: Photovoltaic cells - Part X: Accelerated test method for the calculation of maximum power degradation considering annual climate conditions, 06/24/2022

Superconductivity (TC 90)
90/489/FDIS, IEC 61788-22-3 ED1: Superconductivity - Part 22-3: Superconducting strip photon detector - Dark count rate, 07/08/2022

Switchgear and controlgear (TC 17)
17C/851/CD, IEC 62271-201 ED3: High-voltage switchgear and controlgear - Part 201: AC solid-insulation enclosed switchgear and controlgear for rated voltages above 1 kV and up to and including 52 kV, 08/19/2022

Switchgear and Controlgear and Their Assemblies for Low Voltage (TC 121)
121A/504/CD, IEC 60947-5-5 ED2: Low-voltage switchgear and controlgear - Part 5-5: Control circuit devices and switching elements - Electrical emergency stop device with mechanical latching function, 06/19/2022

Wind turbine generator systems (TC 88)
88/889/CD, IEC TS 61400-21-4 ED1: Wind energy generation systems - Part 21-4: Measurement and assessment of electrical characteristics - Wind turbine components and subsystems, 08/19/2022

Industrial-process measurement and control (TC 65)
65B/1221/CD, IEC 61131-3 ED4: Programmable controllers - Part 3: Programming languages, 08/19/2022

Lightning protection (TC 81)
81/697/CDV, IEC 62561-5 ED3: Lightning protection system components (LPSC) - Part 5: Requirements for earth electrode inspection housings and earth electrode seals, 08/19/2022

Nanotechnology standardization for electrical and electronic products and systems (TC 113)
113/683/CD, IEC TS 62607-2-2: Nanomanufacturing - Key control characteristics - Part 2-2: Nanomaterials - EM Shielding Effectiveness measurement for Near Field, 08/19/2022

Power electronics (TC 22)
22H/288/CDV, IEC 62040-1/AMD2 ED2: Amendment 2 - Uninterruptible power systems (UPS) - Part 1: Safety requirements, 08/19/2022

Power system control and associated communications (TC 57)
57/2500/FDIS, IEC 61970-302 ED2: Energy management system application program interface (EMS-API) - Part 302: Common information model (CIM) dynamics, 07/08/2022

57/2501/FDIS, IEC 61970-457 ED2: Energy management system application program interface (EMS-API) - Part 457: Dynamics profile, 07/08/2022

Printed Electronics (TC 119)
119/389/CD, IEC 62899-507-1 ED1 Printed Electronics - Part 507-1: Quality assessment - Printed electrode and rivet connection to wire terminal, 08/19/2022

Safety of hand-held motor-operated electric tools (TC 116)
116/614/NP, PNW 116-614 ED1: Electric motor-operated hand-held tools, transportable tools and lawn and garden machinery - Safety - Part 4-8: Particular requirements for shredders/chippers, 07/22/2022

ISO & IEC Draft International Standards
Newly Published ISO & IEC Standards

Listed here are new and revised standards recently approved and promulgated by ISO - the International Organization for Standardization – and IEC – the International Electrotechnical Commission. Most are available at the ANSI Electronic Standards Store (ESS) at www.ansi.org. All paper copies are available from Standards resellers (http://webstore.ansi.org/faq.aspx#resellers).

ISO Standards

Agricultural food products (TC 34)
- ISO 24052:2022, Spices and condiments - Dried sumac - Specification, $73.00

Air quality (TC 146)
- ISO 21438-1:2022, Workplace atmospheres - Determination of inorganic acids by ion chromatography - Part 1: Non-volatile acids (sulfuric acid and phosphoric acid), $149.00

Aircraft and space vehicles (TC 20)
- ISO 21442:2022, Space systems - General requirements for control engineering, $175.00

Gas cylinders (TC 58)
- ISO 13338:2022, Gas cylinders - Gases and gas mixtures - Determination of corrosiveness for the selection of cylinder valve outlet, $73.00

Gears (TC 60)
- ISO 10825-1:2022, Gears - Wear and damage to gear teeth - Part 1: Nomenclature and characteristics, $225.00

Internal combustion engines (TC 70)
- ISO 6826:2022, Reciprocating internal combustion engines - Fire protection, $73.00

Laboratory glassware and related apparatus (TC 48)
- ISO 5215:2022, Laboratory plastic ware - Volumetric flasks, $73.00

Nuclear energy (TC 85)
- ISO 23547:2022, Measurement of radioactivity - Gamma emitting radionuclides - Reference measurement standard specifications for the calibration of gamma-ray spectrometers, $73.00

Optics and optical instruments (TC 172)
- ISO 9802:2022, Raw optical glass - Vocabulary, $48.00

Packaging (TC 122)
- ISO 16495:2022, Packaging - Transport packaging for dangerous goods - Test methods, $200.00
- ISO 24259:2022, Steel strapping for packaging, $111.00

Road vehicles (TC 22)
- ISO 11451-4:2022, Road vehicles - Vehicle test methods for electrical disturbances from narrowband radiated electromagnetic energy - Part 4: Harness excitation methods, $149.00
- ISO 15037-3:2022, Road vehicles - Vehicle dynamics test methods - Part 3: General conditions for passenger cars ride comfort tests, $149.00
- ISO/PAS 22596:2022, Road vehicles - Brake lining friction materials - Dynamometer metal pick-up generation procedure for disc brakes, $200.00

Sieves, sieving and other sizing methods (TC 24)
- ISO 20804:2022, Determination of the specific surface area of porous and particulate systems by small-angle X-ray scattering (SAXS), $149.00

Solar energy (TC 180)
- ISO 24194:2022, Solar energy - Collector fields - Check of performance, $175.00

Traditional Chinese medicine (TC 249)
- ISO 23958-2:2022, Traditional Chinese medicine - Dermal needles for single use - Part 2: Roller-type, $73.00

Transport information and control systems (TC 204)
- ISO 23795-1:2022, Intelligent transport systems - Extracting trip data using nomadic and mobile devices for estimating CO2 emissions - Part 1: Fuel consumption determination for fleet management, $175.00
ISO 24533-2:2022, Intelligent transport systems - Electronic information exchange to facilitate the movement of freight and its intermodal transfer - Part 2: Common reporting system, $250.00

IEC Standards

Cables, wires, waveguides, r.f. connectors, and accessories for communication and signalling (TC 46)

IEC 61169-71 Ed. 1.0 b:2022, Radio-frequency connectors - Part 71: Sectional specification for RF coaxial connectors with inner diameter of outer conductor 5.0 mm - Characteristic impedance 50 Ohms (type NEX10®), $259.00

Industrial-process measurement and control (TC 65)

IEC 61131-9 Ed. 2.0 b:2022, Programmable controllers - Part 9: Single-drop digital communication interface for small sensors and actuators (SDCI), $443.00

IEC 62657-3 Ed. 1.0 b:2022, Industrial communication networks - Coexistence of wireless systems - Formal description of the automated coexistence management and application guidance, $259.00

IEC 62657-4 Ed. 1.0 b:2022, Industrial communication networks - Coexistence of wireless systems - Part 4: Coexistence management with central coordination of wireless applications, $417.00

Maritime navigation and radiocommunication equipment and systems (TC 80)

IEC 63173-2 Ed. 1.0 b:2022, Maritime navigation and radiocommunication equipment and systems - Data interface - Part 2: Secure communication between ship and shore (SECOM), $443.00

Power system control and associated communications (TC 57)

IEC 61970-401 Ed. 1.0 b:2022, Energy management system application program interface (EMS-API) - Part 401: Profile framework, $259.00

Steam turbines (TC 5)

IEC 60953-0 Ed. 1.0 b:2022, Rules for steam turbine thermal acceptance tests - Part 0: Wide range of accuracy for various types and sizes of turbines, $417.00

Switchgear and controlgear (TC 17)

IEC 62271-203 Ed. 3.0 b:2022, High-voltage switchgear and controlgear - Part 203: AC gas-insulated metal-enclosed switchgear for rated voltages above 52 kV, $392.00
IEC 62271-203 Ed. 3.0 en:2022 CMV, High-voltage switchgear and controlgear - Part 203: AC gas-insulated metal-enclosed switchgear for rated voltages above 52 kV, FREE

IEC 62271-204 Ed. 2.0 b:2022, High-voltage switchgear and controlgear - Part 204: Rigid gas-insulated transmission lines for rated voltage above 52 kV, $354.00

S+ IEC 62271-204 Ed. 2.0 en:2022 (Redline version), High-voltage switchgear and controlgear - Part 204: Rigid gas-insulated transmission lines for rated voltage above 52 kV, $460.00

IEC Technical Reports

High Voltage Direct Current (HVDC) transmission for DC voltages above 100 kV (TC 115)

IEC/TR 63363-1 Ed. 1.0 en:2022, Performance of voltage sourced converter (VSC) based high-voltage direct current (HVDC) transmission - Part 1: Steady-state conditions, $392.00
International Electrotechnical Commission (IEC)

NEMA is relinquishing its role as the USNC TAG Administrator for the USNC TAG to IEC/TC 96. The USNC is looking for a new organization to take on this USNC TAG Administratorship.

Please note that according to the rules and procedures of the USNC, a USNC TAG cannot exist without a USNC TAG Administrator. If we cannot find a new USNC TAG Administrator, the USNC will have to withdraw from international participation and register with the IEC as a Non-Member of this Committee.

If an organization is interested in the position of USNC TAG Administrator for the USNC TAG to IEC/TC 96, they are invited to contact Betty Barro at bbarro@ansi.org by June 3, 2022.

USNC TAG Administrator - Organization Needed

TC 96 - Transformers, reactors, power supply units, and combinations thereof

Comment Deadline: June 3, 2022

Standardization in the field of safety, EMC, EMF, energy efficiency and environmental aspects of transformers, reactors, power supply units, and combinations thereof. The standardization does not cover transformers, reactors and power supply units intended to be a part of distribution networks (covered by TC 14).

TC 96 has group safety function in accordance with IEC Guide 104 for transformers other than those intended to supply distribution networks, in particular transformers and power supply units intended to allow the application of protective measures against electric shock as defined by TC 64, with no limitation of rated output power, but in certain cases including limitation of voltage.

The general limitations for voltages are:
- rated supply voltage not exceeding 1 000 V a.c.;
- rated output voltage not exceeding 1 000 V a.c. or 1 500 V ripple free d.c.; however, internal voltages may exceed 1 000 V a.c. or 1 500 V ripple free d.c. For high-voltage applications, other than distribution networks (covered by TC 14), the rated output voltage can exceed 1 000 V a.c. or 1 500 V ripple free d.c. but the no load output voltage shall not exceed 15 000 V a.c. or 15 000 V d.c.

The general limitations for the rated output are:
- The maximum rated output depends on the type of transformer or linear power supply unit does in most cases not exceed 25 kVA for single-phase products and 40 kVA for three phase products;
- the maximum rated output does not exceed 1 kVA for both single-phase and three phase Switch Mode Power Supplies;
- the general limitations for the rated core power are 25 kVA for single-phase auto transformers and 40 kVA for three phase auto transformers;
- the general limitations for the rated power are 50 kvar for single-phase reactors and 80 kvar for three phase reactors. For special transformers, reactors and power supply units and combinations thereof there are no limitation of rated output, rated core power and rated power.
ISO Proposal for a New Field of ISO Technical Activity

Online catering service

Comment Deadline: June 10, 2022

SAC, the ISO member body for China, has submitted to ISO a proposal for a new field of ISO technical activity on Online catering service, with the following scope statement:

Standardization in the field of online catering service. The scope will include, but is not limited to:
 · Vocabulary, principles, and framework of online catering service,
 · Guidelines for service of online catering service providers, including physical restaurants, virtual kitchens/virtual restaurants
 · Contents and methods of meal display and information description on online catering service website/App, and accessible online ordering,
 · Operation management of online catering service providers, including purchasing and inventory, marketing,
 · Monitoring, evaluation, and improvement of service.

Excluded: Standardization covered by ISO/TC 34/SC 17(food safety management), ISO/TC 122(Packaging), ISO/TC 228/WG 16(Tourism and related services - Restaurants), ISO/TC 268/SC 2(Sustainable cities and communities - Sustainable mobility and transportation), ISO/TC 290(Online reputation) and ISO/TC 315(Cold chain logistics), and ISO/TC 326(Machinery intended for use with foodstuffs)

Anyone wishing to review the proposal can request a copy by contacting ANSI's ISO Team (isot@ansi.org), with a submission of comments to Steve Cornish (scornish@ansi.org) by close of business on Friday, June 10, 2022.
International Organization for Standardization (ISO)

ISO Proposal for a New Field of ISO Technical Activity

Smart Distribution in Logistics

Comment Deadline: June 3, 2022

SAC, the ISO member body for China, has submitted to ISO a proposal for a new field of ISO technical activity on Smart Distribution in Logistics, with the following scope statement:

The scope of the proposed new technical committee is to standardize services, techniques application and management in the field of distribution in logistics, specifically including the process of distributing goods from manufacturer or distributor to regional hub, distribution center, and ultimately to businesses such as urban retailers, and to improve the quality, safety and efficiency of distribution operations, and to enhance the stability, flexibility and sustainability of distribution in logistics.

The scope will include, but is not limited to;

- Development of general requirement, framework, metrics, guidance, performance indicator, evaluation for smart distribution in logistics, etc.;
- Provision of service assurance for smart distribution in logistics (e.g. smart operation of distribution center, freight fleet management, education and training for operators, etc.)
- Operation, service and synergy optimization of distribution in logistics (e.g. order processing, cargo consolidation, sorting, picking, storage, repackaging and protective handling, loading, unloading, capacity allocation, shipping, distribution, other customized services, etc.)

Excluded:

- ISO/TC 22 Road vehicles
- ISO/TC 34 Food products
- ISO/TC122 Packaging
- ISO/TC 204 Intelligent transport systems
- ISO/TC 268 Sustainable cities and communities
- ISO/TC 315 Cold chain logistics
- ISO/TC 321 Transaction assurance in E-commerce

Anyone wishing to review the proposal can request a copy by contacting ANSI’s ISO Team (isot@ansi.org), with a submission of comments to Steve Cornish (scornish@ansi.org) by close of business on Friday, June 3, 2022.
Registration of Organization Names in the United States

The Procedures for Registration of Organization Names in the United States of America (document ISSB 989) require that alphanumeric organization names be subject to a 90-day Public Review period prior to registration. For further information, please contact the Registration Coordinator at (212) 642-4975.

When organization names are submitted to ANSI for registration, they will be listed here alphanumerically. Alphanumeric names appearing for the first time are printed in bold type. Names with confidential contact information, as requested by the organization, list only public review dates.

Public Review

NOTE: Challenged alphanumeric names are underlined. The Procedures for Registration provide for a challenge process, which follows in brief. For complete details, see Section 6.4 of the Procedures.

A challenge is initiated when a letter from an interested entity is received by the Registration Coordinator. The letter shall identify the alphanumeric organization name being challenged and state the rationale supporting the challenge. A challenge fee shall accompany the letter. After receipt of the challenge, the alphanumeric organization name shall be marked as challenged in the Public Review list. The Registration Coordinator shall take no further action to register the challenged name until the challenge is resolved among the disputing parties.
Proposed Foreign Government Regulations

Call for Comment

U.S. manufacturers, exporters, regulatory agencies and standards developing organizations may be interested in proposed foreign technical regulations notified by Member countries of the World Trade Organization (WTO). In accordance with the WTO Agreement on Technical Barriers to Trade (TBT Agreement), Members are required to notify proposed technical regulations that may significantly affect trade to the WTO Secretariat in Geneva, Switzerland. In turn, the Secretariat issues and makes available these notifications. The purpose of the notification requirement is to provide global trading partners with an opportunity to review and comment on the regulations before they become final.

The USA Inquiry Point for the WTO TBT Agreement is located at the National Institute of Standards and Technology (NIST) in the Standards Coordination Office (SCO). The Inquiry Point distributes the notified proposed foreign technical regulations (notifications) and makes the associated full-texts available to U.S. stakeholders via its online service, Notify U.S. Interested U.S. parties can register with Notify U.S. to receive e-mail alerts when notifications are added from countries and industry sectors of interest to them. To register for Notify U.S., please visit: http://www.nist.gov/notifyus/.

The USA WTO TBT Inquiry Point is the official channel for distributing U.S. comments to the network of WTO TBT Enquiry Points around the world. U.S. business contacts interested in commenting on the notifications are asked to review the comment guidance available on Notify U.S. at: https://tsapps.nist.gov/notifyus/data/guidance/guidance.cfm prior to submitting comments.

For further information about the USA TBT Inquiry Point, please visit: https://www.nist.gov/standardsgov/what-we-do/trade-regulatory-programs/usa-wto-tbt-inquiry-point Contact the USA TBT Inquiry Point at (301) 975-2918; F: (301) 926-1559; E: usatbtep@nist.gov or notifyus@nist.gov.
Revise table note x. for Table 4.2.2(1) Specifications for the Energy Rating Reference and Rated Homes as follows:

x. Any untested forced air distribution system is permitted to be modeled with a DSE of 0.70. When both of the following conditions are met and documented, duct leakage testing is also not required.

1. At a pre-drywall stage of construction, 100 percent of the ductwork and airhandler shall be visible and visually verified to be contained inside the Conditioned Space Volume.

2. At a final stage of construction, ductwork that is visible and the air handler shall be verified again to be contained in the Conditioned Space Volume.

To calculate the energy impacts on the Rated Home, a DSE of 0.80, shall be applied to both the heating and cooling system efficiencies.

If at the pre-drywall stage of construction, the ductwork is visually verified to be 100 percent fully ducted with no building cavities used as supply or return ducts, a DSE of 0.88 shall be applied to both the heating and cooling system efficiencies. As an alternative to the DSE = 0.88, a value of 4 cfm per 100 square feet of Conditioned Floor Area may be modeled for duct leakage to outside if the above conditions are met and no ductwork is contained within envelope assemblies adjacent to the exterior or Unconditioned Space Volumes. If at a pre-drywall stage of construction, the ductwork is visually verified to be 100 percent fully ducted with no building cavities used as supply or return ducts, a DSE of 0.88 shall be applied to both the heating and cooling system efficiencies.

Revise table note (a) for Table 4.3.1(1), Configuration of Index Adjustment Design, as follows:

Table 4.3.1(1) Configuration of Index Adjustment Design

Table 4.3.1(1) Notes:

(a) The procedure for determining the combined air exchange rate resulting from infiltration combined with Dwelling Unit Mechanical Ventilation Systems is shall be consistent with that shown in Table 4.2.2(1) table notes (g) and (h).
Revise section 7.1.2.2. as follows:

7.1.2.2. Emission. The emissions for the Rated Home shall be calculated in accordance with Sections 7.1.2.2.1 and 7.1.2.2.2.

7.1.2.2.1. Emissions. Emissions for all homes shall be calculated in accordance with Sections 7.1.2.2.1.1 and 7.1.2.2.1.2.

7.1.2.2.1.1. For electricity use, data for the sub-region annual total output emission rates published by Environmental Protection Agency’s 2019 eGRID2020 eGRID database¹ for electricity generation shall be used to calculate emissions.² except CO₂CO₂e emissions, which shall be calculated using the Cambium database³⁴ for the most recent year’s Mid-case, average hourly CO₂ generation rate (co2_rate_avg_load_enduse: kgCO₂ per MWh_enduse) for the local ZIP Code provisions of Section 6.2.8.2 to calculate the annual hourly CO₂e emissions for the Rated Home.

7.1.2.2.1.2. For fossil fuel use, emissions shall be calculated using the emission factors given in Table 7.1.2(1).

Table 7.1.2(1) Emission Factors for Household Combustion Fuels⁵

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Units</th>
<th>MBtu per Unit</th>
<th>CO₂ CO₂e lb/MBtu</th>
<th>NOx lb/MBtu</th>
<th>SO₂ lb/MBtu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>Therm</td>
<td>0.1000</td>
<td>117.6147.3</td>
<td>0.0922</td>
<td>0.0006</td>
</tr>
<tr>
<td>Fuel Oil #2</td>
<td>Gallon</td>
<td>0.1385</td>
<td>161.9195.9</td>
<td>0.1300</td>
<td>0.0015</td>
</tr>
<tr>
<td>Liquid Petroleum Gas (LPG)</td>
<td>Gallon</td>
<td>0.0915</td>
<td>136.46177.8</td>
<td>0.1421</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

¹ (Informative Reference) http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html
² (Informative Note) RESNET will compile and publish annual total output emission rate data for NOx, SO₂ and CO₂CO₂e in accordance with the provisions of this section that can be used by Approved Software Rating Tools for the calculation of emissions.
³ https://cambium.nrel.gov/
7.1.2.2.2. Emission Savings. Estimated emission savings for the Rated Home shall be calculated in accordance with Sections 7.1.2.2.2.1. through 7.1.2.2.2.3.

7.1.2.2.2.1. The CO$_2$e Index Reference Home shall be identical to the Energy Rating Reference Home except that it shall use electricity for all energy end uses. The Energy Rating Reference Home emissions for the CO$_2$e Index Reference Home shall be determined by fuel type by applying the emission factors determined in accordance with Section 7.1.2.2.1 to its Purchased Energy individual fuel types of the Energy Rating Reference Home.

7.1.2.2.2. The Rated Home emissions shall be determined by fuel type by applying the same emission factors determined in accordance with Section 7.1.2.2.1 above.

7.1.2.2.2.3. For Confirmed, Sampled and Projected Ratings, estimated emission savings shall be calculated in accordance with Sections 7.1.2.2.2.3.1. and 7.1.2.2.2.3.2.

7.1.2.2.2.3.1. Estimated emission savings with respect to the Energy Rating Reference Home CO$_2$e Index Reference Home shall be the difference between the emissions of the Energy Rating Reference CO$_2$e Index Reference Home and the emissions of the Rated Home.

7.1.2.2.2.3.2. Estimated emission savings with respect to the Typical Existing Home shall be determined in accordance with Sections 7.1.2.2.2.3.2.1. and 7.1.2.2.2.3.2.2.

7.1.2.2.2.3.2.1. For each fuel type, multiply the Energy Rating Reference Home CO$_2$e Index Reference Home emissions by 1.3 to determine the Typical Existing Home emissions by fuel type.

7.1.2.2.2.3.2.2. Estimated emission savings with respect to the Typical Existing Home shall be the difference between the emissions of the Typical Existing Home and the emissions of the Rated Home.

Revise section 7.3. as follows:

7.3. Labeling. Energy Rating labels shall, at a minimum, contain the information specified by Sections 7.3.1 through 7.3.8.

7.3.1. Real property physical address of the home, including city and state or territory.

7.3.2. Energy Rating Index of the home.
7.3.3 \(\text{CO}_2\text{CO}_2\text{e} \) Index for the home, calculated in accordance with Section 6.

7.3.4 Projected \(\text{CO}_2\text{CO}_2\text{e} \) emissions for the home, calculated in accordance with Sections 57.1.2.2.1.1 and 57.1.2.2.1.1.

7.3.5 Projected annual site energy use of the home by fuel type.

7.3.6 Projected annual energy cost of the home,\(^6\) calculated in accordance with energy price rate provisions of Section 7.1.2.1.1.

7.3.7 Name and address of the Approved Rating Provider.

7.3.8 Date of the Energy Rating.

Revise section 8. as follows:

8. \(\text{CO}_2\text{CO}_2\text{e} \) Rating Index. The \(\text{CO}_2\text{CO}_2\text{e} \) Index shall be calculated for the Rated Home in accordance with equation 6.18.1 using the provisions of Sections 6.58.1 through 6.58.4

\[
\text{CO}_2\text{CO}_2\text{e} \text{ Index} = \frac{\text{ACO}_2}{\text{ARCO}_2} \times 100
\]

(Equation 68-1)

where:

\(\text{ACO}_2 = \) Annual hourly \(\text{CO}_2\text{CO}_2\text{e} \) emissions from the Rated Home

\(\text{ARCO}_2 = \) Annual hourly \(\text{CO}_2\text{CO}_2\text{e} \) emissions from the \(\text{CO}_2\text{CO}_2\text{e} \) Index Reference Home

\(\text{IAF}_\text{RH} = \) Index Adjustment Factor in accordance with Equation 4.3-2

8.1 The \(\text{CO}_2\text{CO}_2\text{e} \) emission factors for household combustion fuel use shall be those given in Table 5.1.2(1).7.1.2(1).

8.2 The \(\text{CO}_2\text{CO}_2\text{e} \) emission factors for electricity use shall be the levelized \(\text{CO}_2\text{CO}_2\text{e} \) combined combustion and precombustion, end-use emission rates having 100-year Global Warming Potential calculated using the 2021 Cambium database\(^7,\text{8}\) for the Low Renewable Energy Cost Scenario for the Long-Run Marginal month-hour \(\text{CO}_2\text{CO}_2\text{e} \) emission rates (lrmer_co2e) for the applicable Cambium Grid and Emission Assessment (GEA) region in accordance with the local ZIP Code using equation 8-2 with a starting year of

\(^6\) (Informative Note) The projected energy cost shown on the label might not reflect the projected energy costs to be paid by the occupant as metering configurations can result in certain energy costs and end-uses being paid by the building owner.

\(^7\) (Normative Note) https://cambium.nrel.gov/

emission factors calculated using the Cambium database12,13 for the Low Renewable Energy Cost Scenario for the Long-Run Marginal enduse CO\textsubscript{2} generation rate (\textit{co2_liner_enduse}: kgCO\textsubscript{2} per MWh\textsubscript{enduse}) for the local ZIP Code using equation 6-2 with a starting year of 2025.14

\begin{equation}
\text{LRMER}_{\text{levelized}} = \frac{\sum_{t=0}^{n-1} \text{LRMER}_t}{\sum_{t=n}^{n-1} \frac{1}{(1+d)^t}} \\
\tag{Equation 6-2}
\end{equation}

where:

\text{LRMER}_t = \text{long-run marginal emission rate for year } t
\]
\[d = \text{real social discount rate} = 0.03
\]
\[n = \text{evaluation period in years} = 25
\]

8.3 The CO\textsubscript{2} CO\textsubscript{2e} emission factors shall be applied to the hourly Purchased Energy by fuel type for both the Rated Home and the CO\textsubscript{2} CO\textsubscript{2e} Index Reference Home.

8.4 The CO\textsubscript{2} CO\textsubscript{2e} Index Reference Home shall be identical to the Energy Rating Reference Home except that it shall use electricity for all energy end uses.

8.5 Where reported, the CO\textsubscript{2} savings for the Rated Home shall be the CO\textsubscript{2} emissions for the CO\textsubscript{2} Index Reference Home minus the CO\textsubscript{2} emissions for the Rated Home.

9 (Informative note) National Renewable Energy Laboratory (NREL) provides a spreadsheet tool for the calculation of levelized CO\textsubscript{2e} emission rates that can be accessed at https://data.nrel.gov/submissions/183.

10 (Informative Note) RESNET provides a spreadsheet of the hourly emission factors and ZIP code mappings that meet these criteria that can be accessed at https://www.resnet.us/wp-content/uploads/RESNET_2021_CO2e_GEAdata.xlsx.

11 (Informative Note) These Cambium CO\textsubscript{2e} emission data are provided in units of kg/MWh.

14 (Informative note) National Renewable Energy Laboratory (NREL) provides a spreadsheet tool for the calculation of levelized CO\textsubscript{2} emission rates. The NREL spreadsheet tool uses the input parameters specified by this section as inputs to the spreadsheet tool.
Substantive Changes

During the first ballot of the proposed standard, a negative vote was submitted recommending that the root penetration standard from the commentary be moved to Section 3.8 to make it a requirement. This suggestion was accepted and will result in the following substantive change:

Substantive Changes

3.8 Membrane Requirements
The membrane specified for use in the vegetative system shall meet the recognized industry minimum material requirements for the generic membrane type and shall meet the specific requirements of its manufacturer. Membranes not having a consensus product standard shall meet the specific requirements of their manufacturer. Where the membrane is not impervious to root penetration, or the membrane has not been tested for root penetration resistance, root barriers shall be necessary. Root penetration resistance shall be confirmed by testing in accordance with ANSI/SPRI VR-1 Procedure for Investigating Resistance to Root or Rhizome Penetration on Vegetative Roofs, or other applicable consensus standards. See Commentary C3.8.

Should you have any questions, please contact SPRI at info@spri.org or 781-647-7026.
BSR/UL 2586, Standard for Safety for Hose Nozzle Valves for Flammable and Combustible Liquids

The following is being recirculated:

1. Revision to Deformation Test with respect to anchoring

2. Revision to External Leakage Test to clarify that if a vent tube is provided it shall be sealed

PROPOSAL

INTRODUCTION

3 Glossary

3.9 VACUUM SHUTOFF PORT OPENING – An opening near the tip of the spout that connects to the vacuum tube and serves to vent the cavity above the vacuum diaphragm during refueling, and when blocked by liquid causes automatic shutoff.

PERFORMANCE

11 Deformation Test

11.2 A length of Schedule 80 pipe shall be connected to a female pipe threaded section of the hose nozzle body. The hose nozzle valve or pipe shall be rigidly anchored or otherwise supported during the deformation test. The male threads shall be coated as specified by the manufacturer or have pipe joint sealing compound or polytetrafluoroethylene (PTFE) tape applied to them first. No more than four revolutions of polytetrafluoroethylene (PTFE) tape shall be applied. The connection shall be tightened to the torque specified in Table 11.1.

12 External Leakage Test

12.2 The inlet of the test valve shall be connected to a system capable of supplying clean aerostatic or hydrostatic pressure as the test medium. All external leakage tests employing an aerostatic pressure source shall be maintained for at least 1 min. All external leakage tests employing a liquid as the test medium shall be maintained for at least 5 min. The outlet of the hose nozzle valve shall be sealed. If a vacuum shutoff port opening is provided it shall be sealed to prevent the test medium from returning into the
nozzle. The test medium shall be admitted and maintained at the specified test pressure.

12.4 A hose nozzle valve shall not leak through stem or body seals or other joints, or show evidence of porosity in castings when liquid-confining parts under rated operating pressure are subjected to any gauge pressure between 0 and 25 psi (0 and 172 kPa) with the valve in the open position and the outlet closed. If a vacuum shutoff port opening is provided it shall be sealed to prevent the test medium from returning into the nozzle.
BSR/UL 2586A, Standard for Safety for Hose Nozzle Valves for Gasoline and Gasoline/Ethanol Blends with Nominal Ethanol Concentrations up to 85 Percent (E0 – E85)

The following is being recirculated:

1. Revision to Deformation Test with respect to anchoring
2. Revision to Long Term Exposure Test to add E40, clarify requirements and align with UL 2586B
3. Revision to External Leakage Test with respect to vent tube being sealed

PROPOSAL

INTRODUCTION

3 Glossary

3.9 VACUUM SHUTOFF PORT OPENING – An opening near the tip of the spout that connects to the vacuum tube and serves to vent the cavity above the vacuum diaphragm during refueling, and when blocked by liquid causes automatic shutoff.

PERFORMANCE

11 Deformation Test

11.2 A length of Schedule 80 pipe shall be connected to a female pipe threaded section of the hose nozzle body. The hose nozzle valve or pipe shall be rigidly anchored or otherwise supported during the deformation test. The male threads shall be coated as specified by the manufacturer or have pipe joint sealing compound or polytetrafluoroethylene (PTFE) tape applied to them first. No more than four revolutions of polytetrafluoroethylene (PTFE) tape shall be applied. The connection shall be tightened to the torque specified in Table 11.1.

12 Long Term Exposure Test

12.2 Samples

12.2.4 Material combinations at the product and closure interface will be as specified by the manufacturer. All closures for hose nozzle valves rated for gasoline/ethanol blends with nominal ethanol concentrations up to and including 40 percent shall be fabricated
of suitable materials. All closures for hose nozzle valves rated for gasoline/ethanol blends with nominal ethanol concentrations above 40 percent shall be fabricated of the materials representing permitted material to which the device may be connected; such as aluminum closures representing aluminum tubing. Table 5.1 shall be used to determine the worst case material interactions based on the materials specified by the manufacturer. Materials specified by the manufacturer but not included in Table 5.1 shall be tested as necessary to represent worst case conditions.

13 External Leakage Test

13.4 For all tests, the inlet of the device is to be connected to the source of pressure of 25 psi (173 kPa) with the valve open and the outlet blocked. If a vacuum shutoff port opening is provided it shall be sealed to prevent the test medium from returning into the nozzle. The test is repeated with a test pressure of 75 psi (518 kPa) with the valve closed and the outlet open.
BSR/UL 2586B, Standard for Safety for Hose Nozzle Valves for Diesel Fuel, Biodiesel Fuel, Diesel/Biodiesel Blends with Nominal Biodiesel Concentrations up to 20 percent (B20), Kerosene, and Fuel Oil

The following is being recirculated:

1. Revision to Deformation Test with respect to anchoring

2. Revision to External Leakage Test with respect to vent tube being sealed

PROPOSAL

INTRODUCTION

3 Glossary

3.9 VACUUM SHUTOFF PORT OPENING – An opening near the tip of the spout that connects to the vacuum tube and serves to vent the cavity above the vacuum diaphragm during refueling, and when blocked by liquid causes automatic shutoff.

PERFORMANCE

11 Deformation Test

11.2 A length of Schedule 80 pipe shall be connected to a female pipe threaded section of the hose nozzle body. The hose nozzle valve or pipe shall be rigidly anchored or otherwise supported during the deformation test. The male threads shall be coated as specified by the manufacturer or have pipe joint sealing compound or polytetrafluoroethylene (PTFE) tape applied to them first. No more than four revolutions of polytetrafluoroethylene (PTFE) tape shall be applied. The connection shall be tightened to the torque specified in Table 11.1.

13 External Leakage Test

13.4 For all tests, the inlet of the device is to be connected to the source of pressure of 25 psi (173 kPa) with the valve open and the outlet blocked. If a vacuum shutoff port opening is provided it shall be sealed to prevent the test medium from returning into the nozzle. The test is repeated with a test pressure of 75 psi (518 kPa) with the valve closed and the outlet open.